## 学校的理想装备 电子图书・学校专集 校园ペ上的最佳资源

中学化学奥林匹克化学竞赛复赛试题



## 1986 年竞赛试题

| 原子量: H 1 , C 12 , O 16 , F 19 , Ne 20 , S 32 , Na 23 ,                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ag 107.9, CI 35.5, Fe 55.85, AI 27。                                                                                                                                              |
| 一、填空题(26分)                                                                                                                                                                       |
| 1.化学是研究的一门基础自然科学。它是以为基础                                                                                                                                                          |
| 的科学,因此学习化学必须。                                                                                                                                                                    |
| 2.原子具有半充满的 2p 亚层结构的元素是(填写元素符号,                                                                                                                                                   |
| 下同), 具有半充满的 3d 亚层结构的一种元素是, 具有(n-1)d <sup>10</sup> ns <sup>0</sup>                                                                                                                |
| 结构的元素是;原子半径最小的元素是,原子半径最大                                                                                                                                                         |
| 的元素是;第一电离能最小的元素是,第一电离能最大的                                                                                                                                                        |
| 元素是;最小的阳离子是,最小的阴离子是;电负性最大                                                                                                                                                        |
| 的元素是。                                                                                                                                                                            |
| $3.2$ 克 $H_2$ 和 $2$ 克 $D_2$ , 其质子数之比是 , 中子数之比是 , 核                                                                                                                               |
| 外电子数之比是,标准状况下的体积比是。                                                                                                                                                              |
| $4$ .实验室制备 $H_2$ 、 $CO_2$ 、 $CI_2$ 、 $CO$ 、 $NH_3$ ,可用启普发生器制备的有 ,                                                                                                                |
| 可用排水法收集的有,可用向上排气法收集的有,可用向下排                                                                                                                                                      |
| 气法收集的有。这几种气体中,具有氧化性而没有还原性的气                                                                                                                                                      |
| 体是。                                                                                                                                                                              |
| 5.某些化学试剂需要特殊的保存方法,如金属钠需保存于中,                                                                                                                                                     |
| 少量白磷需置于中。                                                                                                                                                                        |
| 6.用硫化亚铁和稀盐酸反应,得到气体 A 和溶液 B。                                                                                                                                                      |
| (1)取 B 溶液少量,加入氯水得到溶液 C,发生的现象是,                                                                                                                                                   |
| 化学方程式为。                                                                                                                                                                          |
| (2)取 B 溶液少量,加入氢氧化钠溶液,产生的现象是,最                                                                                                                                                    |
| 后变为色,化学方程式为,。                                                                                                                                                                    |
| (3)取 C 少量,通入气体 A,有浅黄色沉淀产生,离子方程式为。                                                                                                                                                |
| 该方程式中氧化剂是,氧化产物是。                                                                                                                                                                 |
| 7.一固体混合物,其中可能含有 MgCO <sub>3</sub> ,Na <sub>2</sub> SO <sub>4</sub> ,Ba(NO <sub>3</sub> ) <sub>2</sub> ,AgNO <sub>3</sub>                                                         |
| 和 CuSO <sub>4</sub> 。它们溶于水后得无色溶液和白色沉淀;此沉淀可溶于盐酸并冒                                                                                                                                 |
| 气泡;而无色溶液的焰色反应呈黄色。试根据以上现象,判断此混合物                                                                                                                                                  |
| 中一定存在的物质有, 一定不存在的物质有。                                                                                                                                                            |
| 8 .在 10cm³ 0.01 mo I ·dm⁻³KI 溶液中加入 8—10 滴相同浓度的 AgNO₃                                                                                                                             |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| 溶液,边滴边振荡,得到,通以直流电,则发现极附近颜色加                                                                                                                                                      |
| 溶液,边滴边振荡,得到,通以直流电,则发现极附近颜色加深。                                                                                                                                                    |
| 溶液,边滴边振荡,得到,通以直流电,则发现极附近颜色加深。<br>9.若不慎将 AgNO <sub>3</sub> 溶液滴落在皮肤上,则在皮肤上留下黑色斑点。                                                                                                  |
| 溶液,边滴边振荡,得到,通以直流电,则发现极附近颜色加深。<br>9.若不慎将 AgNO <sub>3</sub> 溶液滴落在皮肤上,则在皮肤上留下黑色斑点。<br>该变化的化学方程式是。                                                                                   |
| 溶液,边滴边振荡,得到,通以直流电,则发现极附近颜色加深。 9.若不慎将 AgNO <sub>3</sub> 溶液滴落在皮肤上,则在皮肤上留下黑色斑点。该变化的化学方程式是。 10.粗盐酸呈黄色,这主要是由于含有等杂质的缘故。用此种                                                             |
| 溶液,边滴边振荡,得到,通以直流电,则发现极附近颜色加深。 9. 若不慎将 AgNO <sub>3</sub> 溶液滴落在皮肤上,则在皮肤上留下黑色斑点。该变化的化学方程式是。 10. 粗盐酸呈黄色,这主要是由于含有等杂质的缘故。用此种盐酸与锌反应,则溶液褪为无色。褪色的反应式是。                                    |
| 溶液,边滴边振荡,得到,通以直流电,则发现极附近颜色加深。 9. 若不慎将 AgNO <sub>3</sub> 溶液滴落在皮肤上,则在皮肤上留下黑色斑点。该变化的化学方程式是。 10. 粗盐酸呈黄色,这主要是由于含有等杂质的缘故。用此种盐酸与锌反应,则溶液褪为无色。褪色的反应式是。 11. 实验室制备的氯水和硫化氢水放置 1—2 天后,往往失效。前者 |
| 溶液,边滴边振荡,得到,通以直流电,则发现极附近颜色加深。 9. 若不慎将 AgNO <sub>3</sub> 溶液滴落在皮肤上,则在皮肤上留下黑色斑点。该变化的化学方程式是。 10. 粗盐酸呈黄色,这主要是由于含有等杂质的缘故。用此种盐酸与锌反应,则溶液褪为无色。褪色的反应式是。                                    |

|    | 者,则填写"×"号。若试题只有                                                                                 |                                         | 角答案,选答                                 | <b>孫两个者不</b> 约                  | 合分;            |
|----|-------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------|----------------|
|    | 若试题有两个答案者,全对才给分                                                                                 |                                         |                                        | _                               | _              |
|    | 1. 电子层结构为[Ar]3d <sup>6</sup> 的离                                                                 |                                         | D N:2+                                 | [                               | J              |
|    | A.Mn <sup>2+</sup> B.Fe <sup>3+</sup> C                                                         |                                         |                                        | ¥77 <del>+</del> 12   □ 164   □ |                |
|    | 2.下列微粒中与 NH <sup>+</sup> 4离子的                                                                   | 灰丁总数                                    | 和电丁总数1                                 | 事相同的定                           |                |
|    | l J<br>A.Mg <sup>2+</sup> B.K <sup>+</sup> C                                                    | No.+                                    | D. Na                                  | г и o+                          |                |
|    | <del>-</del>                                                                                    |                                         |                                        | J                               | ,              |
|    | 3 . 1 克下列气体,在标准状况<br>A . 乙烷 B . 氟气 C .                                                          |                                         |                                        |                                 |                |
|    | 4.下列气体中,对热最不稳                                                                                   |                                         | ひ・羊にし                                  | [<br>[                          |                |
|    | A. $H_2O$ B. $H_2S$ C.                                                                          |                                         | D . HF                                 | L                               | 1              |
|    | 5.下列各组物质,不属于同                                                                                   |                                         |                                        | [                               | ]              |
|    | A. 红磷与白磷 B.                                                                                     |                                         |                                        | •                               | •              |
|    | C. <sup>16</sup> 0与 <sup>18</sup> 0 D.                                                          | 氧气与臭                                    | !氧(O <sub>3</sub> )                    |                                 |                |
|    | 6.下列实验事实能证明硫酸                                                                                   | 是强酸的                                    | 是                                      | [                               | ]              |
|    |                                                                                                 |                                         |                                        |                                 |                |
|    | A. 使石蕊试纸变红                                                                                      |                                         |                                        |                                 | . —            |
|    | C. 与锌反应产生氢气                                                                                     | D. 与蒙                                   | 机化钢固体反                                 | 心制取氯化                           | 氢              |
|    | E . 与磷酸钙反应制取磷酸<br>7. 有一可逆反应: C(固) +H <sub>2</sub> O                                             | (气)+                                    | ↓ CO(气)+1                              | H_(气) -拱                        | 量 在            |
|    | 某温度下达到平衡。下列说法中正                                                                                 |                                         |                                        | -2 C 05                         |                |
| Α. | 达到平衡时,各反应物与生成物浓                                                                                 |                                         | 等                                      |                                 | •              |
| Β. | 升高温度,使正向反应速率增大,                                                                                 | 逆向反应                                    | 远速率减小 ,                                | 故平衡向右                           | 移动             |
|    | 由于反应前后分子数相等,所以增                                                                                 |                                         |                                        | l                               |                |
| D. | 加入正催化剂使正向反应速率增大                                                                                 | -                                       |                                        | ケート                             | <del> </del>   |
|    | 8.在一定条件下进行的下列》<br>是水解反应的是                                                                       | 又巡甲,                                    | <b>跣</b> 个是氧化−                         | −企原反应 「                         | , 又小<br>1      |
|    | 在小胖及应的定<br>A. SO <sub>2</sub> +H <sub>2</sub> O <del>← →</del> H <sup>+</sup> +HSO <sub>3</sub> | В.                                      | Cl₀+H₀O+                               | L<br>HC10+HC1                   | J              |
|    | $C \cdot S0^{2-}_{3} + H_{2}0 = HS0^{-}_{3} + OH^{-}_{3}$                                       |                                         |                                        |                                 |                |
|    | 9.0.1mol · dm <sup>-3</sup> 碳酸钠溶液 <sup>F</sup>                                                  |                                         |                                        | _                               | -3 <b>∏</b> II |
|    | 应向溶液中加入或通入                                                                                      | ı , нхі <b>х</b> [                      | ,00 311XX                              | ). 111101                       | , A3           |
|    | A . NaOH B . $CO_2$                                                                             | . HCI                                   | D . NaCl                               | ь<br>溶液                         | 1              |
|    |                                                                                                 |                                         |                                        |                                 | 9有气            |
|    | 体产生的是                                                                                           | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2                                      | [                               | ]              |
|    | $A.H_2SO_4$ $B.AI_2(SO_4)$                                                                      | <sub>4</sub> ) <sub>3</sub>             |                                        | -                               | -              |
|    | C.FeSO <sub>4</sub> D.Fe <sub>2</sub> (SO <sub>2</sub>                                          | <sub>4</sub> ) <sub>3</sub>             |                                        |                                 |                |
|    | 11.下列溶液中 pH 值最小的                                                                                | 是                                       |                                        | [                               | ]              |
|    | pH 值最大的是                                                                                        |                                         |                                        | [                               | ]              |
|    | A.O.1mol·dm <sup>-3</sup> Hac                                                                   |                                         |                                        |                                 |                |
|    | C . O.1mol - dm <sup>-3</sup> H <sub>3</sub> PO <sub>4</sub>                                    | D.0.0                                   | 1mol · dm <sup>-3</sup> H <sub>:</sub> | <sub>3</sub> PO <sub>4</sub>    |                |

下列各题可能有 1~2 个正确答案,也可能没有正确答案。有正确答案者,将其标号(A、B、C、D、E)填入括号内;没有正确答案

| $E.0.1$ mol·dm $^{\circ}HCl$ $F.0.1$ mol·dm $^{\circ}H_{2}SO_{4}$                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.下列说法正确的是          [  ]                                                                                                                                                                 |
| A . 将 NaOH 和氨水溶液各稀释一倍 , 则两者的 OH <sup>-</sup> 离子浓度均减小                                                                                                                                      |
| 到原来的二分之一                                                                                                                                                                                  |
| B.HCI溶液的浓度是 HAc 溶液浓度的二倍,则 HCI溶液中[H <sup>+</sup> ]也                                                                                                                                        |
| 为 HAc 溶液中[H <sup>+</sup> ]的二倍                                                                                                                                                             |
| C.中和等体积同浓度的 HCI 和 HAc 溶液所需要的碱量相等                                                                                                                                                          |
| D. 弱酸的浓度越小,其电离度也越大,所以酸性也越强                                                                                                                                                                |
| 13.胶体区别于其它分散系的本质特征是 [ ]                                                                                                                                                                   |
| A.胶体微粒带电荷                                                                                                                                                                                 |
| B. 分散质微粒直径在 10 <sup>-9</sup> -10 <sup>-7</sup> m 之间                                                                                                                                       |
| C.可产生了铎尔现象                                                                                                                                                                                |
| D. 胶体微粒做布朗运动                                                                                                                                                                              |
| E.胶体微粒不能穿过半透膜<br>14. 用云黑中极中解下视溶液——60时间后阳极增素。溶液和点像                                                                                                                                         |
| 14.用石墨电极电解下列溶液,一段时间后阴极增重,溶液 pH 值降低的是                                                                                                                                                      |
| $A \cdot H_2SO_4 B \cdot MgCI_2 C \cdot KOH D \cdot CuSO_4 E \cdot CuCI_2$                                                                                                                |
| 15. 氢气和一氧化碳的混合气体 30cm <sup>3</sup> , 完全燃烧共用去氧气 15cm <sup>3</sup> ,                                                                                                                        |
| 此混合气体中氢气和一氧化碳的体积比是 [ ]                                                                                                                                                                    |
| A.1 1 B.2 1                                                                                                                                                                               |
| C.3 1 D.任意比 E.以上都不对                                                                                                                                                                       |
| 16.浓度为 0.1mol·dm <sup>-3</sup> 某一元弱酸 HA , 其 pH 值等于 3 , 该酸在                                                                                                                                |
| 0.1mol·dm <sup>-3</sup> 时的电离度为                                                                                                                                                            |
| A.0.01% B.0.3% C.1% D.3% E.9%                                                                                                                                                             |
| 17. 在标准状况下, 13 克某气体的分子数与 14 克乙烯的分子数相                                                                                                                                                      |
| 等,则某气体的密度是            [  ]                                                                                                                                                                |
| A.11.6 克/分米 <sup>3</sup> B.1.16 克/厘米 <sup>3</sup>                                                                                                                                         |
| C.1.16 克/分米 <sup>3</sup> D.1.25 克/分米 <sup>3</sup>                                                                                                                                         |
| E.1.25 克/厘米 <sup>3</sup>                                                                                                                                                                  |
| 18 . 0 . 2mo l · dm <sup>-3</sup> A l <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> 溶液 100cm <sup>3</sup> 与 0 . 3mo l · dm <sup>-3</sup> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> 溶 |
| 液 200cm <sub>3</sub> 混合后,需至少加入 0.4mo I · dm <sup>-3</sup> NaOH 溶液多少 cm <sup>3</sup> 便仍可得                                                                                                  |
| 到澄清溶液 [ ]                                                                                                                                                                                 |
| A.350 B.400 C.550 D.700 E.850                                                                                                                                                             |
| 三、(本题共 12 分)                                                                                                                                                                              |
| 现有无色晶体 A 和白色固体 B , 分别加水配成无色溶液。A 溶液的焰                                                                                                                                                      |
| 色反应为紫色, B 溶液的焰色反应为黄色。                                                                                                                                                                     |
| 1.取 A 溶液少许,加入 $Ba(NO_3)_2$ 溶液,有白色沉淀 $C$ 生成,加入稀                                                                                                                                            |
| HNO <sub>3</sub> 后,沉淀仍不消失;                                                                                                                                                                |
| 2.取 A 溶液与 B 溶液混合有白色沉淀 D 生成 ,且有无色气体 E 生成 ,                                                                                                                                                 |

3. 取 B 溶液少许加入  $\mathrm{MgCI}_2$  溶液不生成沉淀。然后加热,析出白色

气体 E 可使澄清石灰水混浊;

沉淀 F 和气体 E;

| 4. 白色沉淀 D 溶于适量盐酸,生成无色溶液 G,D 溶于 NaOH 溶液生          |
|--------------------------------------------------|
| 成无色溶液 H, G与 H混合又生成 D。                            |
| 根据以上事实判断:A 是(填分子式,下同),B 是,C 是,                   |
| D 是, E 是, F 是, G 是, H 是。并写出下列反                   |
| 应的离子方程式:                                         |
| (1)A 溶液与 B 溶液混合:。                                |
| (2)B 溶液与 MgCI <sub>2</sub> 溶液混合并加热:。。            |
| (3)D 溶于 NaOH 溶液:。                                |
| (4)G 溶液与 H 溶液混合:。                                |
| 四、(本题共7分)                                        |
| 用标准 NaOH 溶液滴定食醋中醋酸的含量,实验过程如下:                    |
| (1)配制 0.1NNaOH 溶液 250cm³;                        |
| (2)准确地取食醋 10cm³,稀释至 100cm³,然后取出稀释后的食醋            |
| 20cm <sup>3</sup> 置于锥形瓶中,并加入指示剂;                 |
| (3)滴入 NaOH 溶液,至指示剂刚好变色;                          |
| (4)记下 NaOH 溶液的用量。重复操作一次,求出 NaOH 溶液用量的平           |
| 均值。                                              |
| 回答下列问题:                                          |
| 1. 简述配制 0.1NNaOH 溶液的步骤(要求写出所需主要仪器,不要求            |
| 计算具体数字)                                          |
| 2. 如果两次滴定, NaOH 溶液的平均用量为 15cm3。求 食醋的当量           |
| 浓度; 假设食醋的密度为 1 克/厘米 3, 求食醋的百分比浓度。                |
| 五、(本题共 6 分)                                      |
| 有 A、B、C 三种有机物, A、B 是烃类, 分子里所含碳原子数相同; C           |
| 是烃的含氧衍生物,并且已知:                                   |
| (1)每摩 A 在一定条件下能与 4 摩氢气发生加成反应,生成乙基环己              |
| 烷。而且 A 在一定条件下能发生加聚反应生成高分子化合物。                    |
| (2)B 不能使溴水褪色,但能使酸化的 KMnO <sub>4</sub> 溶液褪色,它的氧化产 |
| 物在一定条件下能与乙二醇发生缩聚反应生成一种聚酯纤维。                      |
| $(3)$ C 在常温下是无色,有强烈刺激性气味的液体,滴几滴到 $Na_2$ CO $_3$  |
| 溶液中能放出 $CO_2$ 气体,在得到的混合溶液中加入新制的 $Cu(OH)_2$ ,并加   |
| 热至沸,出现砖红色沉淀。根据以上情况,推断 A、B、C 的结构简式和               |
| 名称。                                              |
| 六、鉴别题(12 分)                                      |
| 次 並及                                             |
| 物质                                               |
| NaNO <sub>3</sub>                                |
| NH <sub>3</sub> 7K                               |
|                                                  |
| BaCl <sub>2</sub>                                |

ΚI

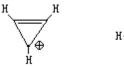
| 现象 试剂 物质          |  |
|-------------------|--|
| KCI               |  |
| $(NH_4)_2SO_4$    |  |
| $AI(NO_3)_3$      |  |
| MgCI <sub>2</sub> |  |
| AgNO <sub>3</sub> |  |

上列两组物质,都是无色溶液,每组只用一种试剂同时鉴别它们。 将合适试剂和实验现象填充在下列表格中。

## 七、计算题(15分)

- 1.碳酸钠样品里含有杂质碳酸氢钠,现取 5.00 克碳酸钠样品,加热到质量不再减少为止。将所放出的气体经浓硫酸干燥,用过氧化钠吸收,同时有氧气放出。在 25 ,101kPa 下测得氧气的体积为 38.53cm³。 求样品中碳酸钠的百分含量。
- 2.在0.600克的铁粉、铝粉、氯化钠和碳酸钠混合物中加入1mol dm<sup>-3</sup>的盐酸溶液 20.0cm<sup>3</sup>,产生 205cm<sup>3</sup>气体(标态下)。将所产生的气体通过氢氧化钾溶液,气体的体积减少到 131cm<sup>3</sup>(标态下)。又在用酸处理后的溶液中加入过量的硝酸银溶液,得到 3.14 克氯化银沉淀。求此混合物中铁粉、铝粉、氯化钠和碳酸钠的含量各为多少克。

## 1986 年复赛试题


|    | 技术 | 2 日前 。 | 120   | $\Delta$ |  |
|----|----|--------|-------|----------|--|
| —、 | 填空 | 巡      | ( Z U | 71       |  |

| · · ※ (14—+(10))(16) > (27)(17) / (37)(17) (17)(17)(17)          |
|------------------------------------------------------------------|
| 有色物质,物质的颜色,原因是。                                                  |
| 2. 组成和结构相似的物质随着分子量的增大,熔、沸点升高,如 ${ m N}_{\!\scriptscriptstyle 2}$ |
| 的分子量是 28 , $0_2$ 的分子量是 32 , 所以 $0_2$ 的沸点 ( $-183$ )比 $N_2$ 的沸点   |
| (-196 )高。按此推测 , NO 的分子量是 30 , 它的沸点位于 $N_2$ 和 $O_2$ 之间 ,          |
| 这一推测(填对或不对),原因是。                                                 |
|                                                                  |

- 3.根据路易斯酸碱理论,凡能给出电子对的分子或离子都是碱(如 NH<sub>3</sub>),凡能接受电子对的分子或离子都是酸(如 Cu<sup>2+</sup>)。据此,路易斯酸中某原子价层应有\_\_\_\_,路易斯碱中某原子的价层应有\_\_\_\_。
- 4. 从定性的角度来说,"熵"是一种无序性或混乱度的量度。高度无序的物质具有高的熵值,低熵值总是和井然有序的物质联系在一起的。试判断下列过程熵值的变化情况(增大,还是减小?)
- (a)结晶\_\_\_\_, (b)气化\_\_\_\_, (c)水电解生成氢气和氧气\_\_\_\_, (d) 装订一本书\_\_\_。
- 5.根据现代理论观点, 芳香族化合物的分子平面的上面和下面必须 具有环状的离域 电子云, 而这个 电子云必须含有总数为(4n+2)个 电子, (n 0的自然数)。苯、萘、蒽符合此条件。

判断下列化合物是否具有芳香性:

(a)环丙烯正离子 (b)环戊二烯正离子



(c)环戊二烯负离子





(d)吡咯 (e)吡啶



6. 用高能量的中子 $\binom{1}{0}$ n)轰击 $\binom{285}{0}$ U,发生一系列的裂变反应,其中一个

常见的裂变反应如下,请完成之。

$$^{285}_{92}\,U + ^1 n \rightarrow \phantom{^{1}} + ^{90}_{36}\,Kr + 3^1_0 n$$

- 7.现代的原子结构理论认为,在同一电子层上,可有 s、p、d、f、g、h......等亚层,各亚层分别有 1、3、5、......个轨道。试根据电子填入轨道的顺序预测:
  - (1)第八周期共有 种元素;
  - (2)原子核外出现第一个 6f 电子的元素的原子序数是\_\_\_\_\_;
- (3)根据"稳定岛"假说,第 114 号元素是一种稳定同位素,半衰期很长,可能在自然界都可以找到。试推测第 114 号元素属于\_\_\_\_\_周期, 族元素,原子的外围电子构型是\_\_\_\_。
  - 二、写出下列各过程的有关反应式,并进行有关计算(18分)
  - 1. 由焦炭、水和空气制硝酸;
- 2.由银制硝酸银。若有 10.8 克纯银需用密度为 1.180 克/厘米 <sup>3</sup>的 30% HNO<sub>3</sub> 多少毫升?
- 3.由硝酸银制银镜,如药物材料不够可自己补充。(已知 Ag 的原子量为 108)。

## 三、(本题共 15 分)

有两种配位化合物具有同一实验式: $Co(NH_3)_3(H_2O)_2CIBr$ ,但其配离子 的 组 成 不 同 。 A 为  $[Co(NH_3)_3(H_2O)BrCI]Br$  ·  $H_2O$  , B 为  $[Co(NH_3)_3(H_2O)_2CI]Br_2$ 。

- 1. 分别为 A、B 命名;
- 2. 试设计两种实验方案来鉴别 A 和 B;
- 3. A 的配离子为八面体构型(如右图所示)画出它可能的异构体的图形。



四、(本题共 16 分)

有三种苯的取代衍生物甲、乙和丙,分子式均为  $C_9H_{12}$  , 其可能的异构体有

甲氧化得到一元羧酸,甲可能的异构体为\_\_\_\_,同时经硝化得两种 一硝基化合物,因此甲为。 乙氧化得到二元羧酸,乙可能的异构体为\_\_\_\_,经硝化也得到两种 一硝基化合物,故乙只能是。 丙氧化得到三元羧酸,可能的异构体为\_\_\_\_\_,但经硝化只得到 一种一硝基化合物,故丙只能是。 五、(本题共 15 分)

温度为 0 时,三甲胺的密度是压力的函数,有人测得了如下数据:

| P/(afm)              | 0.2    | 0.4   | 0.6    | 0.8    |
|----------------------|--------|-------|--------|--------|
| $d/(g \cdot I^{=1})$ | 0.5336 | 1.079 | 1.6363 | 2.2054 |

试根据以上数据计算三甲胺的分子量。(提示:要准确测定分子量,必须 在实际气体的压力十分低的极限情况下,即p0时,应用理想气体的气 态方程式计算,然后作图外推,才能得到较准确的结果。)

#### 六、(本题共16分)

实验测得碱土金属卤化物气态分子的几何构型有两种:一种为直线 型,一种为弯曲形。如  $BeF_2$ , $CaCI_2$ 和  $SrI_2$ 。分子为直线形(其中键角 XAX=180°); MgF<sub>2</sub>和 BaI<sub>2</sub>分子为弯曲形(XAX < 180°)等。

价键理论认为 AX,型分子的几何构型取决于中心原子 A 所采取的杂 化轨道类型,而 A 原子取何类型杂化轨道除考虑对称性因素外,还要考 虑能量因素,即激发能尽可能小,而真实键能尽可能大,并假定真实键 能与轨道强度 s 的平方和  $s^2$  成正比。对于  $AX_2$  型分于 , 该理论方法的主 要结论如下:

| A 杂化轨道类型        | 键角      | 激发能                 | $s^2$ |
|-----------------|---------|---------------------|-------|
| sp              | 180 °   | P* <sub>sp</sub>    | 7.465 |
| $sp^2$          | 120 °   | 1.33P <sub>sp</sub> | 7.928 |
| sp <sup>3</sup> | 109.5 ° | 1.5P <sub>sp</sub>  | 8.000 |

- \*P<sub>sp</sub>——是激发一个 ns 电子到 np 轨道上所需要的激发能。 请根据上述实验事实和价键理论的结论
- 1.找出碱土金属卤化物气态分子几何构型的一般规律。(用图表形 式表明)。
- 2.根据你得出的规律,预言BaF。,BeCI。,CaBr。和MgI。分子的几何
- 3.用价键理论定性阐明你得出的规律。分析问题时,可能用到的知 识补充如下:

P<sub>sp</sub> 规律:Be > Mg > Ca > Sr > Ba。 键长规律:M-F<M-CI<M-Br<M-I。

## 1987 年竞赛试题

原子量:H 1.01,C 12.0,O 16.0,B 10.8,CI 35.5,S 32.1, K 39.1

| 一、填空题(共 20 分)                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.36 克水和 100 克重水 $(D_2O)$ 分别与足量的金属钠反应,产生的气                                                                                                     |
| 体体积之比为。                                                                                                                                        |
| 2. 不挥发的溶质能降低溶剂的蒸气压,因而使它的溶液的沸点比纯                                                                                                                |
| 溶剂的沸点。                                                                                                                                         |
| 3. 固体 NaCI 与浓硫酸反应得到 HCI 气体,固体溴化钠与浓 H <sub>2</sub> SO <sub>4</sub>                                                                              |
| 反应得到, 说明 Br <sup>-</sup> 的还原性比 CI <sup>-</sup> 强。                                                                                              |
| 4.在浓度一定时,升高温度使反应速度增大的主要原因是                                                                                                                     |
|                                                                                                                                                |
| 5. 氯水中含有等分子和等离子。                                                                                                                               |
| 6.在 NaHCO <sub>3</sub> 、(NH <sub>4</sub> )3PO <sub>4</sub> 、FeCI <sub>3</sub> 、KCN、NH <sub>4</sub> NO <sub>3</sub> 、KCI、NH <sub>4</sub> Ac 等盐溶 |
| 液中,显酸性,显碱性。                                                                                                                                    |
| 7. 在络合物中,影响中心离子配位数多少的因素为:中心离子的电                                                                                                                |
| 荷数愈高,配位数愈,中心离子的半径愈大,配位数愈,配位                                                                                                                    |
| 体的半径愈大,配位数愈,配位体的电荷数愈高,配位数愈。                                                                                                                    |
| 8. 已知 A 元素原子最外层电子数为 2,次外层为 8 个电子, B 元素                                                                                                         |
| 核外电子数比 A 多 10 个 , A、B 元素属于同一周期 , 原子序数小于 36。A                                                                                                   |
| 元素的名称是,B 元素的符号是,原子半径是大,两种元素                                                                                                                    |
| 相应氧化物的水化物的碱性是强。                                                                                                                                |
| 9. 久盛高锰酸钾的滴瓶可用清洗,久盛石灰水的试剂瓶可用                                                                                                                   |
| 清洗,做过碘升华实验的烧杯可用清洗,做过银镜反应的试管可用清洗。                                                                                                               |
| 10.当电石与水反应时,生成的气体通入银氨溶液会析出黑色沉淀,                                                                                                                |
| 其原因是。如果要得到纯净的电石气,应将气体通过溶液,进                                                                                                                    |
| 行净化处理。                                                                                                                                         |
|                                                                                                                                                |
| 而弱酸的电离常数与的变化无关,与的变化有关。                                                                                                                         |
| 12.用 NaOH 溶液滴定醋酸时,应选用作指示剂,等当点时溶液                                                                                                               |
| 的 pH 值7;用盐酸滴定氨水时,应选用作指示剂,等当点时溶                                                                                                                 |
| 液的 pH 值7。                                                                                                                                      |
| 13.在形成 pH <sub>3</sub> 分子的过程中, P原子的轨道进行杂化,其中一                                                                                                  |
| 个杂化轨道被 P 原子的占有,其余杂化轨道分别与氢原子的 s 轨道                                                                                                              |
| 沿轨道对称轴方向形成键, $pH_3$ 分子的几何构型为形。                                                                                                                 |
| 14.当强酸与强碱在稀溶液中发生中和反应时,每生成水,都                                                                                                                   |
| 放出 13.7 千卡的热量,而当弱酸弱碱在稀溶液中发生中和反应时,每生                                                                                                            |
| 成同样量的水所放出的热量13.7 千卡。                                                                                                                           |
| 二、选择题(共 30 分)                                                                                                                                  |
| 下列每题可能有一个或多个正确答案,请将正确答案的标号填入括                                                                                                                  |
| 号内。(注意:全对者才给分)                                                                                                                                 |
| 1.下列物质不是均匀混合物的是         [  ]                                                                                                                   |

A. 花岗石样品 B. 澄清的食盐溶液 C. 氨水 D. 高山上的清洁空

2. 下列化合物中,最易水解的是

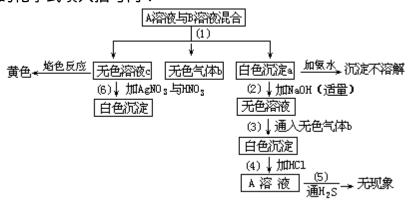
D. 高山上的清洁空气样品

[ ]

| A.NaCl B.MgCl <sub>2</sub> C.AlCl <sub>3</sub> D.SiC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 <sub>4</sub>                                    |                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|
| 3 . 反应 H₂+I₂(气) ⇌ 2HI , 平衡常数 K 的表达式正确的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 的是                                                | [ ]                                          |
| A. $\frac{[HI]}{[H_2][I_2]}$ B. $\frac{2[HI]}{[H_2][I_2]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                              |
| C. $\frac{[\mathrm{HI}]^2}{[\mathrm{H}_2][\mathrm{I}_2]}$ D. $\frac{[\mathrm{H}_2][\mathrm{I}_2]}{[\mathrm{HI}]^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |                                              |
| 4.金属铁与充足的氯气反应,其产物是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [                                                 | ]                                            |
| A. $FeCl_2$ B. $FeCl_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                              |
| C.FeCI <sub>2</sub> 与 FeCI <sub>3</sub> 的混和物   D.FeCI <sub>3</sub> 和 Fe <sub>2</sub> O <sub>3</sub> 的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b></b> )混和                                       | 物                                            |
| 5 . Ag 的电子层结构是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [                                                 | ]                                            |
| A. $[Kr]4d^{10}5s^1$ B. $[Kr]4d^95s^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |                                              |
| C . [Kr]4d <sup>10</sup> 4f <sup>14</sup> 5s <sup>1</sup> D . [Ar]3d <sup>9</sup> 4s <sup>2</sup><br>E . [Ar]3d <sup>10</sup> 4s <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                                              |
| 6.实践证明,土壤胶体吸附作用主要吸附的离子是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ſ                                                 | 1                                            |
| A. 负离子 B. H <sub>2</sub> O 中的 OH <sup>-</sup> 离子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                 | ,                                            |
| C.H <sub>2</sub> O 中的 H <sup>+</sup> 离子   D.正离子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                              |
| 7.下列物质既可作氧化剂,又可作还原剂的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Г                                                 | 1                                            |
| $A \cdot AI_2O_3  B \cdot H_2S  C \cdot H_2O_2  D \cdot HCIO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                 | $Na_2SO_3$                                   |
| 8.下列化学方程式正确的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [                                                 | ]                                            |
| A . $C_6H_5NH_3CI+NaOH$ $C_6H_5NH_2+NaCI+H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                              |
| ${\rm B.2KMnO_4+17H_2O_2+3H_2SO_4=K_2SO_4+2MnSO_4+11O_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+110_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_2+20H_2O_4+10_4+20H_2O_4+10_4+10_4+20H_2O_4+10_4+10_4+10_4+10_4+10_4+10_4+10_4+10$ |                                                   |                                              |
| $C \cdot Fe^{3+} + Sn^{2+} = Fe^{2+} + Sn^{4+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |                                              |
| D . $C+4HNO_3=4NO_2 +CO_2 +2H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                              |
| 9.下列分子中是极性分子的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [                                                 | ]                                            |
| A. $H_2S$ B. $C_6H_6$ C. $CS_2$ D. $CHCI_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                                 | . 502                                        |
| 10.下列说法正确的是<br>A.碳酸氢钠溶液显弱碱性,是由于 HCO <sub>3</sub> 在水中的电                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L<br>薬約数                                          | ▗<br>▋ひおおおおおおおおおおままままままままままままままままままままままままままま |
| 解趋势                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 143 KE ).                                         | .7.7.7                                       |
| B. Li, Na, K 在氧气中燃烧均能生成氧化物, 过氧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 化物利                                               | 口超氧化                                         |
| 物                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                              |
| C. 含有杂质镁的锌粒在稀硫酸中比纯锌溶解得更快                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ţ                                                 |                                              |
| D . I⁻的还原性比 C I⁻强,所以 I⁻易于被还原为 I₂。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                                              |
| 11.下列各组物质能发生反应的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) <del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del> | ]                                            |
| A.正丁醇与稀盐酸 B.苯胺水 C.浓硝酸在常温时置于光照的条件下 D.把白磷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                              |
| 12.以下化学用语表示正确的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ו אינו<br>ן                                       | `T<br>]                                      |
| A.H[:Č1:] B.K"[:Č1:]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L                                                 | J                                            |
| $\mathbb{C}_{\mathbb{C}_{2}^{+}}[\overset{.}{:}\overset{.}{\mathbb{S}}\overset{.}{:}]^{2}$ - D. $\overset{.}{\overset{.}{\sim}}\overset{.}{\overset{.}{\sim}}\overset{.}{\overset{.}{\sim}}\overset{.}{\overset{.}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |                                              |
| 13.下列说法正确的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | г                                                 | 1                                            |
| A.0.2mol·L <sup>-1</sup> 盐酸中[H <sup>+</sup> ]是 0.1mol·L <sup>-1</sup> 硫酸中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [H <sup>+</sup> ]的                                | 」<br>] 2 倍。                                  |
| B.0.2mol·L <sup>-1</sup> 盐酸中[H <sup>+</sup> ]是0.1mol·L <sup>-1</sup> 醋酸中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                                              |

| C.0.2mol·L <sup>-1</sup> 磷酸溶液中[H <sup>+</sup> ]是[PO <sup>3-</sup> 4]的3倍。                                               |                         |         |
|------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|
| D. 0.4mol·L <sup>-1</sup> 氯化钠溶液 150 毫升和 0.2mol·L <sup>-1</sup>                                                         | 氯化锌                     | 溶液      |
| 350 毫升混和,混和液中氯离子的摩尔浓度是 $0.4 \text{mol} \cdot \text{L}^{-1}$ 。                                                          |                         |         |
| 14. 由热化学方程式 $H_2 + \frac{1}{2}O_2 = H_2O(液) + 68$ 千卡, 2NF                                                              | $I_3 + \frac{3}{2}$     | $O_2 =$ |
| $N_2 + 3H_2O(液) + 182 + + + + + + + + + + + + + + + + + + +$                                                           | ≟成热                     | 是       |
| 2 2                                                                                                                    | [                       | 1       |
| A.22 千卡 B.250 千卡 C.114 千卡 D.                                                                                           | -                       | -       |
| 15 pH=1 的盐酸溶液 40 毫升和 pH=13 的氢氧化钠溶液 40                                                                                  | 毫升》                     | 昆和 ,    |
| 混和后溶液的 pH 值是                                                                                                           | [                       | ]       |
| A.14 B.13 C.7 D.0                                                                                                      |                         |         |
| 16 . pH=4 的盐酸溶液,用纯水将其稀释 1000 倍后,溶液                                                                                     | i的 pH                   | 值是      |
| A 11 - 0                                                                                                               | [                       | ]       |
| A . pH < 6 B . pH = 7                                                                                                  |                         |         |
| C.6 <ph<7 d.ph="">7<br/>17.在下述水溶液中,容易溶解 AgBr 的是</ph<7>                                                                 | г                       | 1       |
| A.氨水 B.溴水 C.碘化                                                                                                         | 田水質                     | 」<br>交流 |
| D. NaOH 水溶液 E. 硫代硫酸钠水溶液                                                                                                | ፣ተ/J\/፣                 | ゴバス     |
| 18.制取 Al <sub>2</sub> S <sub>3</sub> 的正确方法是                                                                            | ſ                       | 1       |
| A . AICI <sub>3</sub> 溶液与 Na <sub>2</sub> S 溶液混合 B . AICI <sub>3</sub> 溶液通入                                            | L<br>H <sub>o</sub> S ⊆ | -       |
| C. AI 与 S 共热 D. AI 与氢硫酸作                                                                                               | _                       | VIII    |
| 19.分别向 Na <sub>3</sub> PO <sub>4</sub> , NaH <sub>2</sub> PO <sub>4</sub> , Na <sub>2</sub> HPO <sub>4</sub> 三种溶液中滴加 A |                         | 容液,     |
| 其沉淀物                                                                                                                   | [                       | 1       |
| A . 都是 Ag <sub>3</sub> PO <sub>4</sub>                                                                                 | L                       | ,       |
| B.分别是 Ag <sub>3</sub> PO <sub>4</sub> ,AgH <sub>2</sub> PO <sub>4</sub> Ag <sub>2</sub> HPO <sub>4</sub>               |                         |         |
| C.都是 AgH <sub>2</sub> PO <sub>4</sub>                                                                                  |                         |         |
| D.都是 Ag <sub>2</sub> HPO <sub>4</sub>                                                                                  |                         |         |
| 20.用下面哪一种试剂可以鉴别出盐酸、氨水、丙醛、尿                                                                                             | 五元                      |         |
|                                                                                                                        | )<br>1                  | 1       |
|                                                                                                                        | L                       |         |
| A.KMnO₄溶液     B.菲林试剂                                                                                                   |                         |         |
| C.溴水 D.AgNO <sub>3</sub> 溶液                                                                                            |                         |         |
| 21.发酵和皂化反应的共同点是它们都能生成                                                                                                  | [                       | ]       |
| A.酯 B.醇 C.酸 D.肥皂                                                                                                       | _                       | _       |
| 22.下列四组溶液,不用其它试剂可以鉴别的是                                                                                                 | [                       | ]       |
| A . NaBr , HCI , AgNO <sub>3</sub> , Na <sub>2</sub> CO <sub>3</sub> , NaNO <sub>3</sub>                               |                         |         |
| B . NaCI , MgCl <sub>2</sub> , Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> , NH <sub>4</sub> CI                    |                         |         |
| ${\tt C}$ . ${\tt Na_2CO_3}$ , ${\tt AgNO_3}$ , ${\tt NH_4CI}$                                                         |                         |         |
| D . ${\rm CuSO_4}$ , ${\rm BaCI_2}$ , ${\rm AgNO_3}$ , ${\rm CaCI_2}$                                                  |                         |         |
| 23.由热化学方程式:                                                                                                            |                         |         |
| 2C(固)+02(气)=2CO(气)+52.8 千卡                                                                                             |                         |         |

| C(固)+0 <sub>2</sub> (气)=C0 <sub>2</sub> (气)+94 干卡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|
| C(固)+H <sub>2</sub> O(气)=CO(气)+H <sub>2</sub> (气)-31.4 千卡                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |     |
| $CO(气) + \frac{1}{2}O_2(气) = CO_2(气) + 67.6 + \dagger$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |     |
| 可以判断碳的燃烧热是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [              | ]   |
| A. 26.4 千卡/摩 B. 94 千卡/摩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |     |
| C.31.4 千卡/摩 D.67.6 千卡/摩<br>24.原电池和电解池不同,因为原电池是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ſ              | 1   |
| 24.原电池和电解池不同,因为原电池是<br>A.由化学反应产生电流                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L              | ]   |
| B. 由电流产生化学反应                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |     |
| C.在两个电极上分别发生氧化和还原                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |     |
| D. 有离子在电极之间移动                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |     |
| 25.下列说法不正确的是<br>A.化学平衡限于化学变化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [              | ]   |
| B.吕·查德里原理不能定量预测平衡移动的程度                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |     |
| ${\tt C}$ . 工业上生产 ${\tt SO_3}$ , 通常是在高温下使 ${\tt SO_2}$ 氧化 , 升高温度的目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 的 , 护          | ‡不是 |
| 为了提高平衡转化率                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |     |
| D.加压很难使溶液中的化学平衡移动                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r              | 1   |
| 26.镁、铝都是较活泼的金属,下列描述正确的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [              | J   |
| A. 都能很快溶解在水中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |     |
| B. 都能很快溶解在碱溶液中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |     |
| C. 都能很快溶解在 NH <sub>4</sub> CI 溶液中                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · <del>·</del> |     |
| D. 铝能很快溶解在碱溶液中,镁很快溶解在 NH <sub>4</sub> CI 溶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 液甲             | ,   |
| 27.下列化合物中属于高分子化合物的是<br>A.脂肪 B.石棉 C.蛋白质 D.石油                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L              | ]   |
| 28. 与银氨溶液作用能发生银镜反应的有                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [              | ]   |
| A.甲酸甲酯 B.葡萄糖溶液                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              | -   |
| C. 淀粉溶液 D. 乙醇                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | -   |
| 29.与含碱的酚酞溶液共热,红色能褪去的有<br>A.乙酸乙酯 B.酒精                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l              | J   |
| C.醋酸钠溶液 D.硫化钠溶液                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |     |
| 30.下列反应中错误的是                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [              | ]   |
| A. $\bigcirc$ -OH+NaHCO <sub>3</sub> $\rightarrow$ $\bigcirc$ ONa+CO <sub>2</sub> $\uparrow$ +H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |     |
| B . C <sub>2</sub> H <sub>5</sub> Br+H <sub>2</sub> O <del>-△→</del> C <sub>2</sub> H <sub>5</sub> OH+HBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |     |
| $C \cdot C_2H_5OH+H_2SO_4 - C_2H_5OSO_3H+H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |     |
| $CH_3$ |                |     |
| CH. CH. CH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |     |


三、问答题(9分) 分子式为  $C_4H_{10}$ 0 的醇共有几种异构体?其中哪一种最容易与钠反应?哪一种最容易脱水?分别写出上述各种醇脱水后的主要产物结构和 名称。

## 四、由实验事实判断未知物(共21分)

1.由四种无色气体组成的混合气体,依次通过下表所示的试剂,并将观察到的现象亦列入表中,根据现象试回答下列有关问题:

|     | - ·       |             |
|-----|-----------|-------------|
| 序号  | 所 加 试 剂   | 现象          |
| (1) | 稀硝酸与硝酸银溶液 | 有白色沉淀产生     |
| (2) | 溴水与硝酸钡溶液  | 橙色消失,出现白色沉淀 |
| (3) | 氢氧化钠溶液    | 无明显现象       |
| (4) | 浓硫酸       | 无明显现象       |
| (5) | 灼热的氧化铜粉末  | 有红色固体出现     |
| (6) | 无水硫酸铜粉末   | 粉末变蓝色       |
| (7) | 澄清石灰水     | 变浑浊         |

- (a)判断混合气体是由\_\_\_ \_\_\_ \_\_\_组成的。
- (b)写出与序号(2)试剂反应的方程式(要求配平)。
- (c)写出与序号(5)试剂反应的方程式(要求配平)。
- 2.有 A、B 两种化合物,其水溶液均为无色。A 溶液呈酸性, B 溶液呈碱性。B 既能与酸反应又能与碱反应都生成水。根据下列实验现象,将适当的化学式填入括号内:



- (a) 判断 A 是 B 是 。
- (b)写出(1)和(3)步的反应方程式(要求配平)。
- 3.一化合物中,碳、氧、氢元素的含量分别为63.1%,31.6%,5.30%。根据这些数据,确定该化合物的最简式。(提示:应考虑数据的实验误差,从而作出合理的结论。)

## 五、由实验事实推定化学反应方程式(共 20 分)

 $Na_2S_2O_3$  是常用的还原剂,与弱氧化剂(如  $I_2$ )作用,被氧化成  $Na_2S_4O_6$ 。现有下列实验事实:

- (1)将  $10.0 \text{cm}^3 \text{SO}_2$  水溶液稀释到  $500.0 \text{cm}^3$  ,取稀释溶液  $10.0 \text{cm}^3$  加到  $25.0 \text{cm}^3$  碘溶液中。滴定过量碘需要  $9.30 \text{cm}^3$  含  $S_2 0^{2-}_3$  为  $100 \text{mol·m}^{-3}$  的硫代硫酸盐溶液。若取  $25.0 \text{cm}^3$  的上述碘溶液需要此硫代硫酸盐溶液  $22.5 \text{cm}^3$ 。
- (2)  $10.0 \text{cm}^3 \text{S}_2 \text{CI}_2$  (密度为  $1.68\text{g} \cdot \text{cm}^{-3}$ ) 溶于石油醚中,得到  $100 \text{cm}^3$  有色溶液,将它慢慢加到  $50.0 \text{cm}^3$  上述原始  $\text{SO}_2$  水溶液中,并振荡,当有

色溶液加到 66.7cm3时,反应达到完全。水层以 KOH 水溶液进行中和, 得到无水钾盐的结晶,除水外,唯一的另一产物 KCI 保留在水溶液中。

(3)称取上述无水钾盐 50.0mg 作为试样,溶解在 50%HCI 水溶液中, 它需要与  $23.2 \text{cm}^3$  含  $10^-_3$  为  $25.0 \text{mol} \cdot \text{m}^{-3}$  的碘酸钾溶液完全反应。试推 定(a)SO<sub>2</sub>和 S<sub>2</sub>CI<sub>2</sub>在水溶液中的反应方程式;(b)无水钾盐和 KIO<sub>3</sub>在 50 %HCI 水溶液中的反应方程式。

## 1987年复赛试题

一、指出下列化合物活性由强到弱的顺序(10分)



2.碱性强弱

(1) 
$$\bigcirc$$
 -NH<sub>2</sub> (2) CH<sub>3</sub>- $\bigcirc$  -NH<sub>2</sub>

$$(3) \circ_2 N - (-) - NH_2$$

3.酸性强弱

- 4. 水中溶解度\_\_\_\_。
  - (1)甘油 (2)1—丁醇 (3)桐油
- 5.水解速度 . 水解速度\_\_\_\_。 (1)CH<sub>3</sub>COOC<sub>2</sub>H<sub>5</sub> (2)CH<sub>3</sub>CONH<sub>2</sub> (3)CH<sub>2</sub>COCI

二、根据下列实验事实,鉴别注字母的各物质,将化学式填入相应 的空格内(10分)。

 $\mathsf{A}\_\_\_ \; , \; \mathsf{B}\_\_\_ \; , \; \mathsf{C}\_\_\_ \; , \; \mathsf{D}\_\_\_ \; , \; \mathsf{E}\_\_\_ \; , \; \mathsf{F}\_\_\_ \; , \; \; \mathsf{G}\_\_\_ \; , \; \; \mathsf{H}\_\_\_ \; , \; \; \mathsf{I}\_\_\_ \; ,$ 

\_ 三、(本题 8 分)

在室温下,铜线暴露在空气中时,其表面逐渐覆盖一层黑色氧化物 CuO。当此铜线被加热超过一定温度后,黑色 CuO 就转变为红色氧化物 Cu<sub>2</sub>0。试通过计算解释上述两种现象,并估计后一种现象发生时的温度。 已知有关物质在 298K 时的热力学数据如下:

|                                           | Cuo(s) | Cu <sub>2</sub> O(s) | Cu(s) | $O_2(g)$ |
|-------------------------------------------|--------|----------------------|-------|----------|
| △H <sup>♣</sup> KJ • mol <sup>-1</sup>    | -155   | -167                 |       |          |
| S <sup>⊕</sup> f J • K-1mol <sup>-1</sup> | 43.5   | 101                  | 33.3  | 205      |

## 四、(本题共 20 分)

试解释以下现象,并写出有关化学方程式:

- 1. 金属锌溶于氨基钠 $(NaNH_2)$ 的液氨溶液中,并释放出氢气;小心加入碘化铵产生白色的沉淀,若继续加入碘化铵,沉淀溶解。
- 2.电极电势的理论计算公式是  $E=E^{\bullet}+\frac{0.059}{n}\log\frac{[氧化型]}{[还原型]}$  (其中 n表示得到或失去的电子数目),当  $\epsilon_{\bullet}=E_{\text{LL}}-E_{\bullet}>0$  时,氧化还原反应可以自发的向右进行。已知  $E_{\text{cu}}^{\bullet}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$   $^{2+}$
- 3.在工矿企业工作长期接触重金属的人,如果防护不严,吸入重金属积聚体内可引起中毒,其原因是重金属离子如  $Hg^{2+}$ 等,能使含有巯基的蛋白酶

(HS)酶)失去活性,产生汞中毒,临床常用的一种解毒剂如二巯基丙醇 (HS)可以解毒使蛋白酶恢复活性。

CHSH CH₂SH

- 4.人体血浆中正常的 pH 值为 7.35~7.42,如果 pH 值高于 7.50 或低于 7.20 分别表现为代谢性碱中毒或酸中毒,为纠正酸碱失调,临床上一般给患者补给化学药物(既可口服又可静脉注射)来纠正。试分别指出补给的药物名称及纠正的过程。
- 5.解释下列分子的空间构型: $BF_3$ (平面三角形),  $NF_3$ (三角锥形),  $CIF_3$ (T 形)
  - 6.解释三卤化硼接受电子对的能力是  $BF_3 << BCI_3 < BBr_3$

## 五、(本题 10 分)

在叔丁醇中加入金属钠,当钠被消耗后,在反应混合物中加入溴乙烷,这时可以得到  $C_6H_{14}O$ ;若在乙醇和金属钠反应的混合物中加入 2-甲基-2-溴丙烷,则有气体产生,在留下的混合物中仅有一种有机物—乙醇,写出上述反应方程式。

## 六、(本题共10分)

等电点是氨基酸和蛋白质的一个重要物理化学特征。当溶液的 pH 值与等电点(等电 pH)一致时,化合物的总电荷为零,下表中列出某些氨基酸的等电点,指出在标明的 pH 值下,各氨基酸在电场中的移动方向(向正极或负极),并说明原因。

| 氨基酸 | 等电点(pH) | 指明的 pH | 氨基酸在电场中移动方向 |
|-----|---------|--------|-------------|
| 缬氨酸 | 5.96    | 8      |             |
| 丝氨酸 | 5.68    | 1      |             |
| 赖氨酸 | 9.74    | 12     |             |
| 谷氨酸 | 3.22    | 7      |             |

## 七、(本题 12 分)

有一 Pb0 和  $Pb0_2$  的混合物,用高锰酸钾法测定其含量。称取该样品 0.7340 克,加入 20.00 毫升 0.2500mol·L-1 草酸溶液,将 PbO2 还原为  $Pb^{2+}$ ,然后用氨水中和溶液使全部  $Pb^{2+}$ 形成  $PbC_2O_4$  沉淀。过滤后将滤液 酸化,用标准 KMnO<sub>4</sub> 溶液滴定,计用去 0.0400mo I · L<sup>-1</sup>KMnO<sub>4</sub> 溶液 10.20 毫升,沉淀溶解于酸中再用同一  $KMnO_4$  标准溶液滴定,用去 30.25 毫升, 计算试样中 Pb0 和 Pb0<sub>2</sub>的百分含量(铅的原子量: 207.2)。

## 八、(本题共 20 分)

760 和 1013.3kPa 下 ,令氢气和某稀有气体(体积比为 1 1)慢慢通 过盛有熔融 AgI 的舟皿,而使部分 AgI 还原为 Ag。然后让反应后的气体 通过盛有  $20.00 \text{cm}^3 0.1000 \text{mol} \cdot \text{dm}^{-3} \text{NaOH}$  的洗气瓶,并收集干燥后的尾 气。某次实验后,洗气瓶内的溶液可以被4.500dm30.1000mol.dm-3的HCI 溶液中和,并在 17.0 101.3kPa 下收集得干燥尾气 254.9cm3(已知 760 时纯 HI 气体有 30.00%分解为单质)。

- 1. 写出该实验过程中所发生的全部反应的方程式,并配平。
- 2. 计算尾气中氢气的物质的量。
- 3. 计算舟皿中银的物质的量。
- 4. 如何将银从 AqI 中分离出来。

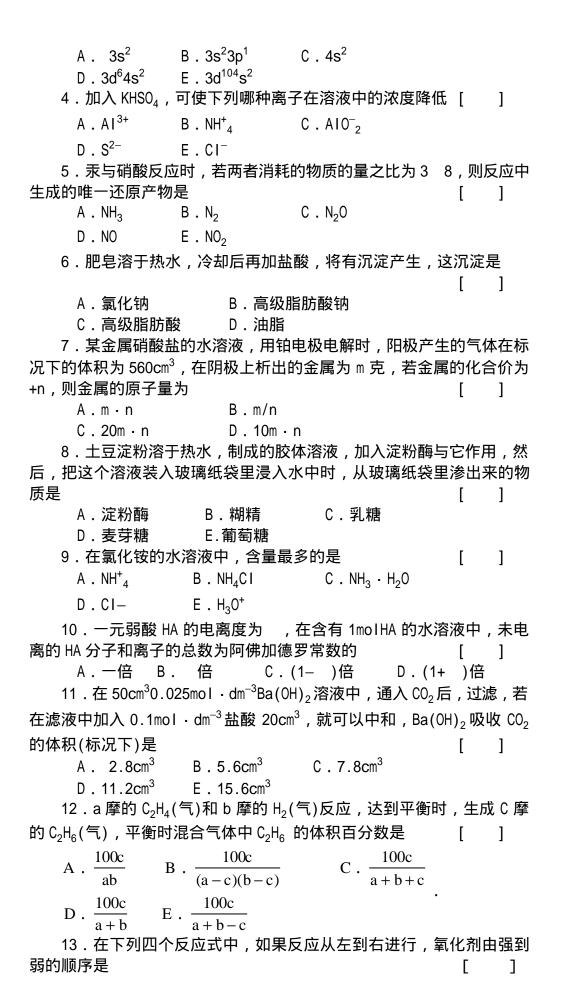
## 1988 年复赛试题\* (时限:3小时,满分110分)

原子量:N(14.0),H(1.01),C(12.0),O(16.0),Ca(40.0),F(19.0), U(238.0), V(50.9)

\*1988 年初赛采用全国试题。

一、选择题(28分)

注意:下列各题中,个别题有两个正确答案,全对者才得分。


- 1. 若氦气和氢气都含有 N 个质子,则它们具有相同的 1
  - A.原子数 B.分子数
- C. 体积

C.重水

- D.中子数
  - E.质量
- 2. 下列各物质中,有固定沸点的是

]

- D.溴水
- A. 汽水 B. 软水 E.王水
- 3. 具有下列外围电子层排布的元素,它们的单质 ₩ 克分别与足量的 稀盐酸反应,相同状况下产生氢气最少的是 ]



| $2Y^- + W_2 = 2W^- + Y_2$ $2Y^- + X_2 = 2X^- + Y_2$                                                             |            |                         |
|-----------------------------------------------------------------------------------------------------------------|------------|-------------------------|
| $2W^-+X_2=2X^-+W_2$ $2X^-+Z_2=2Z^-+X_2$                                                                         |            |                         |
| $A : X_2 > W_2 > Y_2 > Z_2$ $B : W_2 > Y_2 > Z_2 > X_2$                                                         |            |                         |
| $C.Z_2 > X_2 > W_2 > Y_2$ $D.Y_2 > Z_2 > X_2 > W_2$                                                             |            |                         |
| 14.下列不能用于提纯的方法是                                                                                                 | [          | ]                       |
| A.升华 B.蒸馏 C.重结晶                                                                                                 |            |                         |
| D.滴定 E.吸附                                                                                                       |            |                         |
| 15.烟花的主要成分是氧化剂、还原剂、着色剂,下列                                                                                       | 几种配        | 方较                      |
|                                                                                                                 | [          | ]                       |
| A . $KNO_3$ , C , S B . $KCIO_3$ , $KNO_3$ , S                                                                  |            |                         |
| $C. Sr(NO_3)_2KNO_3$ , Mg—AI 粉 D. KNO $_3$ , C , Mg—A                                                           |            | 1 <b>4</b> 1 <b>1</b> 1 |
| 16.为了使鸡蛋保鲜,可在蛋壳上涂上一层水玻璃溶液                                                                                       | ,这是<br>「   | _                       |
| 了水玻璃的<br>A.氧化性 B.还原性                                                                                            | L          | ]                       |
| C.碱性 D.易水解性                                                                                                     |            |                         |
|                                                                                                                 | [          | 1                       |
| A. 太阳光本身的颜色 B. 光线的反射                                                                                            | -          | -                       |
| C.胶态粒子的散射 D.水蒸气的影响                                                                                              |            |                         |
| 18.在地壳内,深度每增加 1km,压力大约增加 25250—                                                                                 | -30300     | OkPa,                   |
| 在这样大的压力下,对固体物质的平衡会发生较大影响。如                                                                                      |            |                         |
| $CaAI_2Si_2O_8+Mg_2SiO_4=CaMg_2AI_2Si_3O_{12}$                                                                  |            |                         |
| 钙长石 镁橄榄石 (钙镁)石榴子石                                                                                               |            |                         |
| 摩尔质量/g·mol <sup>-1</sup> 278 140.6 413.6                                                                        |            |                         |
| 密度/g·cm <sup>-3</sup> 2.70 3.22 3.50                                                                            | г          | 7                       |
| 在地壳区域变质的高压条件下,有利于<br>A.钙长石生成     B.镁橄榄石生成                                                                       | [          | ]                       |
| C. 钙长石和镁橄榄石共存 D. (钙镁)石榴子石生成                                                                                     | τ̈̀        |                         |
| 19. 浸在水中的铁桩,受腐蚀最严重的是                                                                                            | Г          | 1                       |
|                                                                                                                 | -          | -                       |
| A.水下部分 B.水上部分 B.水与空气交界处 D.各处相同                                                                                  |            |                         |
| 20 . 已知 H <sub>3</sub> PO <sub>4</sub> 的 K <sub>a , 2</sub> =6.3 × 10 <sup>-8</sup> , K <sub>a , 3</sub> =3.6 × | $10^{-13}$ | ,将                      |
| 0.1moI · L <sup>-1</sup> Na <sub>3</sub> P0 <sub>4</sub> 溶液加强酸调至 pH=7.2,此时溶液中                                   | [          | ]                       |
| A.PO <sup>3-</sup> ₄占优势     B.HPO <sup>2-</sup> ₄占优势                                                            |            |                         |
| C.H2PO-₄占优势    D.[HPO <sup>2-</sup> ₄]/[H2PO-₄]=1                                                               |            |                         |
| 21.HAc(醋酸)在下列溶剂中离解常数最大的是                                                                                        | ſ          | 1                       |
| A.液 NH <sub>3</sub> B. H <sub>2</sub> O                                                                         |            | ,                       |
| C.液态 HF D.纯 H <sub>2</sub> SO <sub>4</sub>                                                                      |            |                         |
| 22.称取 0.3300 克漂白粉与过量 HCI 作用,所放出的 CI                                                                             | 。(g)全      | 部通                      |
| 入酸性 KI 溶液中,再用 0.1200mo I·L <sup>-1</sup> Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> 滴定所析出的                   |            |                         |
| $Na_2S_2O_3$ 溶液 25.00cm <sup>3</sup> ,则此漂白粉的"有效氯"是                                                              | [          | ]                       |
| A. 16.11% B. 64.45% C. 32.23%                                                                                   | L          | ,                       |
| IOI 11 / O O O C I I O / O                                                                                      |            |                         |

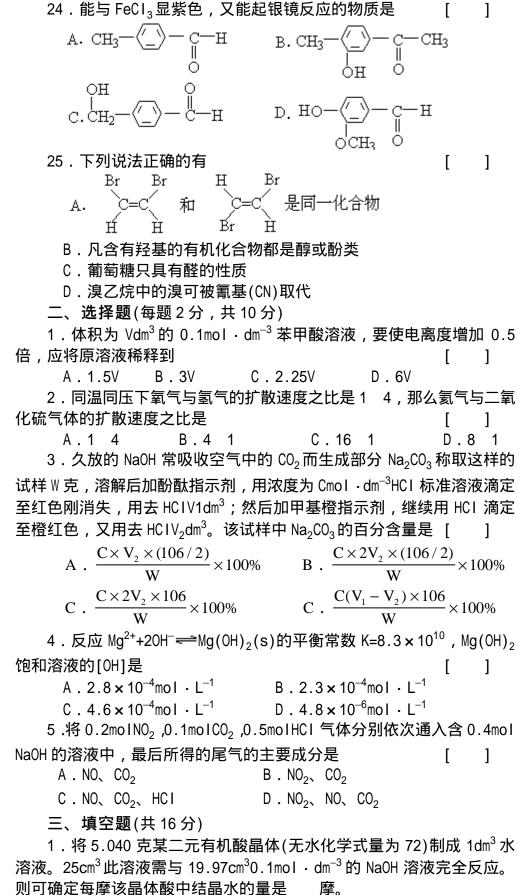
| D.31.66% E.上述结果都不对                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| 23. 欲处理含 Cr(VI)的酸性废水,选用的试剂是 [ ]                                                                                                           |
| A . FeSO $_4$ , NaOH B . $\mathrm{H_2SO}_4$ , $\mathrm{H_2C}_2\mathrm{O}_4$                                                               |
| C.FeCI <sub>3</sub> NaOH D.NaOH,AI(OH) <sub>3</sub>                                                                                       |
| 24.在以 ${\rm MnO_2}$ 为原料制备 ${\rm KMnO_4}$ 的过程中,先将 ${\rm MnO_2}$ 放入 ${\rm KCIO_3}$ 和                                                        |
| NaOH 混合熔融液中反应,得一固熔体,再将固熔体用水浸取,过滤得绿                                                                                                        |
| 色溶液,将绿色溶液在空气中久置,表面出现了紫红色,在这些过程中                                                                                                           |
| Mn 的价态变化是 [ ]                                                                                                                             |
| A. Mn(IV) Mn(VI)                                                                                                                          |
| B. Mn(IV) Mn(VI)                                                                                                                          |
| C.Mn(IV) Mn(VI) Mn(V)                                                                                                                     |
| D. $Mn(IV) \rightarrow Mn(VI) \nearrow Mn(IV)$                                                                                            |
| 二、填空题(28分)                                                                                                                                |
| 1.用过量的 Ca <sup>2+</sup> 处理 1.76 克的氟化铀样品,得到 1.17 克 CaF <sub>2</sub> ,则                                                                     |
| 铀的氟化物的最简式为。                                                                                                                               |
| 2.已知 MnO <sub>2</sub> (s)→MnO(s)+1/2 O <sub>2</sub> (g),△H =+134.8kJ , MnO <sub>2</sub> (s)+Mn                                            |
| $(s)$ →2MnO(s), $\triangle$ H = -250.1kJ, 则 Mn(s)+O <sub>2</sub> (g)→ MnO <sub>2</sub> (s)的 $\triangle$ 节为                                |
| kJ。                                                                                                                                       |
| 3.光化学烟雾中,主要的眼睛刺激物是丙烯醛,其分子的结构式是                                                                                                            |
| ,并注明各 C 原子的杂化类型。                                                                                                                          |
| 4.指出下列物质中,各存在的最强的力:                                                                                                                       |
| a . He , b . H <sub>2</sub> ,                                                                                                             |
| c.CaF <sub>2</sub> ,d.石棉,                                                                                                                 |
| e.Na, f.H <sub>2</sub> S。                                                                                                                 |
| 5.某纯液体在0 时是良导电体,它不溶于水,在25 时具有极低的基层区 刚果物医生                                                                                                 |
| 的蒸气压,则此物质为。<br>6.理想气体定律(能或不能)用来测定恒温下蒸气压如何随体积                                                                                              |
| 变化而改变。                                                                                                                                    |
| 7. 已知 H <sub>2</sub> (g)+S(s)=H <sub>2</sub> S(g), Kc=1.0×10 <sup>-3</sup> ; S(s)+0 <sub>2</sub> (g)=S0 <sub>2</sub> (g),                 |
| K <sub>C</sub> =5.0×10 <sup>6</sup> 。则反应 H <sub>2</sub> (g)+SO <sub>2</sub> (g)=H <sub>2</sub> S(g)+O <sub>2</sub> (g)的 k <sub>C</sub> 为。 |
| 8.在某温度下,反应 4HCI(g)+0 <sub>2</sub> (g)+0 <sub>2</sub> (g)+2CI <sub>2</sub> (g)的 K <sub>C</sub> =1.6,                                       |
| 若反应从 HCI 为 1.20mol、0 <sub>2</sub> 为 0.60mol、H <sub>2</sub> 0 为 1.40mol、Cl <sub>2</sub> 为 0.80mol                                          |
| 开始,在 $4.0 	ext{dm}^3$ 的容器中进行,反应向方向进行才能达到平衡。                                                                                               |
| アル・ローの日間中近日,及歴的 <u></u> の近日の地域を到中域。<br>9.下列溶液的浓度均为 0.1mol·L <sup>-1</sup> ,KBr,HI,NH <sub>3</sub> ,KCN,NaOH,                              |
| NH <sub>4</sub> Br。试按 pH 值递增的次序排列。                                                                                                        |
|                                                                                                                                           |
| 10.已知在 476 时,反应 $Ag_2S(s)+H_2(g)=2Ag(s)+H_2S(g)$ 的                                                                                        |
| Kp=0.36,若在该温度下,密闭容器中将3molAg <sub>2</sub> S还原为Ag,则最少需要。                                                                                    |
| 要 H <sub>2</sub> 摩。                                                                                                                       |
| 11.已知反应 H。(g)+Cl。(g)=2HCl(g)的活化能为 155kJ.mol <sup>-1</sup> ,反应                                                                             |

| $\frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g) = HCl(g)的热效应为 - 92.3kJ \cdot mol^{-1} , 则反应2HCl(g)$                             |
|-------------------------------------------------------------------------------------------------------------------------|
| H <sub>2</sub> (g)+Cl <sub>2</sub> (g)的活化能为kJ·mol <sup>-1</sup> 。                                                       |
| 12.25 $cm^3$ Na $_2$ CO $_3$ 和 NaHCO $_3$ 混合液,用酚酞为指示剂时,能与浓度为                                                            |
| 0.11mol·dm <sup>3</sup> 的 HCI 溶液 11.36cm <sup>3</sup> 反应;而用甲基橙作指示剂时,需耗                                                  |
| 此 HCl39.77cm³,则混合液中(a) Na <sub>2</sub> CO <sub>3</sub> 的浓度是mol·dm <sup>-3</sup> ,(b)                                    |
| NaHCO <sub>3</sub> 的浓度是mol·dm <sup>_3</sup> 。                                                                           |
| 13.戊醇有种同分异构体,其中有旋光性的是,能够<br>氧化成羧酸 $\mathrm{C_5H_{10}O_2}$ 的是,不能够生成烯烃的是。                                                 |
| 14.草酸的实验式是,分子式是,构造式是。                                                                                                   |
| 三、(本题共 10 分)                                                                                                            |
| 化合物 A、B、C 的蒸气对甲烷的相对密度分别为 4.9 , 5.5 , 2.75。A<br>为烃类,燃烧能生黑烟,与 KMnO₄和 Br $_2$ 水不发生反应。B 与银氨溶液作                              |
| 用时,生成银镜,与 10%NaoH 溶液作用时则得 D 和 E。化合物 C , E 在碱                                                                            |
| 性条件下与 $I_{2}$ – $KI$ 溶液作用均能产生黄色沉淀(提示:与羰基成邻位的甲                                                                           |
| 基才有此反应,生成的 $CHI_3$ ,为难溶于水的黄色沉淀)。 试推导出 $A$ , $B$ ,                                                                       |
| C,D,E的结构式,并说明推导的依据(注意:无推导根据者,不给分)。                                                                                      |
| A: B:<br>C: D:                                                                                                          |
| E:                                                                                                                      |
| 推导的根据:                                                                                                                  |
| 四、分离提纯(共 15 分)                                                                                                          |
| 1. 当乙酸与乙醇在硫酸作用下回流酯化后,最后反应混合物中含有                                                                                         |
| 乙酸、乙醇、硫酸、水和乙酸乙酯,试述分离纯化乙酸乙酯的手续。<br>2.请用五种试剂(或溶剂)把下列五种固体从混合物中逐一溶解,每                                                       |
| 种试剂(或溶剂)只溶解一种物质,并说明溶解顺序:                                                                                                |
| ${\sf AgCI} \hspace{0.1cm} {\sf KNO}_3 \hspace{0.1cm} {\sf SnS}_2 \hspace{0.1cm} {\sf CuS} \hspace{0.1cm} {\sf PbSO}_4$ |
| 五、(本题共 13 分)                                                                                                            |
| 根据下列实验事实,判断注字母的化合物,并写出各变化的方程式。<br>有一种白色固体 A,加入无色油状液体 B,可得紫黑色固体 C。C 微                                                    |
| 溶于水,加入 A 后 C 的溶解度增大,成棕色溶液 D。将 D 分成两份,一份                                                                                 |
| 中加一种无色溶液 E,另一份通入气体 F,都褪色成无色溶液。E 溶液遇                                                                                     |
| 酸有淡黄色沉淀。将气体 F 通入溶液 E , 在所得的溶液中 , 加入 BaCI <sub>2</sub> 溶                                                                 |
| 液有白色沉淀,后者难溶于 HNO <sub>3</sub> 。                                                                                         |
| A: B: C:                                                                                                                |
| D: E: F:<br>反应方程式:                                                                                                      |
| /ヘ//J 1エンV ・                                                                                                            |

钒在现代化工业和国防技术中有着广泛而重要的用途。我国四川攀枝花地区蕴藏着世界上少有的极为丰富的钒钛磁铁矿,为我国四化建设提供了优厚的物质条件。钒有多种价态,钒的化学是丰富多彩的。

六、(本题共 16 分)

- 1. 试配平下列反应式:
- $VO_4^{3-} + \dots \xrightarrow{H+} VO_2^+ + \dots$
- $VO_2^+ + SO_2 + \dots \xrightarrow{H+} VO^{2+} + \dots$
- $VO^{2+} + MnO_4^- + \dots \xrightarrow{H^+} \dots$
- 2.25.0cm³ 钒酸铵溶液以  $H_2$ SO $_4$  酸化。加热至沸,通 SO $_2$  使之还原。在过量 SO $_2$  被煮沸除去后,该溶液需要加入 18.73mo l·m $^{-3}$ KMnO $_4$  溶液 23.2cm $^3$ ,方能得到持久的粉红色,计算钒酸铵溶液的浓度。
- 3. 若将上述钒酸铵溶液  $10 \text{cm}^3$  酸化后通过锌汞齐柱进行还原,从柱中流出的紫色溶液,需要加入上述  $\text{KMnO}_4$  溶液  $27.8 \text{cm}^3$  才能产生持久的粉红色。计算紫色溶液中钒的化合价是多少?
- 4. 加钒酸铵溶液于热的草酸铵和草酸溶液中,能制得蓝色络合物晶体,应用下述实验结果,求其化学式 $(NH_4)_xVO(C_2O_4)_y \cdot 2H_2O$  中的 x 和 y 值。


称 取 蓝 色 络 合 物 237.4 mg ,溶解 在 过 量 的 热 的 稀 硫 酸 中 ,用 19.4 mo l · m  $^{-3}$  的  $KMnO_4$  溶液滴定,需要 38.95 cm  $^3$  。 当 再 加 少 量 亚 硫 酸 钠 晶 体 于 此 溶液中,加 热,溶液 又 变 成 蓝 色。 使 溶液 沸腾,以除去过量的  $SO_2$ ,然后 冷 却。 再 用 19.4 mo l · m  $^{-3}$   $KMnO_4$  溶液滴定,只需要 7.8 cm  $^3$  。

# 1989 年竞赛试题 (时限: 150 分: 满分: 110 分)

| ("312.                  | .00 ), | , ,,,,,,,  | ,        |         |    |        |
|-------------------------|--------|------------|----------|---------|----|--------|
| 原子量:H(1.0) He           | (4.0)  | N(14)      | S(32)    | 0(16)   |    | Na(23) |
| C(12) Cu(64) Ag(108)    |        |            |          |         |    |        |
| 第一、二大题都是选择              | 题,每    | 题各有        | 一个或两个    | 正确答案    | ₹. |        |
| 全对者才给分。                 |        |            |          |         |    |        |
| 一、选择题(每题1分              | . 共 25 | 分)         |          |         |    |        |
| 1.下列变化中属于化等             |        | •          |          |         | Г  | 1      |
| A. 木材干馏                 |        |            | 岩使有色烫    | 海湖色     | L  | J      |
| C. 金刚石变为石墨              |        |            |          | /汉龙 🗅   |    |        |
|                         |        |            | _        |         | _  | _      |
| 2.关于离子晶体的性质             | · ·    |            |          |         |    | ]      |
| A.离子晶体的饱和z              |        |            | -定的导电性   | 生       |    |        |
| B. 所有高熔点物质都             | 都是离子   | 品体         |          |         |    |        |
| C.离子键没有方向h              | 生      |            |          |         |    |        |
| D. 离子键不具饱和M             | 生      |            |          |         |    |        |
| 3.将同温同压下的氦 <sup>4</sup> | 气和氮气   | <b>該</b> 1 | 2 体积比混   | 記念 , 混合 | 合气 | 体的平    |
| 均分子量是                   |        |            |          |         | ſ  | 1      |
| A.30 B.32               | C.2    | 0          | D.21.    | 3       | •  | -      |
| 4.下列物质中能使酚醛             |        |            |          |         | ſ  | 1      |
| A . NH <sub>4</sub> CI  |        |            |          |         |    | J      |
| •                       | _      | •          | CHCO     |         |    |        |
| C . Fe(OH) <sub>3</sub> |        |            | $0000_4$ |         | _  | _      |
| 5.白铁与马口铁的镀原             | 层破损后   | ī          |          |         | [  | ]      |

|                               | A.白铁的铁                  | 腐蚀快                | B . 马                | 口铁的铁腐                                   | 蚀快                                        |                          |                    |
|-------------------------------|-------------------------|--------------------|----------------------|-----------------------------------------|-------------------------------------------|--------------------------|--------------------|
|                               | C. 一样快                  |                    |                      | 法比较                                     |                                           | _                        | _                  |
| 6                             | . 对于氧和臭                 | !氧,卜列访             | 法中止确的                | 可是                                      |                                           | [                        | ]                  |
|                               | A.同分异构                  | 1体 B               | . 同素异性               | 体                                       |                                           |                          |                    |
|                               | C. 同位素                  |                    |                      |                                         |                                           |                          |                    |
| 7                             | . 在溶液中能                 |                    | ]离子组是                |                                         |                                           | [                        | ]                  |
|                               | $A \cdot NH_4$          | ΑΙ <sup>3+</sup>   | CI-                  | OH <sup>-</sup>                         |                                           |                          |                    |
|                               | $\rm B \cdot HSO_3^-$   |                    | $OH^-$               | $10^{-3}$                               |                                           |                          |                    |
|                               | $C.NH_4^+$              | Fe <sup>3+</sup>   | $50^{2-}_{4}$        | Cu <sup>2+</sup>                        |                                           |                          |                    |
|                               | D . Cu <sup>2+</sup>    | $50^{2-}_{4}$      | -                    | K <sup>+</sup>                          |                                           |                          |                    |
| 8                             | . 某元素 X 的               | 最外层电子              | ·排布是 2s²             | 2p <sup>3</sup> ,下列说                    | 法中错                                       | 误的是                      | 1                  |
|                               |                         | <del></del>        | . <del> </del>       | <1.70 - A                               |                                           | [                        | ]                  |
|                               | A. 该元素的                 |                    |                      | 一种强碱                                    |                                           |                          |                    |
|                               | B. 其最高氧<br>C. 其含氧酸      |                    |                      |                                         |                                           |                          |                    |
|                               | D. 含氧酸中                 |                    | •                    |                                         |                                           |                          |                    |
| 9                             | . 在澄清的石                 |                    |                      | ·<br>                                   | 注:<br>注:::::::::::::::::::::::::::::::::: | 的是                       |                    |
| J                             | . 12/22/1943            | 100001 7 2         |                      | = VII. / 1377                           | 747                                       | [                        | ]                  |
|                               | $A.CO_2$                | ${\rm B.NO_2}$     | C . H                | lF                                      | $D.H_2S$                                  | _                        | _                  |
| 1                             | O.313K 时z               | K的 K 是             | $3.8 \times 10^{-1}$ | 14。若在 3                                 | 13K 时[                                    | H <sup>+</sup> ]=1       | .0 ×               |
| 10 <sup>-7</sup> mo           | ol·L <sup>-1</sup> ,溶液  |                    | 19                   |                                         |                                           | [                        | ]                  |
| 1                             | A.酸性                    |                    |                      |                                         |                                           |                          | :卜邢公               |
|                               | 1 . 用同浓度<br>5的 NaOH 溶液  |                    |                      | 作りのロソ弗が王に                               | 致(□ <sub>2</sub> 31F                      | 「 <sub>6</sub> )个山直<br>「 | 血胺 ,<br>1          |
| <i>P</i> // <del>/// </del> 2 | 云ny Na∪n 冷/隊<br>A.一样多   | 四分子                | B. H <sub>o</sub> Si | F <sub>6</sub> 比HCI多                    |                                           | L                        | J                  |
|                               | C. HCI 比 H <sub>2</sub> | SiF。多              | _                    | •                                       |                                           |                          |                    |
|                               | 2. 室温下饱和                | _                  |                      |                                         | ¬知 K₁=9                                   | 9.1×                     | 10 <sup>-8</sup> . |
|                               | $1 \times 10^{-12}$ )   |                    | 7 1-3 3 7 7 10       |                                         | _,                                        | ſ                        | 1                  |
|                               | A . HS <sup>-</sup>     | R H <sup>+</sup>   | C OH-                | D. S                                    | 32-                                       | L                        | J                  |
| 1                             | ハ・☆<br>3.若某元素皆          |                    |                      | _ •                                     |                                           | 数是                       |                    |
|                               |                         |                    |                      | , , , , , , , , , , , , , , , , , , , , |                                           | [                        | ]                  |
|                               | A . 87                  |                    |                      |                                         | 115                                       |                          | _                  |
|                               | 4 . A、B、C 三             |                    |                      | _                                       |                                           |                          |                    |
|                               | §以 AgNO₃ 作电             |                    |                      |                                         |                                           |                          |                    |
|                               | 性行电解。若<br>B 吐 嫩 素 B     | B槽中银丝:             | <b>習重 0.108</b> )    | 克,C 槽银丝                                 | 丝增重 0                                     | . 216 5<br>r             | 包,A                |
| 信中t                           | 同片增重是<br>A . 0.216 克    | В                  | 0 108 克              |                                         |                                           | L                        | J                  |
|                               | C.0.064克                |                    |                      |                                         |                                           |                          |                    |
| 1                             | 5.下列各对特                 |                    |                      | 最弱的是                                    |                                           | [                        | ]                  |
|                               | $A . Ne+H_2$            | B . H <sub>2</sub> | $0 + 0_2$            |                                         |                                           |                          |                    |

|     | C.Ne+He D.H <sub>2</sub> O+HF                                                                                                                                            |                   |      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
|     | 16.下列几种弱酸中,电离常数的大小顺序是                                                                                                                                                    | [                 | ]    |
|     | CH <sub>3</sub> COOH CICH <sub>2</sub> COOH CI <sub>2</sub> CHCOOH CI <sub>3</sub> CCOOH                                                                                 |                   |      |
|     | A. > > > B. > > >                                                                                                                                                        |                   |      |
|     | C. > > > D. > >                                                                                                                                                          |                   |      |
|     | 17 .把 pH=3 的盐酸溶液和 pH=9 的 KOH 溶液混合 ,使成 p                                                                                                                                  | H=7 的             | J溶液  |
| 则 p | H=3 和 pH=9 溶液的体积比为                                                                                                                                                       | [                 | ]    |
|     | A . 1 100 B . 100 1 C . 1 100000                                                                                                                                         |                   |      |
|     | D.100000 1 E.1 3                                                                                                                                                         |                   |      |
|     | 18.下列反应中,属于非氧化还原反应的是                                                                                                                                                     | [                 | ]    |
|     | A . 5CI <sub>2</sub> +I <sub>2</sub> +6H <sub>2</sub> 0=2HIO <sub>3</sub> +10HCI                                                                                         |                   |      |
|     | B . IF <sub>5</sub> +3H <sub>2</sub> 0=HIO <sub>3</sub> +5HF                                                                                                             |                   |      |
|     | C . 2F <sub>2</sub> +2NaOH=2NaF+OF <sub>2</sub> +H <sub>2</sub> O                                                                                                        |                   |      |
|     | D . 2CCI <sub>4</sub> + $K_2$ Cr <sub>2</sub> O <sub>7</sub> + $H_2$ SO <sub>4</sub> (浓)=2COCI <sub>2</sub> +2CrO <sub>2</sub> CI <sub>2</sub> + $K_2$ SO <sub>4</sub> + | ·H <sub>2</sub> 0 |      |
|     | 19.三种金属元素 A、B、C。A 不与热水反应, 但在高温                                                                                                                                           | ]时与:              | 水蒸气  |
| 反应  | $ar{Z}$ 产生 $H_2$ ; $B$ 的硝酸盐加热分解成单质 $B$ ,并有红棕色气体                                                                                                                          | 本生成               | ;;C的 |
| 碳酸  | g盐受热不易分解,其硝酸盐分解时不生成红棕色气体。                                                                                                                                                | 这三:               | 种金属  |
|     | <b>后动性是</b>                                                                                                                                                              | [                 | ]    |
|     | A . A > B > C $B . C > B > A$                                                                                                                                            |                   |      |
|     | C.C>A>B $D.B>A>C$                                                                                                                                                        |                   |      |
|     | 20.下列说法错误的是                                                                                                                                                              | [                 | ]    |
|     | $A \cdot H_2$ 在化学反应中只能作还原剂                                                                                                                                               |                   |      |
|     | B.H <sub>2</sub> 0 <sub>2</sub> 在化学反应中只能作氧化剂                                                                                                                             |                   |      |
|     | C.浓硫酸可作催化剂                                                                                                                                                               |                   |      |
|     | D. 石墨可作润滑剂                                                                                                                                                               |                   |      |
|     | 21. 下列叙述中,正确的是                                                                                                                                                           | [                 | ]    |
|     | A. 阴阳离子通过静电作用形成的化学键叫离子键                                                                                                                                                  | -                 | -    |
|     | B. 卤化银均难溶于水,且其溶解度随分子量的增大而                                                                                                                                                | 可减小               | ı    |
|     | C.碱金属的熔点随原子量的增大而降低                                                                                                                                                       |                   |      |
|     | D. 活化分子所具有的能量叫活化能                                                                                                                                                        |                   |      |
|     | 22 . 某元素原子的质量数 A=1 , 中子数 N=0 , 它与 A=3 ,                                                                                                                                  | N=2 I             | 的原子  |
| 是   |                                                                                                                                                                          | [                 | ]    |
|     | A . 互为同位素                                                                                                                                                                |                   |      |
|     | B . 互为同素异性体                                                                                                                                                              |                   |      |
|     | C.是两种不同的元素                                                                                                                                                               |                   |      |
|     | D. 两者的中性原子核外有相同电子数                                                                                                                                                       |                   |      |
|     | 23.下列说法正确的是                                                                                                                                                              | [                 | ]    |
|     | A.全部含碳的化合物都是有机化合物                                                                                                                                                        |                   |      |
|     | B.环丙烷是乙烷的同系物                                                                                                                                                             |                   |      |
|     | C. 石棉和有机玻璃都是有机化合物                                                                                                                                                        |                   |      |
|     | D. 石蜡和石膏都是有机化合物                                                                                                                                                          |                   |      |
|     | E.石炭酸不是羧酸                                                                                                                                                                |                   |      |

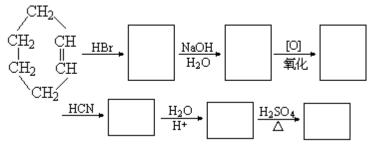


2.860cm $^3$ 0 $_2$ 通入 10cm $^3$ 某气体烃中,点火燃烧并冷却后,得气体

体积为 50cm<sup>3</sup>, 用 KOH 溶液吸收后尚余 30cm<sup>3</sup>。则此气态烃的分子式为 \_\_\_\_(室内状况)。

3.在绿色植物光合作用量子效率的测定中发现:每放出一个  $0_2$  分子要吸

收8个6880A的红光量子。光合作用中每释放1molO,平均储能469kJ·mol<sup>-1</sup>。


- 那么,在此实验中能量转换效率是\_\_。(已知 h=6.626  $\times$  10<sup>-34</sup>J·S)。
  - 4. 以最小整数比配平下列反应方程式: [ ]RUS<sub>2</sub>+[ ]KCIO<sub>3</sub>
- $+[]HCI=[]RuO_4+[]RuCI_3+[]H_2S+[]S+[]KCI$

5. 
$$\stackrel{\text{CH}=\text{CH}}{\downarrow}$$
  $\stackrel{\text{CH}_2+\text{Br}_2}{\longleftarrow}$  +

6.戊烷在光的照射下与氯起反应,生成有旋光性的一氯戊烷,该物质的结构式是\_\_。

## 四、填空题(共12分)

把下列各步反应的有机产物结构式填入空格内:



## 五、推理题(共15分)

- 1.  $Na_2S$  和  $Na_2CO_3$  以 2 1 的摩尔比配成溶液,然后通入足量的  $SO_2$  ,可制得  $Na_2S_2O_3$ 。 试根据你所学的知识,推测上述反应分几步完成?按反应顺序写出各步的反应式,并写出总反应式。
- 2.某芳香烃分子式为  $C_9H_{12}$ ,用重铬酸钾和浓硫酸混合液氧化后可得一种二元羧酸。将原芳烃硝化,只得两种一元硝化产物,试推导此芳烃的构造式,并写出各步反应式。

#### 六、判断题(共18分)

现有九瓶白色固体药品,因瓶签脱落,需要进行鉴别。已知它们可能是: $Na_2SO_4$ , $Na_2CO_3$ , $Na_2SO_3$ , $BaCI_2$ , $MgSO_4$ , $Ba(NO_3)_2$ ,KI, $NaHCO_3$ , $AgNO_3$ , $NH_4CI$ , $Pb(NO_3)_2$ , $AI2(SO_4)_3$ ,NaOH。实验结果如下表所示:

| 编号 | 1 | 2 | 3   | 4   | 5 | 6    | 7    | 8  | 9 |
|----|---|---|-----|-----|---|------|------|----|---|
| 1  |   |   |     |     |   |      |      |    |   |
| 2  |   |   |     |     |   |      |      |    |   |
| 3  | 白 |   |     |     |   |      |      |    |   |
| 4  | 白 |   |     |     |   |      |      |    |   |
| 5  |   |   |     |     |   |      |      |    |   |
| 6  |   |   |     | 白 且 |   |      |      |    |   |
| 7  |   |   |     |     | 白 |      |      |    |   |
| 8  | 白 |   |     |     |   | 白 后溶 | 白 后溶 |    |   |
| 9  |   | 黄 | 无现象 |     |   |      |      | 白  |   |
|    |   |   |     |     |   |      |      | 后棕 |   |

表中横行与纵行的数字为未知药品的编号,表内示出了它们相互反应的现象。"白"表示有白色沉淀生成;"白 且"表示有白色沉淀生成且有气体逸出;"一"表示加热时有气体逸出;"白 后溶"表示最初生成的白色沉淀一摇动则溶解;"白 后棕"表示生成的白色沉淀立即变为棕色沉淀;表中空格,表示没有进行实验。

由上述实验事实,可以判断出各编号药品是:

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
|   | 8 |   |

七、计算题(14分)

请先阅读以下的叙述,再解答后面提出的问题。

对于有气体参加的可逆反应,可以用各气体的平衡分压力代替平衡浓度来表示其平衡常数。用分压(以大气压为单位)表示的平衡常数叫做压力平衡常数,以 K<sub>0</sub>表示。例如反应:

$$3Fe(固)+4H_2O(气) \rightleftharpoons Fe_3O_4(固)+4H_2(气)$$

$$K_{p} = \frac{P_{H_{2}}^{4}}{P_{H_{2}O}^{4}}$$

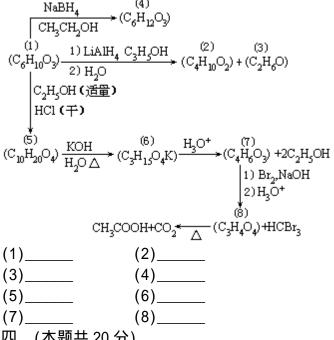
式中 $P_{H_2}$ 和 $P_{H_2O}$ 分别表示平衡时 $H_2$ 和 $H_2O$ (气)的分压力,其指数与反应式中相应物质的系数相等。注意: $K_p$  表达式中不包括纯固体,纯液体的压力项,由于它们的蒸气压在一定温度下为定值,可以包含在平衡常数  $K_p$ 内。

问题:将纯  $H_2$ S 通入放有固态  $FeCI_2$  并已抽真空的密闭烧瓶内,加热烧瓶到 329.9 ,并恒温,四天之后假定已达到平衡。此时烧瓶中含有两种固体  $FeCI_2$ 和  $FeS_{1+xo}$ 气相中仅有  $H_2$ S ,HCI 和  $H_2$  ,其分压分别为 0.300 , 0.803 和 0.0563 大气压。 (1)求化学式  $FeS_{1+x}$  中 x 的值; (2)写出烧瓶中所发生的平衡反应方程式(相对于 1 摩  $FeCI_2$ 而言),并求出其  $IgK_p$ 值。(已知 Ig0.300=-0.523, Ig0.803=-0.0953, Ig0.0563=-1.25)。

原子量:AI(26.98) Mg(24.31) O(16.00) Cr(52.0) Br(79.9) N(14.0) CI(35.5)

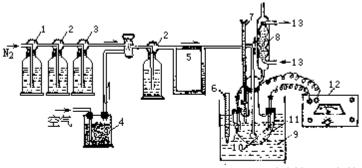
一、(本题共 20 分)

在氨氧化制硝酸的过程中,先将氨氧化为 NO,NO 在常压下温度低于 150 时,几乎 100%氧化成 NO。。


 $NO_2$ 在低温时,容易聚合成  $N_2O_4$ , $2NO_2 \rightleftharpoons N_2O_4$ ,此反应且能很快建立平衡,在 140 左右,气体完全由  $NO_2$  组成。

NO 与 NO<sub>2</sub> 可发生下列可逆反应:NO+NO<sub>2</sub>  $\rightleftharpoons$  N<sub>2</sub>O<sub>3</sub>,N<sub>2</sub>O<sub>3</sub> 很不稳定,在液体和蒸气中大部分离解为 NO 和 NO<sub>2</sub>,所以在 NO 氧化为 NO<sub>2</sub>过程中,含 N<sub>2</sub>O<sub>3</sub> 只有很少一部分。

亚硝酸只有在温度低于 0 和浓度很小时才稳定。试问:

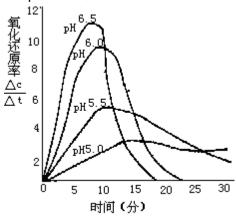

- (1)在 NO 的氧化过程中,可能有哪些气体产生?
- (2)写出(1)所产生的气体与水的反应式。
- (3)写出 75 时用水吸收(1)所产生的气体来制取硝酸的总反应式。
- (4)当 NO 通过三次氧化三次吸收(假设每次氧化和吸收率均为 100%),求 NO 转化为 HNO<sub>3</sub> 的转化率。
- (5)对于反应: $2NO_2(g) \rightleftharpoons N_2O_4(g)$ ,若开始时, $NO_2$  的压力为 P,密度为 d<sub>o</sub>,维持压力 P 和温度不变,使其达到平衡,测得混合气体的密度为 d,求该反应在此温度下的 K<sub>n</sub>。
  - 二、(本题共 20 分)
- 镁、铝都是较活泼的金属,在一定条件下能与氧、氮等起反应。镁 铝合金粉可用作烟火材料。
- (a)取此合金粉与足量的稀硫酸反应,在大气压为 101325Pa,温度为 25 时,在水面上收集到气体的体积为 0.5052dm<sup>3</sup>。
- (b) 另取等量的此合金粉在氧气中燃烧,将燃烧产物用足量的稀硫酸处理,将不溶物用水洗净烘干,称重为 0.3399 克。
- (c)再取等量的此合金粉使之在空气中燃烧,将燃烧产物用足量的稀氢氧化钠溶液处理,将溶液滤去,残渣先用氢氧化钠溶液洗涤,然后用水洗净,再将残渣在高温下灼烧至恒重,得 0.7090 克。(25 时,饱和水蒸气压为 3167Pa, R=8.314kPa·dm³·mol $^{-1}$ ·K $^{-1}$ )。
  - (1)求产生  $H_2$ 的物质的量;
  - (2)求在氧气中燃烧时生成 MgO 的质量;
  - (3)写出(c)中的各步化学反应方程式;
  - (4)求在空气中燃烧时生成 Al<sub>2</sub>O<sub>3</sub>的质量;
  - (5)求合金粉中 AI 的百分含量。
  - 三、(本题共 20 分)

推测化合物(1)~(8)的结构式,并指出哪些结构式有光学异构。



四、(本题共 20 分)

许多作者研究过以空气氧化水溶液中 Fe<sup>2+</sup>的反应速率及其反应机 理。图是一种实验装置图:每次实验时,先校正 pH 计的零点,加热恒温 槽至 40 ±1 ,在反应器中加入已知浓度的 FeSO₄储备液 100ml,加水 稀释至 300ml, 通入氮气作为保护气氛, 鼓入空气, 空气流速为 4L/min。 随时加酸碱维持恒定的 pH 值(误差范围 ± 0.1),至一定时间取出样品溶 液进行分析。




1. 浓H2SO4 2.H2O 3.焦性没食子酸碘性溶液 4.玻璃丝 5.气体流量计 6.温度计 7.滴定管 8.回流冷凝管 9.恒温槽 10.电极 11.反应瓶 12.pH计 13.冷却水



实验结果绘制成下图和 P311 图。 请回答下列问题:

- 1. 指出上图中(1),(2),(3),(4)装置的作用
- 2.由下图得出哪些结论?
- 3. p311 图中的曲线为何有极大值?



- 4.在[ $Fe(H_2O)_5$ ]<sup>2+</sup>中,水分子对中心  $Fe^{2+}$ 有"遮蔽效应",据此说 明上述反应的速率与 pH 值的关系。
  - 5.若  $Fe^{3+}$ 水解产物对  $Fe^{2+}$ 氧化有自催化作用,试阐述催化机理。 五、(本题共 20 分)

为合成某些铬的络合物,进行了如下反应:(a)新制备的  $CrBr^2$ 加入 溶有 2 ,

2′-联吡啶,(缩写为 diPy)(《二》—《二》,分子量=156.18)的稀 HCl 溶液,得

到黑色晶体 A , A 的质量%组成为:N:11.0 , Br:21.0 , Cr:6.9;磁矩  $\mu$ =3.27B.M.B . A 加入 5%的 HCIO 溶液 , 在空气中摇动 , 得到黄色晶状 沉淀 B , B 的磁矩  $\mu$ =3.76B.M. (c)在惰性气氛中 , 将 A 溶解在无空气的并 含有过量 NH<sub>4</sub>CIO<sub>4</sub> 的蒸馏水中 , 加镁粉 , 得到深蓝色的化合物 C , C 的磁矩  $\mu$ =2.05B.M , 试回答:

- (1)写出化合物 A, B, C的化学式及络离子的结构式。
- (2)化合物 A, B, C中 Cr 离子的外围轨道排布式及所取的杂化轨道 类型。
  - (3)简要解释它们的磁性数据。
- (4) 计算与 0.1906 克的化合物 C 发生反应,需要  $0.1000 \text{mol} \cdot L^{-1}$  的 碘溶液多少毫升。

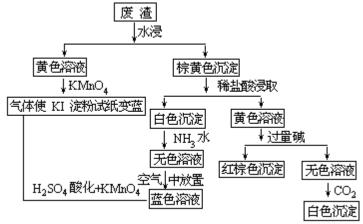
## 1990 年竞赛试题 (时限:150 分;满分120 分)

原子量:H(1.0),C(12.01),N(14.0),O(16.0),F(19.0),AI(27.0), S(32.1),CI(35.5),K(40),Ba(137),Fe(56),Cu(63.5),Ag(108), I(127),Na(23.0),Mg(24.3)

注意:(1)答题一律不准使用计算器;

- (2)第一二大题都是选择题,各有1~2个正确答案,全对者才给分。
- 一、选择题(共10分)
- 1.下列说法错误的是

| A.氢原子只有一个 1s 轨道                                                          |                  |         |
|--------------------------------------------------------------------------|------------------|---------|
| B.氢原子的 1s 轨道呈球形                                                          |                  |         |
| C. 氢原子的电子在核附近出现的机会最多                                                     |                  |         |
| D. 氢原子的电子在核附近单位体积内出现的机会最                                                 | 多                |         |
| 2.在铜跟稀硝酸的反应中,如果有一摩的硝酸被还原                                                 | ,则被              | 氰化的     |
| 铜的物质的量为                                                                  | [                | ]       |
| A. $\frac{3}{8}$ B. $\frac{8}{3}$ C. 3摩   D                              | · <sup>3</sup> 摩 |         |
| A 厚 B 厚 C. 3厚 D                                                          | · 2 /手           |         |
| 3.下列物质中熔点最高的是                                                            | [                | ]       |
| A.水晶 B.干冰 C.冰 D.                                                         | 冰晶石              |         |
| 4.下列各组离子中,能大量共存于同一溶液的是                                                   | [                | ]       |
| A.Fe <sup>3+</sup> Fe <sup>2+</sup> Cu <sup>2+</sup> CI <sup>-</sup>     |                  |         |
| $B \cdot F^-  SO^{2-}_{4}  I^-  H^+$                                     |                  |         |
| $\mathrm{C.H_2PO_4}^ \mathrm{PO_4^{3-}}$ $\mathrm{Na^+}$ $\mathrm{CI}^-$ |                  |         |
| D.I <sup>-</sup> Fe <sup>3+</sup> K <sup>+</sup> H <sup>+</sup>          |                  |         |
| 5.pH=2.7的一元弱酸,加水稀释,若溶液体积扩大                                               | 10 倍 「           | ]  [H+1 |
| 或[0H-]的变化是                                                               |                  | ,3[]    |
| A.[H <sup>+</sup> ]增大 B.[H <sup>+</sup> ]、[OH <sup>-</sup> ]都减小          | L                | J       |
| C.[OH <sup>-</sup> ]增大 D.[OH <sup>-</sup> ]減小                            |                  |         |
| 6 . 在 NaCI 晶体中,每个 CI <sup>-</sup> 周围的 Na <sup>+</sup> 个数是                | Γ                | 1       |
| A.8 B.4 C.6 D.以上都不对                                                      | L                | J       |
| $7.$ 元素 X 的气态氢化物的分子式为 $H_2X$ , 这种元素的                                     | 最高价值             | 氢化物     |
| 的水化物的分子式可能是                                                              |                  | 1       |
| $A \cdot H_2XO_3$ $B \cdot X(OH)_2$                                      | L                | J       |
| $C \cdot H_2XO_4$ D · $H_6XO_6$                                          |                  |         |
|                                                                          | 四色十二十            | 叫宓      |
| 8.将 $H_2$ , $CI_2$ 等体积混合于密封容器中,用强紫外线                                     | . (4 (6 )        | , 则台    |
| 器内的压力                                                                    | <br>  74 🗁       | j       |
| A. 增大 B. 减小 C. 不变 D. 难以                                                  | 入佣 <i>正</i>      |         |
| 9.下列化合物不具两性的是                                                            | L                | J       |
| A . NaHCO <sub>3</sub> B . NaHSO <sub>4</sub>                            |                  |         |
| C . H <sub>2</sub> N—CH <sub>2</sub> COOH                                |                  |         |
| D. $\mathrm{H_2N}$ — $\langle$ $\rangle$ — $\mathrm{CH_2OH}$             |                  |         |
|                                                                          | [                | 1       |
| A. 多羟基化合物 B. 醛类或酮类                                                       | _                | _       |
| C. 多羟基醛或多羟基酮 D. 多羟基醛                                                     |                  |         |
| 二、选择题(共 40 分)                                                            |                  |         |
| 1.在下列操作中,原溶液不能保持澄清的是                                                     | [                | ]       |
| A.往饱和的 $CaCI_2$ 溶液中通入 $CO_2$                                             |                  |         |
| B. 往硫酸铜溶液中加入少量氨水                                                         |                  |         |
| C. 往硅酸钠溶液中加入氯化铵溶液                                                        |                  |         |
| D. 往氢氧化钠溶液中滴入少量硫酸锌溶液                                                     |                  |         |
| 2.对于可逆反应:C(固)+H <sub>2</sub> O(气) <i>━</i> CO(气)+H <sub>2</sub> (气)-     | Q 下列i            | 兑法正     |


| 确的有                                                                                                                                                                                                                                                                          | [                     | ]                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|
| A.达到平衡时各产物浓度相等                                                                                                                                                                                                                                                               |                       |                    |
| B. 恒容充入水蒸气,使体系压强增大,平衡向右移动                                                                                                                                                                                                                                                    |                       |                    |
| C. 加入正催化剂,正反应速率增大,平衡向右移动                                                                                                                                                                                                                                                     |                       |                    |
| D. 升高温度,正反应速率增大,逆反应速率减小,平衡向右移动                                                                                                                                                                                                                                               |                       | _12_31             |
| 3 . 将 0.2 摩某固体硝酸盐 M(NO <sub>3</sub> ) <sub>2</sub> 加热分解 ,                                                                                                                                                                                                                    |                       |                    |
| $2M(NO_3)_2$ —— $2MO+4NO_2+O_2$ ,将产生的气体用排水法收集,在标                                                                                                                                                                                                                             | 示况下                   | ,收                 |
| 集到的气体体积接近                                                                                                                                                                                                                                                                    | [                     | -                  |
| **                                                                                                                                                                                                                                                                           | . 0 升                 |                    |
| 4.下列反应方程式中,书写不正确的是                                                                                                                                                                                                                                                           | [                     | ]                  |
| $A \cdot NH_4NO_3 \stackrel{\triangle}{\longrightarrow} N_2O + 2H_2O$                                                                                                                                                                                                        |                       |                    |
| B . $HCO_3^- + H_2O \rightleftharpoons OH^- + H_2CO_3$                                                                                                                                                                                                                       |                       |                    |
| C . Fe <sup>3+</sup> +Cu=Cu <sup>2+</sup> +Fe <sup>2+</sup>                                                                                                                                                                                                                  |                       |                    |
| D . $Mg(HCO_3)_2+Ca(OH)_2=MgCO_3 +CaCO_3 +2H_2O$                                                                                                                                                                                                                             |                       |                    |
| 5.下列说法正确的有:                                                                                                                                                                                                                                                                  | [                     | ]                  |
| A. 离子晶体一定含有金属离子                                                                                                                                                                                                                                                              |                       |                    |
| B.H <sub>2</sub> 0分子中氢与氧化合价已饱和,不能再与原子或离子形成化学                                                                                                                                                                                                                                 | 键                     |                    |
| $C$ . $PH_3$ 的分子量比 $NH_3$ 大,因此 $PH_3$ 的熔沸点比 $NH_3$ 高                                                                                                                                                                                                                         |                       |                    |
| D. 金刚石中的共价键比石墨中的共价键弱                                                                                                                                                                                                                                                         |                       |                    |
| 6.用 Zn 与稀 $H_2SO_4$ 反应制取 $H_2$ 气时,观察到反应速率变                                                                                                                                                                                                                                   | 化是                    |                    |
| [ ]                                                                                                                                                                                                                                                                          |                       |                    |
| A.由快 慢 B.由慢 快                                                                                                                                                                                                                                                                |                       |                    |
| C. 由慢 快 慢 D. 由快 慢 快                                                                                                                                                                                                                                                          |                       |                    |
| 7 . 已知 2BrO-3+Cl2=Br2+2ClO-3 5Cl2+l2+6H2O=2H                                                                                                                                                                                                                                 | 110 <sub>3</sub> +1   | OHC I              |
| $CIO_3^+5CI_+6H_=3CI_2^+3H_2O$ 判断下列物质的氧化能力的顺序是                                                                                                                                                                                                                               | [                     | ]                  |
| A . $ClO_3^- > BrO_3^- > IO_3^- > Cl_2$                                                                                                                                                                                                                                      |                       |                    |
| B. $BrO_3^- > Cl_2 > ClO_3^- > IO_3^-$                                                                                                                                                                                                                                       |                       |                    |
| 5 2 5                                                                                                                                                                                                                                                                        |                       |                    |
| $C : BrO_{\circ}^{-} > ClO_{\circ}^{-} > Cl_{\circ} > IO_{\circ}^{-}$                                                                                                                                                                                                        |                       |                    |
| C. $BrO_3^- > ClO_3^- > Cl_2^- > IO_3^-$<br>D. $Cl_3^- > RrO_3^- > ClO_3^- > IO_3^-$                                                                                                                                                                                         |                       |                    |
| D . $Cl_2 > BrO_3^- > ClO_3^- > IO_3^-$                                                                                                                                                                                                                                      | 经工工文                  | 工利                 |
| D.Cl <sub>2</sub> > BrO <sub>3</sub> > ClO <sub>3</sub> > IO <sub>3</sub><br>8.粘土胶体溶液中,粘土粒子带负电,为了使粘土粒子)                                                                                                                                                                      | 疑聚,<br>「              | 下列<br>1            |
| D. Cl <sub>2</sub> > BrO <sup>-</sup> <sub>3</sub> > ClO <sup>-</sup> <sub>3</sub> > IO <sup>-</sup> <sub>3</sub><br>8. 粘土胶体溶液中,粘土粒子带负电,为了使粘土粒子)<br>物质中用量最少最有效的电解质是                                                                                                          | [                     | ]                  |
| D. Cl <sub>2</sub> > BrO <sub>3</sub> > ClO <sub>3</sub> > IO <sub>3</sub> 8. 粘土胶体溶液中,粘土粒子带负电,为了使粘土粒子) 物质中用量最少最有效的电解质是 A. 磷酸钠 B. 硫酸铝 C. 氯化钡 D                                                                                                                                | [<br>. 硫酸             | ]<br>き钾            |
| D. Cl <sub>2</sub> > BrO <sup>-</sup> <sub>3</sub> > ClO <sup>-</sup> <sub>3</sub> > IO <sup>-</sup> <sub>3</sub><br>8. 粘土胶体溶液中,粘土粒子带负电,为了使粘土粒子)<br>物质中用量最少最有效的电解质是                                                                                                          | [<br>. 硫酸             | ]<br>き钾            |
| D. Cl <sub>2</sub> > BrO <sub>3</sub> > ClO <sub>3</sub> > IO <sub>3</sub> 8. 粘土胶体溶液中,粘土粒子带负电,为了使粘土粒子; 物质中用量最少最有效的电解质是 A. 磷酸钠 B. 硫酸铝 C. 氯化钡 D  9. 以已知浓度的 NaOH 溶液滴定未知浓度的醋酸溶液,                                                                                                 | [<br>. 硫酸             | ]<br>き钾            |
| D. Cl <sub>2</sub> > BrO <sub>3</sub> > ClO <sub>3</sub> > IO <sub>3</sub> 8. 粘土胶体溶液中,粘土粒子带负电,为了使粘土粒子,物质中用量最少最有效的电解质是 A. 磷酸钠 B. 硫酸铝 C. 氯化钡 D  9. 以已知浓度的 NaOH 溶液滴定未知浓度的醋酸溶液,会使测定结果偏低的有                                                                                        | [<br>. 硫酸             | ]<br>き钾            |
| D. Cl <sub>2</sub> > BrO <sub>3</sub> > ClO <sub>3</sub> > IO <sub>3</sub> 8. 粘土胶体溶液中,粘土粒子带负电,为了使粘土粒子,物质中用量最少最有效的电解质是 A. 磷酸钠 B. 硫酸铝 C. 氯化钡 D  9. 以已知浓度的 NaOH 溶液滴定未知浓度的醋酸溶液, 会使测定结果偏低的有 A. 以甲基橙作指示剂                                                                           | [<br>. 硫酸             | ]<br>き钾            |
| D. Cl <sub>2</sub> > BrO <sub>3</sub> > ClO <sub>3</sub> > IO <sub>3</sub> 8. 粘土胶体溶液中,粘土粒子带负电,为了使粘土粒子次物质中用量最少最有效的电解质是  A. 磷酸钠 B. 硫酸铝 C. 氯化钡 D  9. 以已知浓度的 NaOH 溶液滴定未知浓度的醋酸溶液,会使测定结果偏低的有  A. 以甲基橙作指示剂  B. 锥形瓶沾有少量的蒸馏水  C. 滴定前,滴定管尖端有气泡未排出  D. 滴定后,滴定管尖端有气泡未排出                  | [<br>. 硫酸             | ]<br>き钾            |
| D. Cl <sub>2</sub> > BrO <sub>3</sub> > ClO <sub>3</sub> > IO <sub>3</sub> 8. 粘土胶体溶液中,粘土粒子带负电,为了使粘土粒子,物质中用量最少最有效的电解质是  A. 磷酸钠 B. 硫酸铝 C. 氯化钡 D  9. 以已知浓度的 NaOH 溶液滴定未知浓度的醋酸溶液, 会使测定结果偏低的有  A. 以甲基橙作指示剂  B. 锥形瓶沾有少量的蒸馏水  C. 滴定前,滴定管尖端有气泡未排出  D. 滴定后,滴定管尖端有气泡未排出  E. 滴定到达终点,即刻读数 | [<br>. 硫酸<br>下列操<br>[ | ]<br>詳钾<br>作中<br>] |
| D. Cl <sub>2</sub> > BrO <sub>3</sub> > ClO <sub>3</sub> > IO <sub>3</sub> 8. 粘土胶体溶液中,粘土粒子带负电,为了使粘土粒子次物质中用量最少最有效的电解质是  A. 磷酸钠 B. 硫酸铝 C. 氯化钡 D  9. 以已知浓度的 NaOH 溶液滴定未知浓度的醋酸溶液,会使测定结果偏低的有  A. 以甲基橙作指示剂  B. 锥形瓶沾有少量的蒸馏水  C. 滴定前,滴定管尖端有气泡未排出  D. 滴定后,滴定管尖端有气泡未排出                  | [<br>. 硫酸操<br>[<br>原子 | ]<br>詳钾<br>作中<br>] |

| [ ]                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------|
| A.100 B.90 C.80 D.70                                                                                                                  |
| 11 . 化学反应 aA+bB=dD+eE , 已知 40 克 A 和 21 克 B 恰好完全反应生成 28 克 D , 则 B、E 两种物质的摩尔质量之比是 [ ]                                                   |
|                                                                                                                                       |
| A. $\frac{7}{d}$ $\frac{10}{a}$ B. $\frac{10}{d}$ $\frac{7}{a}$ C. $\frac{11}{e}$ $\frac{7}{b}$ D. $\frac{7}{b}$ $\frac{11}{e}$       |
| 12 日知 1122K 时 - 反应:CoCO / 囯 \ → CoO/ 囯 \ , CO / 栠 \ 的亚海常                                                                              |
| 12.已知 1123K 时,反应:CaCO <sub>3</sub> (固) <del>←</del> CaO(固)+CO <sub>2</sub> (气)的平衡常数 K <sub>o</sub> =0.5 大气压,在 1123K 时,下列各种情况能建立化学平衡的是 |
|                                                                                                                                       |
| .                                                                                                                                     |
| B.密闭容器中有 CaCO <sub>3</sub> 、CO <sub>2</sub> (1 大气压)                                                                                   |
| C.密闭容器中有 CaO、CO <sub>2</sub> (0.1 大气压)                                                                                                |
| D.密闭容器中有 $CaCO_3$ 、 $CaO$ 、 $CO_2$ (0.1 大气压)                                                                                          |
| 13.取 $2.5$ cm $^3$ $0.1$ mol $\cdot$ dm $^{-3}$ Na $_2$ S $,$ 1cm $^3$ $0.1$ mol $\cdot$ dm $^{-3}$ Na $_2$ SO $_3$ 和 7cm $^3$        |
| 0.1mol·dm <sup>-3</sup> HCI 三种溶液混合后,体系中硫以各种形式存在的相对含量                                                                                  |
| 是 [ ]                                                                                                                                 |
| A. $H_2S > SO_2 > S^{2-} > S$ B. $H_2S > S^{2-} > S > SO_2$                                                                           |
| C. $S > H_2S > S^{2-} > SO_2$ D. $H_2S > S > S^{2-} > SO_2$                                                                           |
| $14$ . 将装有 $15$ 毫升 $NO_2$ 和 $O_2$ 的试管,倒立在盛水的水槽中,最后试                                                                                   |
| 管内剩余 3 毫升气体,则试管中原气体的组成可能是 [ ] $A \cdot NO_2 : 9.6$ 毫升, $O_2 : 5.4$ 毫升                                                                 |
| B . NO <sub>2</sub> : 13.8 毫升 , O <sub>2</sub> : 1.2 毫升                                                                               |
| C . NO <sub>2</sub> : 6 毫升 , O <sub>2</sub> : 9 毫升                                                                                    |
| D . NO <sub>2</sub> : 11.25 毫升 , O <sub>2</sub> : 3.75 毫升                                                                             |
| 15.下列每组有机化合物,一定属于同系物的有 [ ]                                                                                                            |
| A . C <sub>2</sub> H <sub>6</sub> 和 C <sub>4</sub> H <sub>10</sub> B . C <sub>2</sub> H <sub>2</sub> 和 C <sub>4</sub> H <sub>6</sub>  |
| C.C <sub>2</sub> H <sub>4</sub> 和 C <sub>4</sub> H <sub>8</sub>                                                                       |
| D. <¬— он和¬— сн <sub>2</sub> он                                                                                                       |
|                                                                                                                                       |
| NaHCO <sub>3</sub> 溶液,该物质可能是 [ ]                                                                                                      |
| A. CI $-$ OH B. CI $-$ NH $_2$                                                                                                        |
| с. а $-\langle \overline{} \rangle -$ соон р. а $-\langle \overline{} \rangle -$ сн $_2$ он                                           |
| 17.化合物 $CH_2=CH$ — $CH=CH$ — $CH=CH_2$ 与一分子溴反应时,可能得到异                                                                                 |
| 构体的种类数是 [ ]                                                                                                                           |
| A.一种 B.二种 C.三种 D.四种                                                                                                                   |
| 18. 下列物质中自身既不能发生加成聚合反应也不能发生缩合聚合                                                                                                       |
| 反应的是 [ ] A. 氨基乙酸 B. 苯酚 C. 甲醛 D. 苯乙烯                                                                                                   |
| ハ・女子し成 ひ・午前 ひ・午柱 ひ・午口仰                                                                                                                |

- 19.有 CH<sub>4</sub>、C<sub>2</sub>H<sub>2</sub>、C<sub>6</sub>H<sub>6</sub>、CH<sub>3</sub>COCH<sub>3</sub>、油脂五类有机化合物,它们的 共性是 [ ] A. 难溶于水 B. 燃烧时产生浓烟 C. 发生取代反应 D. 完全燃烧时只生成 CO<sub>2</sub>和 H<sub>2</sub>O 20.在下列物质的水溶液中加入几滴稀硫酸,加热后再用碱中和, 与新制氢氧化铜悬浊液共热,有红色沉淀产生的是 B. 淀粉 C. 福尔马林 A.乙酸 D.乙醇 三、填空题(共15分) 1 . A、B 两元素 , A 原子的 M 层和 N 层电子数分别比 B 原子的 M 层和 N层的电子数少5个和4个,则A原子可能是\_\_\_\_\_,B原子可能是\_\_\_\_。 2 . H<sub>2</sub>O 的沸点 (100 )比 HF 的沸点 (20 )高,这是由于 3.10°3与 1~在中性或碱性溶液中不起反应,在酸性溶液中能起反应 析出 I<sub>2</sub>。取 KIO<sub>3</sub>、KI、KHSO<sub>4</sub>溶液各 10cm<sup>3</sup>,混合后恰好反应,反应后的 溶液用 0.10mo I · dm-3Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>滴定 , 耗 Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>20cm<sup>3</sup>。KHSO<sub>4</sub>原来溶液的 浓度是。 4. 虽然氟元素早在 1810 年就被发现,但 170 多年来化学家试图用 化学方法制取单质氟的尝试一直未获成功。直到 1986 年 Karl christe 终于由 HF 制得  $F_2$ 。他提出的三步反应如下,试将它们完成并配平:  $(1) \text{KMnO}_4 + \text{KF} + \text{H}_2 \text{O}_2 - \text{K}_2 \text{MnF}_6 + \dots$ (2)SbCI<sub>5</sub> + HF— SbF5+.....  $(3)K_2MnF_6+SbF_5- KSbF_6+MnF_3+F_2$ 5.在合成氨反应中,入口气体体积比为 N。 H。 NH<sub>3</sub>=6 18 1,出 口气体体积比为 N。 H。 NH<sub>3</sub>=9 27 8。则氢的转化率为\_\_\_\_。 6.于 100 毫升 0.1 摩/升的稀  $H_{9}SO_{4}$  中加入 1 摩/升的氨水 20 毫升 , 溶液变成\_\_\_性。在上述溶液中加入 0.1 摩/升 BaCI<sub>2</sub>溶液, 使溶液中的硫 酸根离子和氯离子的摩尔浓度相等,加入氯化钡溶液的量是 毫升。 四、填空题(共19分) 1. 写出化合物 A、B、C 的结构式: (C) 2. 将质量相等的铜片和铂片插入硫酸铜溶液中,铜片与电源正极相 接,铂片与电源负极相接,以电流强度 A 通电 10 分钟,然后将电源反接, 以电流强度 2A 继续通电 10 分钟, 试回答: (1)以电极质量为纵坐标,时间为横坐标,分别作出铜电极、铂电极 质量和两电极总质量与时间的关系图。

铂电极\_\_\_\_\_。 (3)最后时刻两电极的电极反应是: 铜电极\_\_\_\_\_, 铂电极

3. 为了治理三废,对一废渣进行如下实验



试推断废渣中可能存在的物质是。

五、实验题(共16分)

1.有八瓶  $0.5 \text{mol} \cdot \text{L}^{-1}$  的无色溶液,它们可能是  $\text{NaHCO}_3$ 、 $\text{Na}_2 \text{CO}_3$ 、  $\text{Na}_2 \text{SiO}_3$ 、 $\text{Na}_3 \text{PO}_4$ 、 $\text{Na}_2 \text{SO}_3$ 、 $\text{Na}_2 \text{SO}_4$ 和  $\text{Na}_2 \text{S}_2 \text{O}_3$ 。请设计一实验方案,用最少试剂将它们一一鉴别出来。

要求:(1)用化学方法鉴别;(2)所用试剂尽可能少。本题按所用试剂多少记分:用最少试剂记满分;否则相应扣分;所用试剂超过四种或不能全部鉴别者,一律记0分。

2.有一混合溶液含苯甲醇、对甲苯酚、环己胺和苯。请设计一实验方案,将它们分离提纯。要求用框图简明表达,注明所用试剂及物质的存在形式。

## 六、计算题(共20分)

- 1.某白色粉末 A 为含一份金属的盐,难溶于水。灼烧 6.90 克 A 到 300 ,生成金属 B5.40 克和两种气体 C、D 组成的混合物 0.84dm³。将此混合气体通过灼热铜粉,充分反应,铜粉变黑,气体体积减少到 0.56dm³。所有气体体积都已换算为标准状况下的值。试通过计算确定上述注字母的物质。并写出所发生的热分解方程式。
- 2.有一密闭抽成真空的容器内,放有无水 FeSO<sub>4</sub>与 0.095mo I 硫磺,通入纯氧,把体系加热,使它们发生化学反应。在恒定一大气压及 927K 下长时间保持平衡。经分析该条件下平衡气相含氧 0.005mo I ,残渣中并未发现残存的硫。试通过计算说明在该条件下残渣是什么?已知此条件下:

$$2FeSO_4(s) \Longrightarrow Fe_2O_3(s) + SO_2(g) + SO_3(g)$$
  $K_p = 0.159 (大气压)^2$   $2SO_3(g) \Longrightarrow 2SO_2(g) + O_2(g)$   $K_p = 0.050$  大气压

## (时限 150 分;满分 100 分)

注意:1)答卷可用计算器;

2) 原子量: S(32.06) Ru(101.1) H(1.008) O(16.00) Fe(55.85)

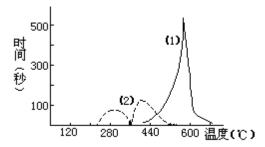
## 一、(本题6分)

400 下, $1 dm^3$  容器内  $N_2$ 、 $H_2$ 、 $NH_3$  三种气体的平衡浓度分别是:  $[N_2]=1.0 mol \cdot dm^{-3}$  ,  $[H_2]=0.50 mol \cdot dm^{-3}$  ,  $[NH_3]=0.50 mol \cdot dm^{-3}$  。如果保持温度不变,而要使  $N_2$  的平衡浓度增加到  $1.1 mol \cdot dm^{-3}$  ,需从容器中取走多少摩尔的氢气才能使体系重新达到平衡?

## 二、(本题 10 分)

足量的硫酸铁溶液在煮沸条件下被  $25.00 \,\mathrm{cm}^3$  的  $0.0494 \,\mathrm{mol} \cdot \mathrm{dm}^{-3}$  羟 胺 (NH<sub>2</sub>0H) 酸性溶液还原为亚铁离子。生成的亚铁离子可与  $24.65 \,\mathrm{cm}^3$  的高锰 酸 钾 溶液 作 用 完 全 。 若 用 上 述 高 锰 酸 钾 溶液 滴 定  $25.00 \,\mathrm{cm}^3$   $0.0500 \,\mathrm{mol} \cdot \mathrm{dm}^{-3}$  的 硫 酸 酸 化 的 草 酸 钠 溶液 ,则 耗 高 锰 酸 钾 溶液  $24.80 \,\mathrm{cm}^3$ 。

由上述事实,推导  $\mathrm{NH_2OH}$  被硫酸铁氧化的产物,并写出二者反应的方程式。


#### 三、(本题 20 分)

钉(Ru)的硫化物可用元素合成法(下称干法)和湿法获得。干法用99.9%的纯钌粉和99.99%的硫按化学计量配料,充分混合,置于石英管中,抽真空并加热至800 反应生成,经X-射线检定为晶态。湿法:可在六氟合钉(IV)

酸溶液中,加硫代乙酰胺( $CH_3 - C - NH_2$ )水解沉淀生成,X-射线检定为非晶态。制得的两种硫化物,在较高温度下用氢气还原,生成的  $H_2$ S 利用库仑滴定法进行测定,可计算出硫量,还原后得到的金属钌进行称量测定。两种方法制得的硫化物在空气中都有微吸湿性,利用失重法可计算出化合物的含水量。其实验数据如下:

| 试样组成  | S       | Ru      | H <sub>2</sub> O |
|-------|---------|---------|------------------|
| (1)干法 | 37.26 % | 60.06 % | 2.73 %           |
| (2)湿法 | 20.63 % | 41.84 % | 37.36 %          |

- 1. 试推断干法和湿法制得的两种硫化物的化学式。
- 2. 写出湿法制备硫化物的反应方程式(要求配平)。
- 3.哪种方法制得的硫化物测定结果偏高?导致结果偏高的原因可能 是什么?
- 4.用氢还原钌的硫化物,每升温 20 ,保温 5 分钟,同时库仑滴定这一期间释放的  $H_2S$  量,直到无  $H_2S$  逸出,化合物还原为金属钌为止。若以滴定  $S^{2-}$ 离子的时间(s)为纵坐标,温度( )为横坐标作图,得钌硫化物被氢还原的反应速率相对于温度的动力学曲线,如下图:



- (1) 干法获得的订硫化物 (2) 湿法获得的订硫化学 据此 , 比较两种硫化物对氢作用的稳定性
- 5.图中湿法制得的硫化物有两个脱硫峰,而且由第一个峰测得的硫含量大约为化合物含硫总量的 $\frac{1}{3}$ 。据此,推测氢还原湿法制得的钌硫化物的过程。
- 6.图中(2)的第二个脱硫峰的温度区间比(1)脱硫峰要低,其可能原因是什么?

#### 四、(本题共 15 分)

组成晶体的最小重复单位称为晶胞。氯化钠晶体的晶胞是大家熟知的:它是一个立方体,在立方体的体心和立方体的每条棱边的中点各有一个 Na<sup>+</sup>(或 CI<sup>-</sup>),在立方体的每一个角顶和每个面心各有一个 CI<sup>-</sup>(或 Na<sup>+</sup>)。已知一种铁的氧化物  $Fe_xO($ 富氏体)为氯化钠型结构,由于存在缺限 x < 1,测得其密度为  $5.71g \cdot cm^{-3}$ 。用  $MoK_a$  射线( =71.07pm)测得其晶胞边长为  $428pm(1pm=10^{-12}m)$ 。

- (1)算出 Fe<sub>x</sub>0 中的 x 值;
- (2)Fe<sub>x</sub>0 中 Fe( )和 Fe( )各占总铁量的百分之几?
- (3)写出标明铁的价态的该晶体化学式;
- (4)在  $Fe_x$ 0 晶体中, $0^2$ 的堆积方式是立方密堆积、六方密堆积,还是简单立方堆积?Fe 在此种堆积中占据哪一类空隙?占有分数是多少?
  - (5)Fe<sub>x</sub>0 晶体中 Fe—Fe 之间的最短距离是多少 pm?

## 五、(本题共 19 分)

同位素有稳定同位素和放射性同位素之分。前者不具有放射性,如 <sup>206</sup>Pb,<sup>87</sup>Sr 等;后者能自发地放射出射线,如 <sup>87</sup>Rb 放射出 射线,<sup>238</sup><sub>92</sub>U 经一系列 和 射线放射,最终衰变为 <sup>206</sup>Pb。

- 1.写出下列衰变反应:
- (1)<sup>87</sup>Rb 的 -衰变反应式\_\_\_\_;
- (2)从 <sup>238</sup><sub>92</sub>U 到 <sup>206</sup>Pb 衰变的总反应式\_\_\_\_\_\_。
- 2.放射性衰变是一级反应,其速率方程满足下式: $N=N_0e^{-t}$

式中  $N_o$  为开始时放射性核的数目,N 为 t 时间时放射性核的数目, 称为衰变常数。放射性核有半数发生衰变需要的时间称为半衰期,以 $t_{\underline{1}}$ 表

示。如上述核反应(1)的 $t_{\frac{1}{2}} = 5.7 \times 10^{10}$ 年,核反应(2)的 $t_{\frac{1}{2}} = 4.5 \times 10^{9}$ 年。

某些放射性同位素的功能就像一座"天然钟",协助人们记录古代 某些岩石沉积物固化的时间。如从月球表面取回的岩石试样,经分析获 得下列摩尔比:

 $^{87}$ Sr/ $^{87}$ Rb=0.041,  $^{206}$ Pb/ $^{238}$ U=0.66

用上列数据,求此岩石试样的年龄。

3. 对这种估算岩石年龄的方法进行评价。

六、(本题共 18 分)

"蜂皇质"可经下列反应合成来推导它的结构。一个酮 A(C7H120)与 CH<sub>3</sub>MgI 作用后水解生成一个醇 B(C<sub>8</sub>H<sub>16</sub>O)。B 脱水后生成烯 C(C<sub>8</sub>H<sub>14</sub>)。C 臭氧氧化还原水解仅得一个化合物  $D(C_8H_{14}O_2)$ 。D 在碱存在下,与丙二酸 二乙酯反应得到的产物在热酸中水解得到"蜂皇质"E(C10H16O3)。E 经催 化加一摩氢生成酮酸 $F(C_{10}H_{18}O_3)$ 。 $F 与 I_2 + NaOH反应(碘仿反应) 生成 CHI_3$ 和壬二酸。请写出A、B、C、D、E和F的结构。

化合物 A(C10H16)是存在于桔子、柠檬及柚子皮中的一个烯烃。A 吸 收两摩的氢形成烷烃  $B(C_{10}H_{20})$ 。 A 被高锰酸钾酸性溶液氧化成化合物 C:

$$CH_3$$
— $C$ — $CH_2$ — $CH_2$ — $CH_3$ 
 $CH_3$ COOH

A 在催化剂作用下加两摩水, 生成一个无手性的醇类 D。试问:

- 1. 化合物 A 的结构中有无环?如有的话,有几个环?
- 2. 哪些结构可能氧化成 C?
- 3.写出 D 的结构。
- 4.A 最可能是哪种结构?
- 5.B最可能是哪种结构?

# 1991 年竞赛试题 (时限:150分;满分:140分)

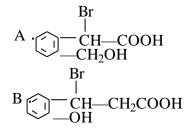
一、选择题(每题2分,共60分)

下列各题各有 1~2 个正确答案,全对者才得分。

- 1.原子量有小数,最好的解释是
  - A.由于电子的质量 B.由于同位素存在

1

1


- C. 由于测定原子质量不够准确
- D. 由干有杂质
- E.上述四条都有关
- 2.提供在原子中存在能级证据的是

  - A.原子序数 B.原子半径
  - C.质量亏损 D.光谱线
  - E.电离能数据

|       | <ul><li>3.在碱金属的焰色反应中,钠盐呈黄色是由于</li><li>A.钠被氧化的结果</li><li>B.钠发生离子化的结果</li></ul>                                                                                | [                   | ]                  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|
|       | C. 钠原子中的电子从高能级降到低能级的结果<br>D. 钠原子中电子从低能级升到高能级的结果<br>E. 钠离子中的电子跃迁的结果                                                                                           |                     |                    |
|       | 4. 下列各组离子中,可能大量存在于同一溶液中的一组                                                                                                                                   | 且离子:<br>「           | 是<br>1             |
|       | A . $Cu^{2+}$ , $AI^{3+}$ , $CI^{-}$ , $HCO_{3}^{-}$                                                                                                         | L                   | J                  |
|       | B . Fe <sup>2+</sup> , K <sup>+</sup> , CI <sup>-</sup> , I <sup>-</sup>                                                                                     |                     |                    |
|       | C . H <sup>+</sup> , K <sup>+</sup> , MnO <sup>-</sup> <sub>4</sub> , CI <sup>-</sup>                                                                        |                     |                    |
|       | D. $H^{+}$ , $Fe^{2+}$ , $CI^{-}$ , $NO_{-3}^{-}$                                                                                                            |                     |                    |
|       | E . S <sup>2-</sup> , Na <sup>+</sup> , HS <sup>-</sup> , CI <sup>-</sup>                                                                                    |                     |                    |
|       | 5.在一定条件下,将 2molA,3molB 放在一密闭容                                                                                                                                | 器中原                 | 5应:                |
| 2A(*  | 气)+3B(气)═━C(气),达平衡后测得 C 为 0.5mol。再通ん                                                                                                                         | λ 8mo               | IA,达               |
| 新平    | 衡后 C 的物质的量是                                                                                                                                                  | [                   | ]                  |
|       | A. 2mol B. 小于 2mol, 大于 1.5mol                                                                                                                                |                     |                    |
|       | C.小于 1.5mol,大于 1mol<br>D.1mol      E.小于 Imol,大于 0.5mol                                                                                                       |                     |                    |
|       | 6.物质的量相等的(NH <sub>4</sub> ) <sub>2</sub> HPO <sub>4</sub> 、(NH <sub>4</sub> )H <sub>2</sub> PO <sub>4</sub> 、(NH <sub>4</sub> ) <sub>3</sub> PO <sub>4</sub> | 二种制                 | 計分别                |
| 与汰    | 度相同的 NaOH 溶液完全反应时,消耗氢氧化钠溶液的促                                                                                                                                 |                     |                    |
| -J /W |                                                                                                                                                              | [                   | ~ <u> </u>         |
|       | A.1 1 1 B.1 2 3 C.2 1                                                                                                                                        | 3                   | -                  |
|       | D.3 2 3 E.1 3 2                                                                                                                                              |                     |                    |
|       | 7. 假设 A 元素不存在同位素,A <sup>n-</sup> 阴离子的原子核内有                                                                                                                   |                     | ·子,A               |
| 元素    | 的质量数为 m , 则 W 克 A <sup>n-</sup> 阴离子所含电子的物质的量是                                                                                                                | ፟ [                 | ]                  |
|       | A. $\frac{W(m-x-n)}{m}$ B. $\frac{W(m-x+n)}{m}$                                                                                                              |                     |                    |
|       | m $m$ $m-x+n$ $m-x-n$                                                                                                                                        |                     |                    |
|       | C. $\frac{m-x+n}{m \cdot W}$ D. $\frac{m-x-n}{mW}$                                                                                                           |                     |                    |
|       | E. 以上答案都不对                                                                                                                                                   |                     |                    |
|       | 8.在一定温度下,密闭容器中的反应: $N_2(气)+3H_2(气)$                                                                                                                          | ) <del>===</del> NH | H <sub>3</sub> (气) |
| 达到    | 平衡的标志是                                                                                                                                                       | [                   | ]                  |
|       | $(式中\upsilon_{N2}$ 表示反应物 $N_2$ 的平均消耗反应速率,其余类指                                                                                                                | E)                  |                    |
|       | A. $v_{N2} = v_{NH3}$ B. $3v_{N2} = v_{H2}$                                                                                                                  |                     |                    |
|       | C. $2v_{N2} = v_{NH3}$ D. $v_{N2} = 2v_{NH3}$                                                                                                                |                     |                    |
|       | E.总压不随时间而变化                                                                                                                                                  |                     |                    |
|       | 9.下列变化属于克服分子间力的是                                                                                                                                             | [                   | ]                  |
|       | A.碘的升华 B.硫黄变为硫蒸汽                                                                                                                                             |                     |                    |
|       | C.二硫化碳汽化 D.汞变成汞蒸汽                                                                                                                                            |                     |                    |
|       | E.以上变化都是<br>10.下列叙述错误的是                                                                                                                                      | Г                   | 1                  |
|       |                                                                                                                                                              | L                   | J                  |

| A.H <sub>3</sub> PO <sub>4</sub> 的酸性比 H <sub>3</sub> AsO <sub>4</sub> 强                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------|
| B.H <sub>3</sub> PO <sub>4</sub> 的氧化性比 H <sub>3</sub> AsO <sub>4</sub> 强                                                            |
| C.H <sub>3</sub> PO <sub>4</sub> 溶液中只含有 H <sub>+</sub> ,H <sub>2</sub> PO <sup>-</sup> 4,HPO <sup>2-</sup> 4,PO <sup>3-</sup> 4四种离子 |
| D.1moIH <sub>3</sub> PO <sub>4</sub> 与 1moI NaOH 反应,其水溶液显酸性                                                                         |
| E.H <sub>3</sub> PO <sub>4</sub> 的酸性比焦磷酸 H <sub>4</sub> P <sub>2</sub> O <sub>7</sub> 弱                                             |
| 11. 某酸的 K <sub>a</sub> =1 × 10 <sup>-4</sup> ,它与 NaOH 反应的平衡常数应为 [ ]                                                                 |
| A. $1 \times 10^{-4}$ B. $1 \times 10^{-10}$                                                                                        |
| C. $1 \times 10^{10}$ D. $1 \times 10^4$                                                                                            |
| $E \cdot 1 \times 10^{18}$                                                                                                          |
| 12.下列元素中在自然界没有游离态存在的是 [ ]                                                                                                           |
| A.C B.Si C.S D.P E.O                                                                                                                |
| 13.某学生配制 100 毫升 1 摩/升的 $H_2 SO_4$ 溶液,进行以下操作,然                                                                                       |
| 后精确滴定,发现结果偏低。从他的操作中,可能使结果偏低的有                                                                                                       |
| [ ]                                                                                                                                 |
| A.量筒用蒸馏水洗净后即用来量取所需要的浓硫酸,再将浓H <sub>2</sub> SO <sub>2</sub>                                                                           |
| 注入洗净的烧杯中                                                                                                                            |
| B. 用少量蒸馏水多次冲洗量筒,洗液倒入上述烧杯中                                                                                                           |
| $C$ . 将烧杯中的 $H_2SO_4$ 沿玻棒全部移入 100 毫升的容量瓶内,烧杯                                                                                        |
| 用少量蒸馏水多次冲洗,洗液也倒入容量瓶内                                                                                                                |
| D.加蒸馏水于容量瓶到接近标线 2~3 厘米处,盖紧玻塞,上下颠                                                                                                    |
| 倒摇匀<br>E.最后用胶头滴管加蒸馏水到标线,盖塞再次摇匀                                                                                                      |
| 14. 已知: C(石墨)+O <sub>2</sub> (气)=CO <sub>2</sub> (气)+393.7kJC(金刚石)+                                                                 |
| $O_2(气)=CO_2(气)+395.8kJ$                                                                                                            |
|                                                                                                                                     |
| 则石墨转变为金刚石的反应热是<br>A.+789.5kJ B.-789.5kJ                                                                                             |
| C . +2.1kJ D2.1kJ                                                                                                                   |
| E . 0                                                                                                                               |
| 15.用 ${ m NaHSO_3}$ 与酸反应制备 ${ m SO_2}$ 气体,最好选用下列酸中的                                                                                 |
| [ ]                                                                                                                                 |
| A.浓 HCI B.稀 HCI C.浓 H <sub>2</sub> SO <sub>4</sub>                                                                                  |
| D.稀 H <sub>2</sub> SO <sub>4</sub> E.HNO <sub>3</sub>                                                                               |
| 16.除去 $\mathrm{CO_2}$ 中混有的 $\mathrm{HCI}$ 和 $\mathrm{SO_2}$ 气体,最好选用下列试剂中的                                                           |
| [ ]                                                                                                                                 |
| A.饱和碳酸钠溶液 B.饱和亚硫酸钠溶液                                                                                                                |
| C.饱和小苏打溶液 D.饱和亚硫酸氢钠溶液                                                                                                               |
| E.品红溶液                                                                                                                              |
| 17.在配离子中,配体(L)与金属离子(M)之间可发生 L M的电子跃                                                                                                 |
| 迁。金属离子越易被还原 , L M 跃迁所需能量越小。光可提供跃迁的能                                                                                                 |
| 量 下列离子发生! M 跃迁时 6600000米的波长悬长的是 [ ]                                                                                                 |

| A . V   | $O_4^{3-}$                                                                             | B . $CrO_4^{2-}$   | •                                  | C. WO                                        | 2-<br>4               |       |            |
|---------|----------------------------------------------------------------------------------------|--------------------|------------------------------------|----------------------------------------------|-----------------------|-------|------------|
| D. N    | $InO_4^-$                                                                              | E. MnO             | 2-<br>4                            |                                              |                       |       |            |
| 18 . 乙烷 | 完与丙烷混                                                                                  | 合气体完               | 全燃烧得                               | 4 CO <sub>2</sub> 26.4                       | 4 克和 H <sub>2</sub> 0 | 15.3克 | , 则混       |
| 合气体中乙烷  | 引力污污物                                                                                  | 顶的量之               | .比为                                |                                              |                       | [     | ]          |
|         | 1                                                                                      |                    |                                    | С.                                           | 2 1                   |       |            |
|         | 3<br>ै₩\+□ λ 조i                                                                        |                    | I <b>∓</b> ⊓ ∩∩                    | 1 65%次次                                      | 5th 5th               | 中出戶   | 灾琞         |
|         | 幹粉加入到<br>ハナ <del>ケ</del> ケ                                                             |                    | •                                  | -                                            |                       |       |            |
| 底部有金属粉  | 7木仔仕,                                                                                  | 回 的 浴 液            | .生有牧多                              | FBJ FE                                       | ,则 下列                 | 秋迩中1  | 上1併日り<br>1 |
| . —     | 属粉末肯為                                                                                  | 定有 FeB .           | 金属粉                                | 末肯定有                                         | Cu                    | L     | J          |
|         | 属粉末肯                                                                                   |                    | 302 N-9 177 v                      | 14137213                                     |                       |       |            |
| D.溶     | 液中可能                                                                                   | 有较多的(              | Cu <sup>2+</sup>                   |                                              |                       |       |            |
|         | 液中 Cu <sup>2+</sup>                                                                    |                    |                                    |                                              |                       |       |            |
|         | ①0.1摩/ <del>·</del>                                                                    | 升的盐溶液              | 夜的 pH 值                            | 由大到                                          | 小排列正確                 | 确的是   |            |
| [ ]     | HCO <sub>3</sub> > CH <sub>3</sub>                                                     | $COON_2 > C$       | ⊔ ONa > I                          | Na CO                                        |                       |       |            |
|         | поо <sub>з</sub> > оп <sub>з</sub><br><sub>2</sub> со <sub>з</sub> > с <sub>6</sub> н, | · ·                |                                    |                                              |                       |       |            |
| D. Na   | 2003 > 0611                                                                            | 5011a / 0113       | COONA > 1                          | vai ioo <sub>3</sub>                         |                       |       |            |
| C . Na  | <sub>2</sub> CO <sub>3</sub> > C <sub>6</sub> H <sub>4</sub>                           | ₅0Na > Na⊦         | ICO <sub>2</sub> > CH <sub>2</sub> | .COONa                                       |                       |       |            |
|         | <sub>3</sub> C00Na > N                                                                 | -                  | -                                  |                                              |                       |       |            |
|         | <sub>2</sub> CO <sub>3</sub> > NaH                                                     | •                  |                                    |                                              |                       |       |            |
|         | -<br>们化合物中                                                                             |                    | •                                  | ,                                            |                       | ſ     | ]          |
|         | I <sub>2</sub> 0 B                                                                     |                    |                                    | . OF <sub>2</sub>                            |                       | •     | -          |
| D. 2    | KeF <sub>2</sub>                                                                       | E.ICl <sub>2</sub> |                                    |                                              |                       |       |            |
| 22.下列   | 们化合物中                                                                                  | 7,具有顺              | 磁性的是                               | ₫                                            |                       | [     | ]          |
| A.CI    | 20                                                                                     | В                  | . CIO <sub>2</sub>                 |                                              | C . OF <sub>2</sub>   |       |            |
| D.[C    | u(NH <sub>3</sub> ) <sub>4</sub> ] <sup>2.</sup>                                       | * E                | .[Ag(NH                            | l <sub>3</sub> ) <sub>2</sub> ] <sup>+</sup> |                       |       |            |
|         | 5碳酸氢钠                                                                                  |                    | 定条件                                | 下反应,                                         | 又能使酸                  | 性高锰酶  | 梭钾溶        |
| 液和溴水褪色  |                                                                                        | _                  | <del>≒</del> <del>≒.</del> ≖∧      | 6                                            | ∖ <del>≒</del> ;⊢     | [     | ]          |
|         | 萄糖<br>烯醛                                                                               |                    |                                    | C                                            | ). 茶油                 |       |            |
|         | <sup>깨睚</sup><br>刂物质互为                                                                 |                    |                                    |                                              |                       | ſ     | 1          |
| • •     | 脂酸与油                                                                                   |                    | · —                                | 与萘                                           |                       | L     | J          |
| C       | >—OH <sub>7</sub>                                                                      | 5()-               | СН₂ОН                              |                                              |                       |       |            |
| 0.0     |                                                                                        |                    | _                                  |                                              |                       |       |            |
|         | 脂酸甘油的<br>上都不是                                                                          | 钼 一 乙 嵌 ሪ          | ン間                                 |                                              |                       |       |            |
| •       | 工品介定<br>引化合物中                                                                          | 7,既显酸              | <b>〕</b> 性,又負                      | 能发生分                                         | 子内酯化                  | 反应和氵  | 肖除反        |
| 应的是     |                                                                                        |                    | , , , , , ,                        |                                              |                       | [     | ]          |



- C.3-羟基丁酸
- D.2-羟基丙酸
- E.2-羟基丙酸丙酯
- 26.某有机物(1)有银镜反应;(2)与 NaOH 溶液共煮可溶解;(3)加 Na<sub>2</sub>CO<sub>3</sub>溶液无气体放出;(4)在一定条件下使溴水褪色。根据以上实验事实,则该有机物可能是
  - A . HCOOH
- B . CH<sub>2</sub>=CH-COOCH<sub>3</sub>
- C . HCOOCH=CH<sub>2</sub>

E.核糖

- 27. 某烃的一卤代物有四种同分异构体,则此烃可能是 [ ]
  - A.甲苯
- B. 二甲苯
- C. 乙苯

- D.  $C_4H_{10}$
- E. -甲基萘
- 28.在下列物质中加入浓 H<sub>2</sub>SO<sub>4</sub> 加热没有反应的是 [ ]
  - A . 萘
- B.蔗糖
- C.甲醇

- D.环己烷
- E.脲素
- 29. 下列化合物中,硝化反应时硝基进入氯原子的邻位的化合物是

- , —
- С.
- D. 和
- F.

]

- 30. 某有机物的氧化产物 A,还原产物 B,B只能生成一种一溴代物 C。C与镁反应后,可与 A反应生成一个  $C_4$  化合物,该有机物是 [ ]
  - A.乙烯
- B.乙醛
- C.乙醇

- D.乙酸
- E.乙烷
- 二、填空题(共24分)
- 31 .  $\operatorname{Hg^{2+}+Hg} \rightleftharpoons \operatorname{Hg^{2+}_2}$ 的平衡常数为 66。取稀  $\operatorname{HNO_3}$  与过量汞作用,当反应达到平衡时, $\operatorname{Hg^{2+}_2}$ 浓度为  $0.1 \operatorname{mol} \cdot \operatorname{L}^{-1}$ ,则  $\operatorname{Hg^{2+}}$ 浓度为\_\_\_\_mol ·  $\operatorname{L}^{-1}$ 。若  $\operatorname{Hg}$  与过量稀  $\operatorname{HNO_3}$  作用,当  $\operatorname{Hg^{2+}}$ 浓度为  $0.1 \operatorname{mol} \cdot \operatorname{L}^{-1}$  时,则  $\operatorname{Hg^{2+}_2}$ 浓度为\_\_\_\_mol ·  $\operatorname{L}^{-1}$ 。
- 32. 某金属 M 与  $HNO_3$ 作用生成含氧酸  $H_2MO_4$  ,  $H_2MO_4$  不溶于水 , 加热干燥后得  $MO_3$ 。取 M 与 Ag、 Au 的合金  $W_1$  克(其中含  $AgW_2$  克 ,  $AuW_3$  克)与

| 属 M 的摩尔质量为克/摩。                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------|
| 33. 气态氯原子与一个电子结合比气态氟原子与一个电子结合放出                                                                                     |
| 更多的能量,这是由于。                                                                                                         |
| $34$ .将装有压缩 $CO_2$ 气体的钢瓶阀突然打开,可得到干冰(固体),这                                                                           |
| 是由于。                                                                                                                |
| 35.某蛋白质水解得一溶于水的固体化合物 A,A 在电场中因 pH 不                                                                                 |
| 同分别移向阴极和阳极。A 无旋光性,加热得一固体化合物 B,其摩尔质                                                                                  |
| 量为 114 克/摩,则 A 的结构简式是。B 的结构简式是。                                                                                     |
| $36$ .将一试管 $NO_2$ 和 $O_2$ 的混合气体,倒置于盛水的水槽中,水面能                                                                       |
| 升至试管体积的四分之三,则混合气体中 $NO_2$ 与 $O_2$ 体积比是。                                                                             |
| 37. 有人设计以 Pt 和 Zn 为电极材料,埋入人体内作为某种心脏病                                                                                |
| 人的心脏起搏器的能源。它依靠人体内体液中含有一定浓度的溶解氧,                                                                                     |
| H <sup>+</sup> 和 Zn <sup>2+</sup> 进行工作。                                                                             |
| (1)请写出正极反应和负极反应的方程式:                                                                                                |
| 正极:;                                                                                                                |
| 负极:。                                                                                                                |
| (2) 若该电池在 0.8 伏, 40 微瓦条件下工作,则工作电流为A。                                                                                |
| (3)将 5 克 Zn 埋入人体内,则可以维持年才需要进行第二次手                                                                                   |
| 术更换。(每摩电子电量为 96500 库)。<br>38 .肼 $(N_2H_4)$ 可用作火箭的推进燃料,在 $K_3[Cu(CN)_4]$ 催化剂存在下,                                     |
|                                                                                                                     |
| 与 H <sub>2</sub> O <sub>2</sub> 水溶液反应。配平的反应式是:                                                                      |
| $N_2H_4+H_2O_2$                                                                                                     |
| 后来改用液氧或 $N_2O_4$ 氧化不对称二甲基肼和有机混合物的方法配平的反                                                                             |
| 应式是:                                                                                                                |
| $(CH_3)_2NNH_2+N_2O_4$                                                                                              |
| 三、判断未知物,并写出有关方程式(本题共 24 分)                                                                                          |
| 39 .有一固体混合物 ,可能含有 FeCI <sub>3</sub> 、NaNO <sub>2</sub> 、Ca(OH) <sub>2</sub> 、AgNO <sub>3</sub> 、CuCI <sub>2</sub> 、 |
| $\mathrm{NH_4F}$ 和 $\mathrm{NH_4CI}$ 七种物质中的若干种。若将此混合物加水后,可得白色沉                                                      |
| 淀和无色溶液。在此无色溶液中加入 KSCN 溶液没有颜色变化。将无色溶                                                                                 |
| 液加热有气体逸出。无色溶液可使酸化的 KMnO <sub>4</sub> 溶液褪色。白色沉淀可溶                                                                    |
| 于氨水。根据以上事实,判断                                                                                                       |
| (1)肯定存在的物质是:。                                                                                                       |
| (2)肯定不存在的物质是:。                                                                                                      |
| (3)写出"加热无色溶液有气体放出"的反应方程式。。                                                                                          |
| (4)写出"无色溶液使酸化的 KMnO <sub>4</sub> 溶液褪色"的离子反应式。                                                                       |
| o                                                                                                                   |
| 40 . 某卤代烃 A(C <sub>6</sub> H <sub>11</sub> CI)有旋光性。A 可使酸性 KMnO <sub>4</sub> 溶液褪色。A                                  |
| 经下列变化得到化合物 B、C、D:                                                                                                   |
| A NaOH → B A NaOH → C A H2 → C (无旋光性)                                                                               |
| (1)写出 A B C D 的结构式                                                                                                  |
|                                                                                                                     |

 $\mathrm{HNO_3}$ 完全作用,再过滤洗涤,将不溶物加热、干燥、称重得  $\mathrm{W_4}$ 克。则金

A\_\_\_\_; B\_\_\_\_; C\_\_\_\_; D\_\_\_\_\_。

(2) B和C是否有旋光性?

方程式(如可反应的话)。

四、鉴定题(10分)

41.某溶液中含有 $Cl^-$  ,  $OH^-$  ,  $I^-$  ,  $CO_3^{2-}$ 和 $PO_4^{3-}$ 五种阴离子。只允许取

一次该溶液,即能将五种阴离子——鉴别出来。按你设计的鉴定顺序, 完成下列表格。

| 实验步骤 | 加入试剂 | 实验现象 | 可鉴定的离子 |  |
|------|------|------|--------|--|
| 1    |      |      |        |  |
| 2    |      |      |        |  |
| 3    |      |      |        |  |
| 4    |      |      |        |  |
| 5    |      |      |        |  |

# 五、(本题共 12 分)

42 .在 A、B 两元素组成的化合物中 B 的含量占80%。在460K ,1.01kPa 压力下测得该化合物蒸汽 378cm<sup>3</sup> 的质量是 0.0267 克。该化合物的每个分子中共含有 128 个质子。B 元素的原子 M 层上有一个未成对电子。试

- (1)求此化合物的摩尔质量。
- (2)推导此化合物的分子式。
- (3)写出该化合物的结构式。

六、(本题共10分)

43 .已知某金属 M 浸入  $M^{n+}$ 溶液中 ,其电极电势 E 与  $[M^{n+}]$  有如下关系:  $E=E^{n+}+\frac{0.0591}{n} \lg[M^{n+}]$ 

式中E®为某一常数。

现设计如下实验:在两个烧杯中分别注入相同的混合溶液,即由  $50.0 \text{cm}^3 \ 0.0100 \text{mol} \cdot \text{dm}^{-3} \ \text{AgNO}_3$ 和  $50.0 \text{cm}^3 0.100 \text{mol} \cdot \text{dm}^{-3} \text{NH}_4 \text{NO}_3$ 组成的混合溶液。将两根银电极用铜线相连,分别浸入到上述两烧杯的混合溶液中;两根相同的参比电极(电极电势为定值)通过电位计相连,也分别浸入 到上述混合溶液中。 现往其中一个烧杯中逐渐加入  $50.0 \text{cm}^3 0.100 \text{mol} \cdot \text{dm}^{-3}$ 的氨水,生成 $[\text{Ag}(\text{NH}_3)_2]^+$ 。由电位计测得两参比电极间电势差为 0.254 伏特。据此求 $[\text{Ag}(\text{NH}_3)_2]^+$ 的解离常数。

# 1991 年复赛试题

(时限:150分;满分:100分)

一、 $(12 \, \Im)$ 含有银、铜、铬的一种合金,质量为 1500 毫克,溶解后溶液中含有  $Ag^+$ 、 $Cu^{2+}$ 、 $Cr^{3+}$ ,用水稀释到  $500cm^3$ 。

(1)取出  $50 \text{cm}^3$  溶液,加入过量稀碱溶液,分离出沉淀物,滤液用足量  $H_2O_2$  氧化,发生如下反应:

$$OH^- + Cr^{3+} + H_2O_2 \quad CrO_4^{2-} + H_2O_3$$

酸化上述溶液,用 25.00cm<sup>3</sup> 0.100 mo l·dm<sup>-3</sup>的 Fe( )盐溶液,还原其

中的CrO<sub>4</sub><sup>2-</sup>成Cr<sup>3+</sup>,未反应完的Fe()盐溶液,用0.0200mol·dm<sup>-3</sup>KMnO<sub>4</sub>

溶液滴定,耗 KMnO₄溶液 17.20cm3。

(2)在另一个实验中,取 200cm<sup>3</sup>原始溶液进行电解。电解析出金属的电流效率为 90%,电流为 2A,在 14.50 分钟内,三种金属定量析出。

求该合金样品中 Cu、Ag、Cr 的质量百分含量。(已知原子量: Cu: 63.55, Cr: 52.00, Ag: 107.9。一摩电子电量: 96480 库)。

二、 $(8 \, \%)$ 催化作用在近代化学工业中占有极其重要的地位。目前认为, $V_2O_5$  是催化氧化  $SO_2$  的较理想的催化剂。研究表明,在  $V_2O_5$  的晶体中,每个  $V^{5+}$ 离子周围有六个氧负离子  $O^{2-}$ ,构成一个拉长的八面体,其中长轴方向的 V-O 间距离为 281pm。

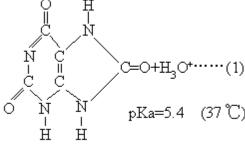
不少学者对  $V_2O_5$  的催化氧化  $SO_2$  的机理(反应历程)进行了研究,虽然得到的结论不尽相同,但可互为补充。

Mars 曾提出在 V<sub>2</sub>O<sub>5</sub> 固体表面上催化反应的机理为:

$$SO_2 + 2V^{5+} + O^{2-} = SO_3 + 2V^{4+}$$
 (1)

$$\frac{1}{2}O_2 + 2V^{4+} \quad 2V^{5+} + O^{2-} \tag{2}$$

近来,Happ I e 用示踪原子  $^{35}$ S 和  $^{18}$ O 及动力学模型,研究了  $SO_2$  的氧化过程,提出了如下机理:


$$\begin{array}{l} \bigcirc_2 + 2\mathbb{L} \underbrace{\frac{\upsilon + 3}{\upsilon - 3}} 2 \bigcirc \mathbb{L} \cdots (3) \\ \\ \mathbb{SO}_2 + \mathbb{L} \underbrace{\frac{\upsilon + 4}{\upsilon - 4}} \mathbb{SO}_2 \mathbb{L} \cdots (4) \end{array} \\ \end{array} \underbrace{\frac{\upsilon + 5}{\upsilon - 5}} \mathbb{SO}_3 \mathbb{L} \cdots (5) \underbrace{\frac{\upsilon + 6}{\upsilon - 6}} \mathbb{SO}_3 + \mathbb{L} \cdots (6)$$

式中L为催化剂表面活性中心, $\upsilon_{\pm 3}$ 、 $\upsilon_{\pm 4}$ 、 $\upsilon_{\pm 5}$ 、 $\upsilon_{\pm 6}$ 分别为各基元反应(一步完成的简单反应)的正、逆反应速度。通过测定和计算,求出 $\upsilon_{+ 4}$  /  $\upsilon_{- 4}$  ,  $\upsilon_{+ 5}/\upsilon_{- 5}$  ,  $\upsilon_{+ 6}/\upsilon_{- 6}$ 均接近于1,只是 $\upsilon_{+ 3}/\upsilon_{- 3}$  < 1。试根据以上叙述回答下列问题。

- 1.(1)、(2)式分别与(3)、(4)、(5)、(6)式中的哪些相当?
- 2.哪一步骤为  $SO_2$  氧化反应的控制步骤(即决定反应速度的关键步骤)?
- 3.为什么说  $V_2O_5$  在  $SO_2$  的催化氧化中起了"电子泵"(传输电子的泵)的作用?
  - 4.根据 V<sub>2</sub>O<sub>5</sub>的晶格结构特点 图示并说明 V<sub>2</sub>O<sub>5</sub>催化氧化 SO<sub>2</sub>的过程?
- 三、(8分)NSF 是一种不稳定的化合物,它可以聚合成三聚分子 A.; 也可以加合一个氟离子,生成(B),或失去一个氟离子变成(C)。

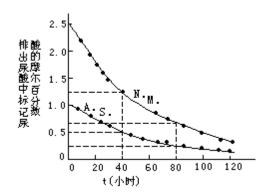
- (1)写出 NSF 和产物(A)、(B)、(C)的结构式。
- (2)预期(A)、(B)、(C)中何者 N—S 键最长?何者 N—S 键最短?为什么?
- 四、(22分)痛风是以关节炎反复发作及产生肾结石为特征的一类疾病。

关节炎的原因归结于在关节滑液中形成了尿酸钠晶体。反应式如下:



尿酸根离子Ur-(水溶液)

 $Ur^{-}(aq)+Na^{+}(aq)=NaUr(s)...(2)$ 


- 1.37 时 1.0 升水中可溶解 8.0mmol 尿酸钠。计算反应(2)的平衡常数。
- 2.头一次关节炎发作大都在脚趾和手指的关节处,这说明温度对反应(2)的平衡常数影响如何?反应(2)是放热的,还是吸热的?
- 3.37 时,每升水仅能溶解 0.5 mmoI 的尿酸。通过计算说明,尿酸在血清 $(pH=7.4, [Na^+]=130 \text{mmoI} \cdot I^{-1})$ 中沉淀与关节炎的发作无关。

痛风病人常患肾结石,肾结石是由尿酸晶体所组成。形成它的原因 是病人尿中的尿酸和尿酸盐浓度过高。

4. 若病人尿中尿酸与尿酸盐总浓度为 2.0mmol·l<sup>-1</sup>, 计算尿的 pH 值为何值时, 病人的尿中能够形成尿酸结石。

痛风病人出现肾结石,可能是体内尿酸合成速率较高或通过肾排出的尿酸减少的缘故。对它的研究可做如下实验:用放射性标记尿酸进行静脉注射。这些放射性尿酸与体内已有的尿酸相混合,一起从尿中排出,然后对排出的尿进行几天的放射性测量,确定放射性尿酸所占尿酸的百分数。

5. 下图为病人(A.S.)和正常人(N.M.)在各注射 20mg 放射



性标记尿酸后测量的结果。试确定病人(A.S.)和正常人(N.M.)排出 尿酸的速率相对尿酸浓度的反应级数是多少?并说明理由。

6.病人(A.S.)和正常人(N.M.)排出尿酸的速率常数各是多少?由此说明,病人的尿毒症可能是何种原因引起的?

五、简答下列问题(20分)

- 1. 高氯酸根离子 $(CIO_4^-)$ 与金属离子生成配合物的倾向很小,试解释之。
- 2.高碘酸根离子 $(10^{5-}_{6})$ 与  $Ag^{3+}$ 离子生成稳定配合物。画出  $10^{5-}_{6}$ 及 其与  $Ag^{1}$  形成的配合物的可能结构。磁化率的测定可以帮助确定其结构 吗?为什么?
  - 3. 下列反应用于合成某些镍的配位化合物:
  - (1)溶解在乙醇中的 $NiCl_2 \cdot 6H_2O + diars$  红色溶液  $^{+RHClO_4}$  为红色沉淀A;

diars 表示 0-苯撑双(二甲胂), 其结构式为:

- AsMe<sub>2</sub> Me 一表示 CH<sub>3</sub>
   AsMe<sub>2</sub> 摩尔质量 286 克/摩
- (2)反应(1)的红色溶液 + HCl  $\frac{\text{在空气存在下回流}}{\text{ of }}$  黄棕色晶状化合物B;

(4)B+浓 HNO₃ → 深蓝色溶液 +HClO₄ → 深蓝色化合物 D +SO₂ → C。

元素分析的部分结果:

B:含Ni 7.96%,含CI 14.4%

C:含Ni7.33%,含07.99%

根据以上事实,写出 A、B、C、D 的结构,并预测它们的磁性。

(已知原子量:Ni:58.7;CI:35.5;0:16.0)

六、 $(17 \, \%)(-)$ -水芹醛 $(C_{10}H_{16}O)$ 是自然界存在的萜烯。它可以被新制的氢氧化铜氧化,生成(-)-水芹酸 $(C_{10}H_{16}O_2)$ ,后者只能吸收 1 摩氢,而生成二氢水芹酸 $(C_{10}H_{18}O_2)$ 。

(±)-水芹醛可按下列步骤合成: 化合物 A(C<sub>0</sub>H<sub>12</sub>)+H<sub>2</sub>SO<sub>4</sub>(浓)-△→P(C<sub>0</sub>H<sub>12</sub>O<sub>3</sub>S) P+KOH  $\xrightarrow{K_+}$   $H^+$   $Q(C_9H_{12}O)$   $Q+H_2$   $\xrightarrow{Ni}$   $\triangle$   $R(C_9H_{18}O)$   $R+K_2Cr_2O_7(H_2SO_4)$   $\xrightarrow{\triangle}$   $S(C_9H_{16}O)$  S+KCN  $\xrightarrow{H^+}$   $T(C_{10}H_{17}ON)$   $T+醋酸酐 U(C_{12}H_{19}O_2N)$   $U \xrightarrow{600 C} V(C_{10}H_{15}N)+CH_3COOH$   $V+H_2O(H_2SO_4)$   $W(C_{10}H_{15}O_2)$   $W+SOCI_2$   $X(C_{10}H_{15}OCI)$   $X \xrightarrow{\Sigma R} (\pm)-X$  芹醛。 试问:

- 1.写出 A—X 的结构式。
- 2. 写出水芹醛的结构式。
- 3.为什么合成的水芹醛无旋光性?这种不旋光性在合成过程中首先 出现在哪一步?
- 4. 二氢水芹酸事实上是两个无旋光性的异构体的混合物。写出它们的结构式,并说明各异构体不旋光的理由。
- 七、(13分)我国盛产山苍子油,其主要成分是柠檬醛(A),以(A)为原料和化合物(B)经过缩合、消除、关环等主要步骤,可合成具工业价值的 —紫罗蓝酮(一种香料)。

$$(CH_3)_2C=CH-CH_2CH_2-C=CH-CHO$$

$$(A)$$
 $CH_3$ 

## 试问:



8-紫罗蓝酮

- 1.给(A)系统命名。
- 2. 写出化合物(B)的结构式。
- 3.写出 -紫罗蓝酮合成路线及反应历程。
- 4. 紫罗蓝酮是否有旋光性?它是否是合成中的唯一产物?如不是,请写出另一产物,并注明主次和说明理由。

# 参考答案 上篇

#### 第一部分

#### 一、原子结构

1.(1)(E);(2)可能是 D 和 A,但最可能的是 D;(3)可能是 B、D 和 A,但最可能的是 B;(4)(A);(5)根据 Q 元素的电离能数据,推测它可能是 IVA、VA、VIA、VIIA或 VIIIA 族中的一种元素。但本小题所给的五种元素中,外层电子没有 4、5、6、7 或 8 个电子。考虑到题目指的是"化

学性质和物理性质最像 Q 元素的",因此可能的选择是氮(即 E)和氢(即 D)。前者类似于稀有气体元素,后者类似于卤素,但前者更相似,所以本题的正确答案应为 E。(6)(A、D、E);(7)(C);(8)(E);(9)(A、B、C);(10)(D)。

- 2.(1) H;(2) Cs(或Fr);(3)Cl;(4)He;(5)F、0、Cl、N。
- 3. 都不正确(理由从略)。
- 7. 从能级交错考虑。
- 8. (3)Br(4)Hg(5)Rb(6)As(7)K、Cr、Cu(8)Cr、Mn(9)Eu、 Gd(10)Cr(其余从略)
- 9.A 为钒(V), [Ar]3d<sup>3</sup>4s<sup>2</sup>; B 为硒(Se), [Ar]3d<sup>10</sup>4s<sup>2</sup>4p<sup>4</sup>。(推理过程从略)。

# 二、共价键与分子结构

- 1 .(1)(D) (2)(B) (3)(A) (4)(C) (5)(B) (6)(E) (7)(B, C) (8)(A)注意  $H_3PO_3$ 分子中有一个 H 原子直接与 P 原子键合 ,其结构接近四面体形。(9)(D) (10)(C)
- 2. sp<sup>3</sup>杂化; sp<sup>3</sup>d 杂化; sp<sup>2</sup>杂化; 不等性 sp<sup>3</sup>杂化; sp 杂化; 不等性 sp<sup>3</sup>杂化; sp<sup>3</sup>d<sup>2</sup>杂化。......
- 3.四面体,四面体,V形,变形四面体,平面正方形,V形,V形, 直线形,V形,直线形,四面体,三角双锥,八面体,四方锥。
  - 4. 从孤对和配位原子电负性的影响方面考虑。
- 5. (4)  $NH_3$  分子中孤对产生的偶极与键对产生的偶极方向相同; $NF_3$  分子中恰反。
  - 7. 都不正确, 理由从略。
  - 8. 有差别,使 HNO3的稳定性比 NO3-差。
- 9. T 形,中心 I 原子取  $sp^3d$  杂化;四方锥, $sp^3d^2$  杂化;直线形,  $sp^3d$  杂化;平面正方形, $sp^3d^2$  杂化;V 形, $sp^3$  杂化;直线形, $sp^3d$  杂化。
  - 10. 都不正确, 理由从略。

#### 三、晶体结构

- 1.(1)(C) (2)(B) (3)(D) (4)(A, C) (5)(B, D) (6)(B, D) (7)(A) (8)(D) (9)(D) (10)(B, D).
- 2.  $\triangle$ H<sup>®</sup><sub>f</sub>[NaCl<sub>2</sub>(s)] $\cong$ 2300kJ · mol<sup>-1</sup>  $\Rightarrow$  $\triangle$ H<sup>®</sup><sub>f</sub>[NaCl(s)]=-411kJmol<sup>-1</sup>;  $\triangle$ H<sup>®</sup><sub>f</sub>[CaCl(s)] $\cong$ -150kJ·mol<sup>-1</sup>  $\Rightarrow$  $\triangle$ H<sup>®</sup><sub>f</sub>[CaCl<sub>2</sub>(s)]=-798kJ·mol<sup>-1</sup>, 且 CaCl(s)歧化为 Ca(s)和 CaCl2(s)的倾向很大。
- 3. NaF, RbF, CsCI为离子化合物; AgBr, HI, CuI, HF为共价化合物。
  - 5. Mq0 > Ba0 > NaF > KF > KI
  - 6.铜:74.05%钨:68.02%;金刚石:34%。
- 7. 考虑色散力大小;色散力大小与分子半径、电子数目有关;氦是单质中沸点最低的。

## 四、配位化合物的结构

- 1. (1)(B) (2)(C) (3)(D) (4) (A) (5)(B) (6)(D)
- 2.(1)[Ni(H<sub>2</sub>O)<sub>4</sub>Cl<sub>2</sub>] (2)[Ni(H<sub>2</sub>O)<sub>3</sub>Cl]Cl和K[Ni(H<sub>2</sub>O)Cl<sub>3</sub>]

- (3)  $[Ni(H_2O)_5CI]^+$  (4)  $[Ni(H_2O)_3CI]^+$
- 3.(1)2 (2) 3 (3) 5 (4) 1 (5) 2。(立体结构图从略)。
- 4.(1)八面体  $,sp^3d^2$  杂化 (2)八面体  $,d^2sp^3$  杂化 (3)四面体  $,sp^3$  杂化(4)平面正方形  $,dsp^2$  杂化
  - 6.  $[Co(NH_3)_5CI]SO_4$
  - 7.  $[Cr(H_2O)_6]^{3+}$
  - 8. (1) 15 (2) 3 (3) 4 (4) 4
  - 9.(1)6种,(2)10种
  - 10.(1)有 (2)有 (3)无 (4)有 (5)有(图从略)

#### 第二部分

- 二、溶解度
- 1 . 0.119dm<sup>3</sup> 2 . -67.38kJ · mol<sup>-1</sup> 3 . 降低 9.86K
- 4. -75.1kJ·moI<sup>-1</sup> 5. 降低 9.4K
  - 三、溶液的浓度
  - 1.1107g 2.5000g 3.1.88mol 4.6.22mol·kg<sup>-1</sup> 5.1 3.75 四、非电解质溶液的依数性
- 1.(1)-0.78 (2)100.22 (3)1022.6kPa 2.104.167 3.9.0g 4.49527.6 5.98.45kPa

#### 第三部分

- 一、化学反应中的能量变化
- 1. (1)-14.94kJ (2)-602kJmoI<sup>-1</sup> (3)0.0406g
- $2.-1214kJmol^{-1}$   $3.76kJmol^{-1}$
- 4 . 236kJmo $I^{-1}$  , 196.6kJmo $I^{-1}$  5 . 9545.5K
- 6.(1)C(2)C
- 7. (1)  $A.-286kJmol^{-1}$   $B.-286kJmol^{-1}$  C.1q
- $8.2.89 \text{MJmo I}^{-1}$
- 9 . 412kJmo l<sup>-1</sup>
- 10 . 690kJmo I<sup>-1</sup>
- 11. -1014kJmo $I^{-1}$
- 13.101.3kJmol<sup>-1</sup> , 48.6kJmol<sup>-1</sup> , 175.2kJ<sup>-1</sup>mol<sup>-1</sup> , 13.7kJmol<sup>-1</sup>
- 14 . 61.2-0.133T
- 15.  $115.4 \text{kJmo I}^{-1}$   $162 \text{kJ}^{-1} \text{mo I}^{-1}$  1010K
- 16.2或3种 17.(1)5.1kJ (2)2.6×10<sup>2</sup>q
- 22. .2.176kJmo $I^{-1}$ , -38.032kJmo $I^{-1}$ , -40.208kJmo $I^{-1}$
- 23 . B 24.-1135.7kJmo $I^{-1}$  , -1126kJmo $I^{-1}$
- 二、化学平衡
- 2.0.14 3.15.05Pa 4.-0.5276kJmol<sup>-1</sup>, 3.141kPa
- $5.3.73 \times 10^{41}$   $6.3.2 \times 10^{-3}$
- 7. (1)27%, 53%  $(2)1.14 \times 10^{-2}$ mol
- (3)  $2.3 \times 10^{-3} \text{mol} \cdot \text{dm}^{-3}$ ,  $3.0 \times 10^{-3} \text{mol} \cdot \text{dm}^{-3}$ ,  $6.0 \times 10^{-3} \text{mol} \cdot \text{dm}^{-3}$  (4) 6.82
  - 8.  $(1)4.3 \times 10^{-6} \text{mo I dm}^{-3}$  (2)106ppm

- 9 .  $1 \times 10^{-22}$  ,  $1 \times 10^{-17} \text{moldm}^{-3}$
- 11 . (1) 384kJmo I<sup>-1</sup> (2)9.6g , 12.370
- 13. (1)-9.8kJmol<sup>-1</sup> (2)3.25atm<sup>-1</sup>  $(3)2.67 \times 10^2$
- $14.5.5 \times 10^{-3}$
- 21 . 0.618 , 0.905 , 1.29 , 1.66
- 22 . 0.06 , 1.16 , 1.9(mol)
- 23 . 23386Pa , 96695Pa , 4605Pa

#### 第四部分

- 2.(1)二级,一级(2)6.00×10<sup>-2</sup> 3.75kJmol-1
- 7.8 倍 8.(4) 11.(1)44kJmol<sup>-1</sup>,(2)0.1213atm
- 12.9.36 倍 13.80.2kJmoI<sup>-1</sup> 14.1.4×10<sup>10</sup>

#### 第五部分

# 一、弱电解质的电离平衡

- 1.1.76  $\times$  10<sup>-5</sup> 2.7  $\times$  10<sup>-5</sup> mol · dm<sup>-3</sup>
- 3.16.6 倍  $4.[H+]=[HCO_3^-]=1.3 \times 10^{-4} \text{mol} \cdot dm^{-3}[CO_3^{2-}]=5.6 \times 10^{-11} \text{mol} \cdot dm^{-3}$

## 二、强电解质的电离

- 2.0.95

## 三、水的电离 溶液的 pH 值

- 1.  $(1)[H^{+}]=0.07\text{mol} \cdot dm^{-3}$  pH=1.2 (2)1.57q
- 2.1.5倍 3.0.82 4.0.42

#### 四、缓冲溶液

- 1.8.95 2.35.9g 3.选择 HAc—NaAc 溶液,并控制其物质的量浓度比为 5.75 1 4.3.49
  - 5.(1) 9.25(2)pH 值增大 0.03 单位(3)pH 值增大 5.3 单位

## 五、盐类的水解

- 3.(1) 5.47 (2)11.15 (3)6.27 (4)11.28
- $4.1.76 \times 10^{-5}$   $5.[S^{2-}]=9.09 \times 10^{-5}$

#### 六、沉淀溶解平衡

- $1.1.08 \times 10^{-10}$   $2.1.3 \times 10^{-4} \text{mol} \cdot \text{dm}^{-3}$  3.2.73.7
- 4.2×10<sup>-8</sup>mol·dm<sup>-3</sup> 5.不形成沉淀
- 6.1×10<sup>-10</sup>~5.66×10<sup>-7</sup>mol·dm<sup>-3</sup> 7.AgCI 先沉淀
- 9.溶液中剩余的[ $Cd^{2+}$ ]=3.27 ×  $10^{-10}$ mo l · dm<sup>-3</sup> , 沉淀是很完全的。 第六部分

## 一、氧化还原反应的基本概念

- 1.(1) 1, 5, 3=3, 3, 3
- (2)3, 8=3, 3, 8, 4
- (3)3, 1, 1=1, 3
- (4)15、44=22、88、5、90
- (5)1, 2=1, 1, 1, 1
- 2.  $(1)PbO_2+2CI^-+4H^+===Pb^{2+}+CI_2+2H_2O$

- (2)HgS+2NO<sub>3</sub><sup>-</sup>+4CI<sup>-</sup>+4H<sup>+</sup>===HgCI<sub>4</sub><sup>2-</sup>+2NO<sub>2</sub>+S+2H<sub>2</sub>O
- $(3)2CrO_4^-+3HSnO_2^-+H_2O===2CrO_2^-+3HSnO_3^-+2OH^-$
- (4)5, 12, 36=12, 10, 8
- (5)3, 1, 8=3, 2, 7
- 二、原电池和标准电极电势
- 1.1.47V
- $2.(1)E_{\rm HCIO/Cl_2}$ -E $_{\rm Cl_2/Cl^-}\!\!=\!\!1.63\text{-}1.35>0$ ,能
- (2)E<sub>MnO<sub>4</sub>/MnO<sub>2</sub></sub>-E<sub>MnO<sub>2</sub>/Mn<sup>2+</sup></sub>=1.68-1.208 > 0 能
- (3)E<sub>10,7/1</sub>-E<sub>1,7/1</sub>=1.19-0.535 > 0 能
- 3.从电极电势 $E_{SD^{4+}/Sn^{2+}}$ =0.15V, $E_{Fe^{3+}/Fe^{2+}}$ =0.77V,

 $E_{O_2+H^4/H_2O}=0.81V$ ,发现 $Fe^{2+}$ 、 $Sn^{2+}$ 很容易被空气中的氧气氧化,成为高价状态,加入铁屑和锡粒,根据 $E_{Fe^{2+}/Fe}=-0.469V$ , $E_{Sn^{2+}/Sn}=-0.1364V$ ,能使 $Fe^{3+}$ 和  $Sn^{4+}$ 被还原成 $Fe^{2+}$ 和 $Sn^{2+}$ 。

- 4.首先查出它们的电极电势,然后按大小排序: $E_{F_2/F^-}$ =2.87V> $E_{MnO_4^-/Mn^{2+}}$ =1.49V> $E_{Cl_2/Cl^-}$ =1.36V> $E_{Cr_2O_7^{2-}/Cr^{3+}}$ =1.33V> $E_{Br_2/Br^-}$ =1.087V> $E_{Fe^{3+}/Fe^{2+}}$ =0.77V> $E_{L_1/L^-}$ =0.535V> $E_{Cu^{2+}/Cu}$ =0.34V
  - 5.还原能力排序为 Li > Mg > AI > H<sub>2</sub> > Sn<sup>2+</sup> > I<sup>-</sup> > Fe<sup>2+</sup>

#### 三、电解池

- 1.(1)阳极:2I--2e=I。 阴极:2H++2e=H。
- 2.Cl<sub>2</sub>2Cl<sup>-</sup>-2e=Cl<sub>2</sub>;溶解Cu-2e=Cu<sup>2+</sup>变粗Cu<sup>2+</sup>+2e=Cu<sub>2</sub>
- 3.(1)用碳棒作电极,看通电后两个电极上发生的现象,便可确定 阴、阳极。若有气泡产生的那一极为阳极,与此极相连的电池极则为正 极。反之,为阴极和负极。
- (2) 因 AgNO<sub>3</sub> 是强电解质,故接通直流电时灯泡会亮。在溶液中滴入甲基橙试剂,溶液显红色。 长时间通电后,由于 Ag<sup>+</sup>不断减少,最后会变成电解硝酸溶液,即电解水了,则两极都会产生气体。
- (3) 通电前,溶液中加入与  $AgNO_3$  等摩尔的 NaCI 时,会产生白色沉淀,再通直流电,则是电解  $NaNO_3$  溶液,两极均产生气泡。

长时间通电后再加与  $AgNO_3$  等摩尔的 NaCI , 则是电解 NaCI 溶液了。

4.(1)原电池(2)电解池, Ag 极: Ag-e=Ag<sup>+</sup> Fe 极: Ag<sup>+</sup>+e=Ag 5.6(略) 第七部分 8.0.5347 12.19.79% 13.2.3×10<sup>-2</sup>mol·dm<sup>-3</sup> 第八部分

# 一、有机化合物中的基本价键

1. (1) 
$$H \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\sigma} H$$
 (2)  $H \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\pi} C$ 
(3)  $H \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\sigma} H$ 
(5)  $H \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\sigma} N$ 
(6)  $H \xrightarrow{\sigma} C \xrightarrow{\sigma} C \xrightarrow{\sigma} N$ 

2.(4), 因 H—0 键中电负性相差最大。

3.CO<sub>2</sub>是直线型分子:

Ö=C=Ö

H<sub>2</sub>0 是弯型分子:



# 二、各类有机化合物的基本性质

- 1. (1)  $\text{CH}_3$  (2)  $\text{C}_2\text{H}_5$  (3)  $\text{CH}_3\text{CH}_2\text{CH}_2$ (4)  $\text{CH}_3$  CH = (5)  $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2$ — (6)  $\text{CH}_3$  CH<sub>3</sub> CH<sub>3</sub>
- CH<sub>3</sub> CH<sub>3</sub>
  CICH<sub>2</sub>CHCH<sub>2</sub>CH<sub>3</sub> CH<sub>3</sub> CCH<sub>2</sub>CH<sub>3</sub>

1-氯-2-甲基丁烷 2-氯-2-甲基丁烷

2-氯-3-甲基丁烷 1-氯-3-甲基丁烷

4. 如果在异丁烷分子中的十个氢原子活性是等价的话,那么一级氢和三级氢上反应的相对量应是9 1,这样异丁基氯和叔丁基氯的比例应是9 1,现在的比例是:

$$\frac{62.5 / 9}{37.5 / 1} \approx \frac{1}{5.4}$$

因此说明3°H比1°H活泼得多。

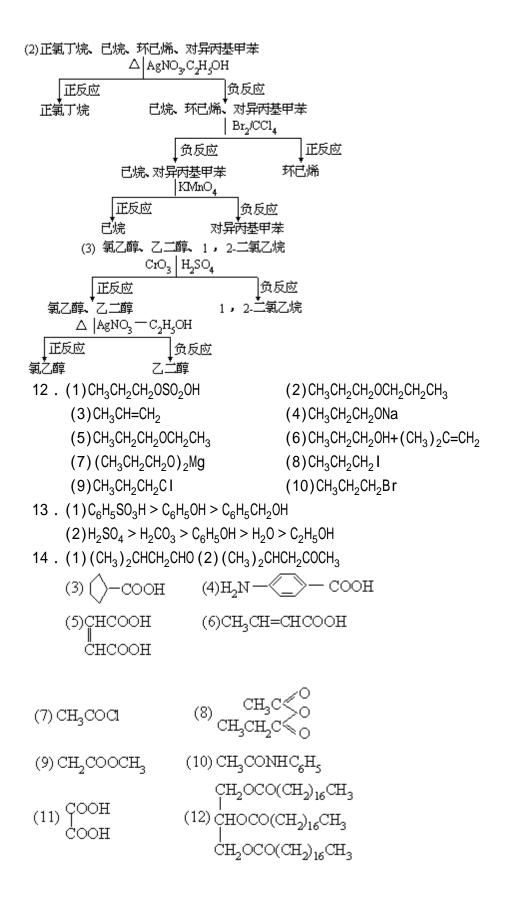
$$\begin{array}{c} \text{CH}_{3} \\ \text{(3)ClCH}_{2} - \text{C} - \text{CH(CH}_{3})_{2} & \text{45 \%} \\ \text{CH}_{3} \\ \text{(CH}_{3})_{3} \text{CC(CH}_{3})_{2} & \text{25 \%} \\ \text{Cl} \\ \text{(CH}_{3})_{3} \text{C} - \text{CHCH}_{2} \text{Cl} & \text{30 \%} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ \text{CH}_{7} \\ \text{CH}$$

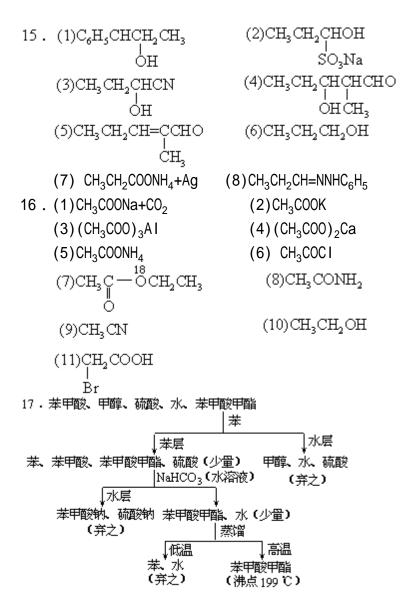
$$(CH_3)_3CC(CH_3)_2$$
 25 %  
 $C1$   
 $(CH_3)_3C$  —  $CHCH_2C1$  30 %

6.(1)CH<sub>3</sub>CH<sub>2</sub>CH=CHCH<sub>2</sub>CH<sub>3</sub>

$$\begin{array}{c} \text{CH}_3\text{CH}_2 \\ \text{(3)} \quad \text{CH}_3 \\ \end{array} \text{C=CH}_2$$

$$CH_3$$
  $CH_3$   
 $(4) CH_3CH - C - C = CH_2$   
 $CH_3 CH_3$ 


$$\begin{array}{ccc} \text{(5)CH}_2 & -\text{CH} & -\text{CH=CH}_2 \\ \text{I} & \text{Br} \end{array}$$


 $7.(1)CH_3CH_2CH_2CBr_2CH_3$ 

$$(3)\mathrm{CH_3C} \equiv \mathrm{CAg+NH_3+NH_4^+}$$

$$(4)$$
  $\leftarrow$   $CH_2$   $\rightarrow$   $C=CHCH_2$   $\rightarrow$   $Br$   $C1$ 

11.(1)用  $AgNO_3$ — $C_2H_5OH$  溶液试之,在室温下立即反应,有浅黄色 AgBr 沉淀者为 4—溴—2—戊烯,温热反应者为 5—溴—2—戊烯,不反应者为 3—溴—2—戊烯。





18. 酯化速率与烃基部分的体积有关。

酸:  $HCOOH > CH_3COOH > RCH_2COOH > R_2CHCOOH > R_3CCOOH$ 

醇: $CH_3OH > RCH_2OH > R_2CHOH$ 

叔醇在 H<sup>+</sup>作用下易脱水成烯。

- 19.(1)(A)双键也被氧化;(C) Br 会被除去。
- (2)(A) C=0 和 C—MgX 不能并存于同一分子中。
- (3)(A)以消除反应为主,生成异丁烯。
- (4)(A)Mg 可使邻二卤化物脱卤素成乙烯,不发生此反应。

20 · 
$$HNO_3$$
  $H_2$   $NH_2$   $RH_2SO_4$   $RH_2$ 

(3)由于具有拉电子诱导效应的 COOH 距离 —NH<sub>2</sub>较 —NH<sub>2</sub>近,所 以 —NH。的碱性强于 —NH。, 先与质子结合。

# 三、异构现象

$$_{
m H}^{
m CH_3}$$
 >C=C  $<_{
m H}^{
m CH_2CH_3}$  顺-2-戊烯[(Z)-2-戊烯]

- 2.(1)位置异构体
- (2)官能团异构体
- (3)对映体
- (4)非对映体
- (5)顺反异构体
- (7)对映体
- (6)顺反异构体 (8)同一化合物
- (9)碳架异构体
- (10)同一化合物

性碳原子(C\*),有 22-4 个旋光异构体。

只有两个旋光异构体。

型双键,有一对顺反异构体,每个顺反异构体中有一个手性碳原子,各 有一对对映体, 故共有4个旋光异构体。

## 四、反应机理

- 1.(1)亲核加成反应
- (2)氧化反应
- (3)游离基取代反应 (4)亲电取代反应
- (5)亲电加成反应 (7)消除反应
- (6)游离基加成反应
- (8)亲核取代反应
- 2. 这表明速率控制的一步是 CN<sup>-</sup>的亲核加成, 因碱有利于 CN<sup>-</sup>的生 成。

$$\begin{array}{c} HCN \overset{OH^-}{\rightleftharpoons} H^+ + CN \\ \xrightarrow{CH_3} & \overset{C}{\circlearrowleft} & \overset{CH_3}{\rightleftharpoons} & \overset{C}{\circlearrowleft} & \overset{CH_3}{\rightleftharpoons} & \overset{C}{\circlearrowleft} & \overset{C}{\hookrightarrow} & \overset{C}{\hookrightarrow}$$

得到正常的酯化产物, $O_{18}$ 全部在酯中。而利用  $CH_2 = CHCH_2O^{18}H$  酯化时, 除发生上述正常的酯化历程外,还会按下述历程进行:

$$\begin{array}{c} \text{CH}_2 = \text{CHCH}_2 \text{O}^{18} \text{H} \xrightarrow{\text{H}^+} \text{CH}_2 = \text{CHCH}_2 \text{O}^{18} \text{H}_2 \xrightarrow{\text{-H}_2 \text{O}^{18}} \text{CH}_2 = \text{CHCH}_2 \\ & \xrightarrow{\text{RCOOH}} \text{RCOOCH}_2 \text{CH} = \text{CH}_2 \xrightarrow{\text{-H}^+} \text{RCOOCH}_2 \text{CH} = \text{CH}_2 \\ & \xrightarrow{\text{H}^+} \text{CH}_2 \text{CH} = \text{CH}_2 \xrightarrow{\text{-H}^+} \text{CH}_2 \text{CH}_2 \\ \end{array}$$

因此有 H<sub>2</sub>0<sup>18</sup> 生成。

4. (1)HOT+H — CH<sub>2</sub>— C — H 
$$\Longrightarrow$$
: CH<sub>2</sub>— C — H+H<sub>2</sub>O

$$CH_3 - C - H + \cdot \overline{C}H_2 - C - H \Longrightarrow CH_3 - C - CH_2 - C - H$$

$$CH_3 - C - CH_2 - C - H + H_2O \Longrightarrow CH_3 - C - CH_2 - C - H + HOTO$$

$$CH_3 - C - CH_2 - C - H + H_2O \Longrightarrow CH_3 - C - CH_2 - C - H + HOTO$$

$$CH_3 - C - CH_2 - C - H + H_2O \Longrightarrow CH_3 - C - CH_2 - C - H + HOTO$$

$$CH_3 - C - CH_2 + \cdot NH_3 \Longrightarrow CH_3 - C - CH_2 + \cdot NH_4$$

$$NH_2$$

$$CH_3 - C - CH_2 + \cdot NH_3 \Longrightarrow CH_3 - C - CH_2 + \cdot NH_4$$

$$NH_2$$

$$CH_3 - C - CH_2 + \cdot NH_3 \Longrightarrow CH_3 - C - CH_2 + \cdot NH_4$$

$$NH_2$$

$$CH_3 - C - CH_3 + \cdot NH_2 + CH_3 + \cdot CH_3 + \cdot$$

正碳离子  $CH_3CH_2CH_2$   $CH_3CH_3$  的两个  $\beta$  一 H 均可消除而得到两种产物。

# 第九部分

# 一、有关混和物的计算

$$Na_2S+2HCI=2NaCI+H_2S$$
  
 $I_2+H_2S=S$  +2HI

$$I_2 + 2Na_2S_2O_3 = Na_2S_4O_6 + 2NaI$$

$$I_2$$
+Sb $^{111}$ =Sb $^{V}$ +2 $I^-$ 

设含 Sb<sub>2</sub>S<sub>3</sub> 的物质的量为 xmmo I (1mo I Sb<sub>2</sub>S<sub>3</sub> 消耗 2mo I I<sub>2</sub>)

$$x = 0.01000 \times \frac{10.00}{2} = 0.05000 \text{mmol}$$

设含 Na<sub>2</sub>Symmo I

1moISb $_2$ S $_3$ 产生 3moIH $_2$ S , 1moINa $_2$ S 产生 1moIH $_2$ S

$$3x + y = 0.01000 \times 50.00 - \frac{0.02000 \times 10.00}{2}$$

$$3 \times 0.05000 + y = 0.4000$$

y=0.2500 mmo I

$$Sb_2S_3\% = \frac{0.05000 \times 339.7}{0.2000 \times 1000} \times 100\% = 8.49\%$$

$$Na_2S\% = \frac{0.2500 \times 78.04}{0.2000 \times 1000} \times 100\% = 9.76\%$$

2.解:黄铜为 Zn-Cu 合金

$$Zn+H_2SO_4 = ZnSO_4+H_2$$

$$Cu + H_2SO_4(\Re) + \frac{1}{2}O_2 = CuSO_4 + H_2O_4$$

# 将空气赶尽,是为了使KI不被空气氧化。

$$2Cu^{2+}+4I^{-}=2CuI+I_{2}$$

$$I_2$$
+2Na $_2$ S $_2$ O $_3$ =Na $_2$ S $_4$ O $_6$ +2Na I

$$2Na_2S_2O_3$$
  $I_2$   $2Cu^{2+}$ 

Cu 的物质的量为

$$\frac{0.100 \times 25.00}{1000} = 0.0025$$
mol

$$\frac{0.159}{0.256} \times 100\% = 62.1\%$$

$$3. \ \mathbf{M}: (1) \mathrm{NH_4CI+NaNO_2=NaCI+N_2+2H_2O}$$
 $\mathrm{PV=nRT}$ 
 $101.325\mathrm{V}=(101.325-3.617)\times25.23$ 
 $\mathrm{V}=\frac{(101.325-3.617)\times25.23}{101.325}=24.44\mathrm{ml}$ 
 $(2)\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{101.325\times0.02444}{8.31\times298}=0.00100\mathrm{mol}$ 
 $\mathrm{NaNO_2}$  的质量为
 $69.0\times0.00100=0.069$  克
 $\frac{0.0690}{6.90}\times100\%=1.00\%$ 
 $4. \ \mathbf{M}: (1)$  选用酚酞
 $(2)10.00\mathrm{mL} \triangleq \mathrm{Ca}^{2+}$  的量

(2)10.00ml 含 Ca<sup>2+</sup>的量

 $0.1000 \times 10.00 = 1.000$ mmo I

100ml 中含 10.00mmolCa<sup>2+</sup>

100ml 中含 Na++2Ca<sup>2+</sup>总量

$$0.1000 \times 16.00 \times 5 \times \frac{100.0}{20.00} = 40.00$$
mmol

含 NaCI 的物质的量

 $40.00-2 \times 10.00=20.00$ mmo I

$$20.00 \times 58.44 \times \frac{1}{1000} = 1.1688$$
克

$$\frac{1.1688}{2.6388} \times 100\% = 44.29\%$$

(3)设结晶水为 x

$$\frac{2.6388 - 1.1688}{40 + 71 + 18x} = 0.01000$$

$$1.47$$

$$\frac{1.47}{111 + 18x} = 0.01000$$

0.18x = 0.36

x=2

5.解:(1)在制混合煤气中,有C与O。发生放热反应,亦有C与H2O(g) 发生吸热反应。如果使放出的热足以补偿所吸收的热,就无须外界补充 能量,可以连续生产,这就要求空气与 H2O(g)取一定比例,可以从反应 (2)与(5)来考虑,即反应(2)所放出的热为反应(5)所吸收的热。从两式 可以看出,1molO<sub>2</sub>

与C反应所放出的热可以使  $\frac{222}{115}$  = 1.93mol H<sub>2</sub>O(g)分解,所以空气 / H<sub>2</sub>O(g)

#### 应是:

 $(2)2C+O_2+3.76N_2=2CO+3.76N_2$ 

$$+)1.93C + 1.93H_2O(g) = 1.93H_2 + 1.93CO$$

 $3.93C + O_2 + 1.93H_2O(g) + 3.76N_2 = 1.93H_2 + 3.93CO + 3.76N_2$ 

所以总反应方程式是

 $3.93C+0_2+1.93H_2O(g)+3.76N_2=1.93H_2+3.93C0+3.76N_2$ 

(3)CO: 
$$\frac{3.93}{1.93 + 3.93 + 3.76} \times 100\% = \frac{3.93}{9.62} \times 100\% = 40.8\%$$
  
 $H_2: \frac{1.93}{9.62} \times 100\% = 20.1\%$ 

$$N_2$$
:  $\frac{3.96}{9.62} \times 100\% = 39.1\%$ 

(4)要增加  $H_2+CO/N_2$  的比,可以采取富氧燃烧,或者先吹入空气使 C 燃烧,再将部分气体放空即可。

# 二、有关推理计算

1.解:0.219克 CrCI3·6H20的物质的量是

$$\frac{0.219}{2.66.5} = 8.22 \times 10^{-4} \,\text{mol}$$

该配离子交换出来的H<sup>†</sup>离子物质的量等于与H<sup>†</sup>反应的NaOH的物质的量。

即  $0.125 \times 20.5 \times 10^{-3} = 2.56 \times 10^{-3} \text{moI}$  所以该配离子所带的正电荷数为

$$\frac{2.56 \times 10^{-3}}{8.22 \times 10^{-4}} \approx 3$$

 $CrCl_36H_20$ 的组成为 $[Cr(H_20)_6]Cl_3$ ,即配离子为 $[Cr(H_20)_6]^{3+}$ 。

- 2. 原混和气体可能为  $C_3H_6$  , 占 50%; 也可能为  $C_4H_8$  , 占 33.3%。
- 3. 根据通式  $C_nH_{2n+2}O$  和  $C_nH_{2n+2}O_2$  ,可求出饱和一元醇为  $CH_3CH_2OH$  ,醇为  $CH_2$  一  $CH_2$  , 其物质的量之比为 0.025 : 0.0375=2 : 3 。

二元 占 占

# 三、有关多重平衡的计算

1.解:pH=7.4

$$[H^{+}] = 10^{-7} \quad {}^{4} = 4.0 \times 10^{-8} \text{mo I dm}^{-3}$$

$$\frac{[H^{+}][HCO_{3}^{-}]}{[H_{2}CO_{3}]} = 4.30 \times 10^{-7}$$

$$\frac{[HCO_{3}^{-}]}{[H_{2}CO_{3}]} = \frac{4.30 \times 10^{-7}}{4.0 \times 10^{-8}} = 10.75 \quad 1$$

$$\begin{split} 2 \cdot \mathbf{f} & \mathbf{F} : (1) \mathbf{K}_1 = \frac{[\mathbf{H}^+][\mathbf{H}\mathbf{S}^-]}{[\mathbf{H}_2\mathbf{S}]} \\ & [\mathbf{H}^+]^{\approx} [\mathbf{H}\mathbf{S}^-] \\ & \frac{[\mathbf{H}^+]^2}{0.1} = 9.1 \times 10^{-8} \qquad [\mathbf{H}^+] = 9.5 \times 10^{-5} \, \mathrm{moldm}^{-3} \\ & \mathbf{K}_2 = \frac{[\mathbf{H}^+][\mathbf{S}^{2^-}]}{[\mathbf{H}\mathbf{S}^-]} = \frac{9.5 \times 10^{-5} [\mathbf{S}^{2^-}]}{9.5 \times 10^{-5}} \\ & [\mathbf{S}^{2^-}] \quad \mathbf{K}_2 = 1.1 \times 10^{-12} \, \mathrm{moldm}^{-3} \\ (2) \frac{[\mathbf{H}\mathbf{S}^-]}{[\mathbf{H}_2\mathbf{S}]} = \frac{\mathbf{K}_1}{[\mathbf{H}^+]} = 1 \\ & [\mathbf{H}^+] = \mathbf{K}_1 \\ & \mathbf{p} \mathbf{H} = - \mathbf{lg} \, \mathbf{K}_1 = - \mathbf{lg} \, 9.1 \times 10^{-8} \times 7 \\ & \mathbf{K}_2 = \frac{[\mathbf{H}^+][\mathbf{S}^{2^-}]}{[\mathbf{H}\mathbf{S}^-]} = \frac{9.1 \times 10^{-8} \times [\mathbf{S}^{2^-}]}{0.1} \\ & [\mathbf{S}^{2^-}] = \frac{1.1 \times 10^{-12} \times 0.1}{9.1 \times 10^{-8}} = 1.2 \times 10^{-6} \, \mathrm{moldm}^{-3} \\ (3) \, \mathbf{p} \mathbf{H} = 1 \quad [\mathbf{H}^+]^2 [\mathbf{S}^{2^-}]}{[\mathbf{H}_2\mathbf{S}]} = \mathbf{K}_1 \cdot \mathbf{K}_2 \\ & \frac{(0.1)^2 [\mathbf{S}^{2^-}]}{0.1} = \mathbf{K}_1 \cdot \mathbf{K}_2 \\ & \frac{(0.1)^2 [\mathbf{S}^{2^-}]}{0.1} = \mathbf{K}_1 \cdot \mathbf{K}_2 \\ & [\mathbf{S}^{2^-}] = 9.1 \times 10^{-8} \times 1.1 \times 10^{-12}/0.1 = 1 \times 10^{-18} \, \mathrm{moldm}^{-3} \end{split}$$

$$[S^{2-}]=9.1 \times 10^{-8} \times 1.1 \times 10^{-12}/0.1=1 \times 10^{-18} \text{mo I dm}^{-3}$$
  
 $[S^{2-}][Fe^{2+}]=1 \times 10^{-18} \times 0.1=1 \times 10^{-19} < K_{sp}=3.7 \times 10^{-10}$ 

无 FeS 沉淀生成

$$(4)\frac{[H^+]^2[S^{2^-}]}{[H_2S]} = 9.1 \times 10^{-8} \times 1.1 \times 10^{-12} = 1.0 \times 10^{-20}$$
$$[Cu^{2^+}][S^{2^-}] = 8.5 \times 10^{-45}$$
$$\frac{[H^+]^2}{[Cu^{2^+}]} = \frac{1.0 \times 10^{-21}}{8.5 \times 10^{-45}} = 1.2 \times 10^{28}$$

假设与浓 HCI 反应 , [H<sup>+</sup>] 12mo I dm<sup>-3</sup> 则[ $Cu^{2+}$ ]仅 1.2 ×  $10^{-21}$  mo I dm<sup>-3</sup>

实际上 CuS 不溶于盐酸或稀硫酸,不能用来制取 H<sub>2</sub>S。

3. 
$$\mathbf{R}$$
: (1) [H<sub>2</sub>CO<sub>3</sub>]=10<sup>-1.47</sup> · Pco<sub>2</sub>  
=10<sup>-1.47</sup> × 10<sup>-3.54</sup>=10<sup>-5.01</sup>  

$$\frac{[H^+][HCO_3^-]}{[H_2CO_3]} = 10^{-6.4}$$
[H<sup>+</sup>]<sup>2</sup>=10<sup>-6.4</sup> × 10<sup>-5.01</sup>  
[H<sup>+</sup>]=10<sup>-5.7</sup>

即  $Mg+2H_2O=Mg(OH)_2+H_2$ 

 $Mg(OH)_2+2NH_4CI=MgCI_2+2NH_3+2H_2O$ 

# (3)Mg 的物质的量

与 0.02moINH<sub>4</sub><sup>+</sup>作用生成 0.02moINH<sub>3</sub>,原液中 NH<sub>4</sub><sup>+</sup>为 4 × 0.01=0.04moI,反应后为 0.04-0.02=0.02moI。

pH=pKb=9.26

(4)其反应实为

$$Mg^{2+}+2NH_3+2H_2O=Mg(OH)_2(s)+2NH_4^+$$

可看作是下面两个反应的耦合

$$Mg^{2+}+2OH^- \longrightarrow Mg(OH)_2(s)$$

 $2NH_3 + 2H_20 = 2NH_4^+ + 20H_4^-$ 

$$K = \frac{(K_b)^2}{K_{sp}} = \frac{(1.8 \times 10^{-5})^2}{1.2 \times 10^{-11}} = 27$$

6.解:(1)体系同时存在三个平衡,前两个平衡是主要的。2×(1)-(2)

得

$$Xe+XeF_4=2XeF_2$$
  $K_p=K_{p1}^2/K_{p2}$   
 $K_{p(250)}=72$   $K_{p(400)}=65$   
 $\Leftrightarrow P_{XeF_2}=1atm$   $P_{XeF_4}=0.01atm$ 

$$K_{_{P}} = \frac{P^2 \, XeF_4}{p_{_{Xe}} \, \cdot \, p_{_{XeF_4}}} \label{eq:KP}$$

$$Xe+F_2=XeF_2$$

平衡时 1.4 0 1

开始时 1.4+1 1 0

250 : 
$$Xe/F_2=2.4$$
 1

400 
$$Xe/F_2=2.5$$
 1

(2)(3)-(2)得

$$XeF_4+F_2=XeF_6$$
  $K'_p=K_{p2}/K_{p2}$ 

所以从热力学角度看 250 时有利,从动力学角度看 400 时有利。

$$\frac{P_{XeF_6}}{P_{XeF_4} \cdot p_{F_2}} = 0.94$$

$$\frac{1}{0.1P_F} = 0.94$$

$$P_{F_2} = \frac{1}{0.1 \times 0.94} = 10.6atm$$

(3)得 XeF4时,既不是 Xe 过量,也不是 F2过量。

$$2XeF_4 = XeF_2 + XeF_6$$

250 时 
$$K_p'' = 7.8 \times 10^{-4}$$

400 时 
$$K_p'' = 3.3 \times 10^{-3}$$

因为K点值在250 与400 时相差不大,故两者均可。

7.解:(1)  $Ag^{+}+nNH_{3} \rightleftharpoons [Ag(NH_{3})_{n}]^{+}$ 

$$K_{\triangleq} = \frac{[Ag(NH_3)_n^+]}{[Ag^+][NH_2]^n}$$
 (1)

$$Ag^{+}+Br^{-} \longrightarrow AgBr(s)$$

$$[Ag^{+}][Br^{-}]=K_{sp}$$
 (2)

$$(1) \times (2)$$

$$\frac{[Ag(NH_3)_n^+]}{[NH_3]^n} = K_{sp} \cdot K_{fl} = K$$

$$[Br^{-}] = \frac{K[NH_{3}]^{n}}{[Ag(NH_{3})_{n}^{+}]}$$
(3)

[Br-]、[NH3]、[Ag(NH3),+]均指平衡时浓度,可近似计算如下。

设每份加入的  $Br^-$ 浓度为  $[Br^-]_0$ ,体积为  $V_{Br^-}$ ,因刚产生混浊,忽略产生 AgBr 的  $Br^-$ ,所以

$$[Br^{-}] = [Br^{-}]_{0} \times \frac{V_{Br^{-}}}{V_{B}}$$

加入的  $Ag^{\dagger}$ 浓度为  $[Ag^{\dagger}]_0$ ,体积为  $V_{Ag+}$ ,因为  $[Ag(NH_3)_n]^{\dagger}$ 稳定,离解部分可忽略,又由于刚产生混浊,生成 AgBr 而消耗的 Ag+也可忽略,所以

$$[Ag(NH_3)_n^+] = [Ag^+]_0 \times \frac{V_{Ag^+}}{V_{B}}$$

NH<sub>3</sub>相对过量较多,故被配位的 NH<sub>3</sub> 可忽略,所以

$$[NH_3] = [NH_3]_0 \times \frac{V_{NH_3}}{V_{E}}$$

将[Br<sup>-</sup>]、[NH<sub>3</sub>]、[Ag(NH<sub>3</sub>)<sub>n</sub><sup>+</sup>]代入(3)式

$$V_{Br^{-}} = V_{NH_{3}}^{n} \cdot K \cdot (\frac{[NH_{3}]_{0}}{V})^{n} / \frac{[Br^{-}]_{0}}{V} \cdot \frac{[Ag^{+}]_{0} V_{Ag^{+}}}{V_{Ag^{+}}}$$
为常数

$$V_{Br}^- = V_{NH_2}^n \cdot K'$$

两边取对数

$$lgV_{Br^{-}} = nlgV_{NH_{3}} + lgK'$$

$$K' = K_{sp} \cdot K_{sp} \left( \frac{[NH_3]_0}{V_{sp}} \right)^n / \frac{[Br^-]_0}{V_{sp}} \cdot \frac{[Ag^+]_0 V_{Ag}}{V_{sp}}$$

$$10^{-2} = \frac{\frac{K_{sp} \cdot K_{ \frac{1}{10}} \cdot [NH_{3}]_{0}^{2}}{V_{ \frac{1}{10}}^{2}}}{\frac{[Br^{-}]_{0} \cdot [Ag^{+}]_{0} \cdot V_{Ag^{+}}}{V_{ \frac{1}{10}}^{2}}}$$

$$= \frac{K_{sp} \cdot K_{ \frac{1}{10}} \cdot [NH_{3}]_{0}^{2}}{[Br^{-}]_{0} \cdot [Ag^{+}]_{0} V_{Ag^{+}}}$$

$$K_{ \frac{1}{10}} = \frac{10^{-2} [Br^{-}]_{0} [Ag^{+}]_{0} V_{Ag^{+}}}{K_{sp} [NH_{3}]_{0}^{2}}$$

$$= \frac{10^{-2} \times 0.010 \times 0.010 \times 20}{4.1 \times 10^{-13} \times 4}$$

$$= 1.2 \times 10^{7}$$
8 . 解:

[Ag(NH<sub>3</sub>)<sup>+</sup>]=6.3 × 10<sup>3</sup> [Ag<sup>+</sup>] [NH<sub>3</sub>]  
[Ag(NH<sub>3</sub>)<sub>2</sub><sup>+</sup>]=1.6 × 10<sup>7</sup> [Ag<sup>+</sup>] [NH<sub>3</sub>]<sup>2</sup>  
[Ag<sup>+</sup>]+[Ag(NH<sub>3</sub>)<sup>+</sup>]+[Ag(NH<sub>3</sub>)<sub>2</sub><sup>+</sup>]=0.10  
[Ag<sup>+</sup>][1+6.3 × 10<sup>3</sup> × 1.0 × 10<sup>-3</sup>+1.6 × 10<sup>7</sup> × (1.0 × 10<sup>-3</sup>)<sup>2</sup>)=0.10  
[Ag<sup>+</sup>] (1+6.3+16)=0.10  
[Ag<sup>+</sup>] = 
$$\frac{0.10}{23.3}$$
 =4.3 × 10<sup>-3</sup> moldm<sup>-3</sup>  
 $\frac{4.3 \times 10^{-3}}{0.10}$  × 100% = 4.3%  
[Ag(NH<sub>3</sub>)<sup>+</sup>]=6.3 × 10<sup>3</sup> × 4.3 × 10<sup>-3</sup> × 10<sup>-3</sup>  
=0.027moldm<sup>-3</sup>  
 $\frac{0.027}{0.10}$  × 100% = 27%  
[Ag(NH<sub>3</sub>)<sub>2</sub><sup>+</sup>]=1.6 × 10<sup>7</sup> × 4.3 × 10<sup>-3</sup> (1 × 10<sup>-3</sup>)<sup>2</sup>  
=0.0688moldm<sup>-3</sup>  
 $\frac{0.0688}{0.10}$  × 100% = 68.8%

## 下 篇

#### 1986 年竞赛试题

#### 一、填空题

- 1.物质的组成、结构、性质、变化以及合成等 实验 认真做好实 验,细致观察实验现象,详细、准确、如实地做好实验纪录,并根据实 验结果经过分析和推理得出正确结论。
  - 2.N Cr Pd; H Cs; Cs He;  $H^+$   $F^-$ ; F
  - $3.2\ 1$   $0\ 6.02 \times 10^{23}$   $2\ 1$   $2\ 1$
  - 4. H<sub>2</sub> CO<sub>2</sub>, H<sub>2</sub> CO, CO<sub>2</sub> CI<sub>2</sub>, H<sub>2</sub> NH<sub>3</sub> CO<sub>2</sub>
  - 5. 煤油,水
  - 6.(1)溶液变为黄色 2FeCl<sub>2</sub>+Cl<sub>2</sub>=2FeCl<sub>3</sub> (2)先生成白色沉淀,

立即转变为绿色棕红或红褐 FeCl<sub>2</sub>+2NaOH=Fe(OH)<sub>2</sub> (白色)+2NaCl, 4Fe(OH)<sub>2</sub>+0<sub>2</sub>+2H<sub>2</sub>O=4Fe(OH)<sub>3</sub> (棕红色) (3) 2Fe<sup>3+</sup>+H<sub>2</sub>S=2Fe<sup>2+</sup>+S +2H<sup>+</sup>, Fe<sup>3+</sup>, S

- 7 .  $MgCO_3$   $Na_2SO_4$  ,  $CuSO_4$   $Ba(NO_3)_2$   $AgNO_3$
- 8. 黄色胶体 阳

10 . 
$$Fe^{3+} = 2Fe_{3+} + 3Z_n \quad 3Z_n^{2+} + 2Fe$$

11. 
$$2Cl_2+2H_2O \xrightarrow{hv} 4HCl+O_2 \uparrow$$

 $2H_2S+0_2=2H_2O+2S$ 

# 二、选择题

17.(C) 18.(D)

三、 $KAI(SO_4)_2 \cdot 12H_2O$  ,  $NaHCO_3$  ,  $BaSO_4$  ,  $AI(OH)_3$  ,  $CO_2$  ,  $MgCO_3$  (或  $Mg(OH)_2$ ), AICI<sub>3</sub> NaAIO<sub>2</sub>

$$(1)AI^{3+}+3HCO_3^- = AI(OH)_3 +3CO_2$$

$$(2)2HCO_3^- + Mg^{2+} \triangle MgCO_3 + CO_2 + H_2O_3$$

或: 
$$Mg^{2+}+2HCO_3^ \triangle$$
  $Mg(OH)_2+2CO_2$ 

$$(3)AI(0H)_3+0H^- = AIO_2^- + 2H_20$$

$$(4)AI^{3+}+3AIO_2^-+6H_2O = 4AI(OH)_3$$

四、1. 计算 NaOH 的用量;用托盘天平和烧杯(或答其它器皿)称取 NaOH 固体;用 250cm<sup>3</sup> 容量瓶配制 0.1N NaOH 溶液。

- 2.设食醋当量浓度为 c,则
- $0.1 \times 15 = 20c \times 10/100$  c=0.75N

百分比浓度 = 
$$\frac{0.75 \times 60}{1000 \times 1}$$
 × 100% = 4.5%

五、A:苯乙烯 《二》—
$$\mathrm{CH}=\mathrm{CH}_2$$
;B:对-二甲苯  $\mathrm{H}_3\mathrm{C}$  —《二》— $\mathrm{CH}_3$ :  $\mathrm{C}$  :甲酸  $\mathrm{H}$  —  $\mathrm{C}$  —  $\mathrm{OH}$ 

# 六、本题的正确答案有多种,此处仅列出一种

- 1.加入  $AgNO_3$ 溶液,产生的现象依次为:无现象;开始无现象,过 量 AgNO。溶液则析出暗棕色沉淀;析出白色沉淀;析出黑色沉淀,析出黄 色沉淀。
- 2.加入Ba(OH)。溶液,产生的现象依次为:无现象;析出白色沉淀, 且有 NH3刺激气味;开始析出白色沉淀,过量 Ba(OH)ç溶液则沉淀溶解; 析出白色沉淀;析出暗棕色沉淀。

#### 七、计算题

1.(1)标态下氧气的体积:

 $V_0 = 38.53 \times 273/298 = 35.3 \text{cm}^3$ 

(2)CO2的质量:

 $2Na_2O_2+2CO_2=2Na_2CO_3+O_2$ 

2×44.0 克 22.4 升 x 克 35.3×10<sup>-3</sup>

x=0.139克

(3)Na<sub>2</sub>CO<sub>3</sub>的百分含量:

 $2NaHCO_3 \stackrel{\triangle}{=} Na_2CO_3 + CO_2 + H_2O$ 

168 克 44.0克

ν 克 0.139克

y=0.531 克

[(5.00-0.531)/5.00]×100%=89.4%...(答)

2. (1)由 CO。体积求 Na。CO。质量:

 $Na_2CO_3 + 2HCI = 2NaCI + H_2O + CO_2$ 

106 克

22.4 升

m 克

 $(205-131) \times 10^{-3}$ 升

m=0.350 克

(2)由 AgCI 质量求 NaCI 质量:

$$\frac{3.14}{143.4} = \frac{\text{m'}}{58.5} + 1 \times \frac{20.0}{1000}$$

m'=0.111克

(3)求铁、铝质量:

 $Fe+2HCI = FeCI_2+H_2$ 

 $2AI + 6HCI = 2AICI_3 + 3H_2$ 

$$\frac{131 \times 10^{-3}}{22.4} = \frac{x}{55.85} \times 1 + \frac{y}{27.0} \times \frac{3}{2} \qquad \dots (1)$$

x+y=0.600-0.350-0.111=0.139 .....(2)

由(1)、(2)方程,求得

x=0.0498 克.....铁的质量

y=0.0892 克......铝的质量

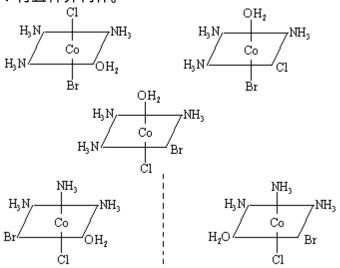
#### 1986 年复赛试题

#### 一、填空题

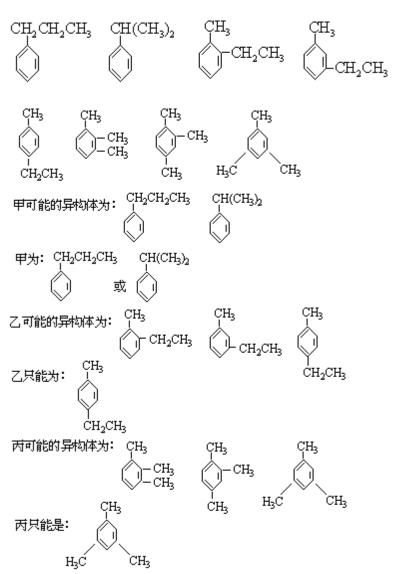
- 1. 不褪去 两种气体起了反应: CI<sub>2</sub>+SO<sub>2</sub>+2H<sub>2</sub>O===2HCI+H<sub>2</sub>SO<sub>4</sub>, 生成 物 HCI 和  $H_2SO_4$ 都不具有漂白能力。
  - 2.不对 NO 分子为极性分子,分子的极性还会影响物质的熔、沸点。
  - 3. 适当的空轨道 孤电子对
  - 4.(a)减小 (b)增大 (c)增大 (d)减小
  - 5.(a)芳香性(b)非芳香性(c)芳香性(d)芳香性(e)芳香性
  - $6 \cdot {}_{56}^{148}Ba$
  - 7.50 139 七 IVA 7s<sub>2</sub>7p<sub>2</sub>
  - 二、制备题

2 .  $3Ag+4HNO_3=3AgNO_3+NO +2H_2O$ 

$$V \times 1.180 \times 30\% = \frac{10.8}{108} \times \frac{4}{3} \times 63$$


V=23.73(mI)

3 .  $AgNO_3+NH_3 \cdot H_2O$  —  $AgOH +NH_4NO_3$   $AgOH+2NH_3 \cdot H_2O$  —  $[Ag(NH_3)_2](OH)+2H_2O$   $CH_3CHO+2[Ag(NH_3)_2](OH)$  —  $CH_3COONH_4+2Ag$  ( 或 葡 萄 糖)+3NH<sub>3</sub>+H<sub>2</sub>O


三、1.A:一水溴化溴·氯·三氨·水合钴(III)B:二溴化氯·三氨·二水合钴(III)。

2.方法 1:分别称取相同质量的 A 和 B,放入同一干燥器内干燥,放置一定时间后再分别称重,质量按一定比例减小了的是 A(每一摩 A 脱去一摩水),质量不变的是 B。方法 2:分别称取相同质量的 A 和 B,加入等量的水,配制成两种溶液。然后向两种溶液中分别滴加 AgNO<sub>3</sub> 溶液(稍过量),待沉淀完全后,将溶液过滤,弃去滤液,再将沉淀洗涤,干燥,称重。沉淀质量大一倍的试样是 B,另一份试样为 A。

# 3. 有五种异构体。

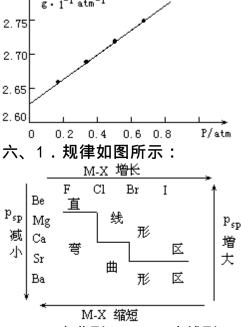


四、有八种异构体



# 五、根据理想气体状态方程有

$$PV = \frac{W}{M}RT \Rightarrow M = \frac{W/V}{P}RT$$


对于实际气体,只有压力很低时(p 0)才接近理想气体,故有:

$$M = \lim_{P \rightarrow 0} (\frac{W \mathbin{/} V}{P}) RT = \lim_{P \rightarrow 0} (\frac{d}{p}) RT$$

# 为取得 p 0 时的(d/p)值,常用作图外推法,所以将数据变换成:

| p/(atm.)                                | 0.2    | 0.4    | 0.6    | 0.8    |
|-----------------------------------------|--------|--------|--------|--------|
| $(d/p)/(g \cdot 1^{-1} \cdot atm^{-1})$ | 2.6680 | 2.6975 | 2.7272 | 2.7565 |

以 d/p 对 p 作图,外推至 p=0 时,得到 d/p=2.638。 所以,M=2.638 × 0.08206 × 273.2=59.14g · mo l $^{-1}$  即三甲胺的分子量为 59.14。



- 2.BaF<sub>2</sub>弯曲形; BeCl<sub>2</sub>直线形; CaBr<sub>2</sub>直线形;Mgl<sub>2</sub>直线形。
- $3.P_{sp}$ 小,M—X 键长短者,宜取弯曲形。因为  $P_{sp}$ 小,取弯曲构型(中心原子取  $sp^3$ 杂化或  $sp^2$ 杂化)使激发能增加并不多,但 M—X 键长短,轨道强度 s 的变化对其键能的影响大,因此  $s^2$ 值的增大而获得的真实键能增益大,体系较为稳定。 $P_{sp}$ 大,M—X 键长长者,宜取直线形。因为  $P_{sp}$ 大,取弯曲构型使激发能增加多,但 M—X 键长长,  $s^2$ 值的增大而获得的真实键能增益并不多,体系不稳定,不如取直线构型(sp 杂化)在能量上有利。

由上图中  $P_{sp}$ 和 M-X 键长的变化趋势来看,图中右上角区域是  $P_{sp}$ 偏大,M-X 偏长的区域,因此取直线形能量上有利。图中左下角区域是  $P_{sp}$ 偏小,M-X 偏短的区域,因此取弯曲构型在能量上有利。

#### 1987 年竞赛题

#### 一、填空题

- 1.2 5
- 2.高
- 3.Br<sub>2</sub>(蒸气)
- 4.反应物分子的能量增加,从而增加了反应物分子中活化分子的百分数
  - 5 .  $CI_2$ ,  $H_2O$ , HCIO;  $H^+$ ,  $OH^-$ ,  $CI^-$ ,  $CIO^-$
  - 6.  $FeCI_3$ ,  $NH_4NO_3$ ;  $NaHCO_3$ ,  $(NH_4)_3PO_4$ , KCN
  - 7. 多多少少
  - 8.钙 Zn Ca Ca(OH)<sub>2</sub>
  - 9. 草酸 盐酸 酒精(或苯等) 硝酸
  - 10. 电石气中的杂质 H<sub>2</sub>S 遇 Ag<sup>+</sup>生成 Ag<sub>2</sub>S 硫酸铜(或硝酸铅等)

- 11. 增大减小浓度温度
- 12. 酚酞 大于 甲基红(或甲基橙) 小于
- 13.sp<sup>3</sup> 孤电子对 sp<sup>3</sup>-s (或 )三角锥
- 14.1 摩 一般小于(或小于)
- 二、选择题
- 1. A 2. D 3. C 4. B 5. A 6. C, D 7. C, D, E 8. A, D 9. A, D, E 10. A 11. B, C 12. B, D 13. D 14. D 15. C 16. C 17. E 18. C 19. A 20. B 21. B 22. A, D 23. B 24. A 25. A 26. D 27. B, C 28. A, B 29. A 30. A, B

#### 三、问答题符合

 $C_4H_{10}O$  的醇有 4 种。其中 1-丁醇(即正丁醇)最容易与钠反应。2-甲基-2-丙醇(即叔丁醇)最容易脱水。四种醇的脱水主要产物:

$$CH_3CH_2CH_2CH_2OH \xrightarrow{-H_2O} CH_3CH_2CH = CH_2$$
 1-丁烯  $CH_3CH_2CHCH_3 \xrightarrow{-H_2O} CH_3CH=CHCH_3$  2-丁烯  $CH_3CH - CH_2 - OH \xrightarrow{-H_2O} CH_3 - C=CH_2$  2-甲基-1-丙烯  $CH_3 - C - CH_3 \xrightarrow{-H_2O} CH_3 - C=CH_2$  2-甲基-1-丙烯  $CH_3 - C - CH_3 \xrightarrow{-H_2O} CH_3 - C=CH_2$  2-甲基-1-丙烯

#### 四、由实验事实判断未知物

- 1 . (a)HCI、SO<sub>2</sub>、CO、H<sub>2</sub> (b)Br<sub>2</sub>+SO<sub>2</sub>+2H<sub>2</sub>O==2HBr+H<sub>2</sub>SO<sub>4</sub> Ba(NO<sub>3</sub>)<sub>2</sub>+H<sub>2</sub>SO<sub>4</sub>==BaSO<sub>4</sub> (白)+2HNO<sub>3</sub>
- - 3. 该化合物中碳、氢、氧原子个数之比为:

$$\frac{63.1}{12.0}$$
  $\frac{5.30}{1.01}$   $\frac{31.6}{16.0} = 5.26$  5.25  $1.98 = 2.66$  2.65  $1.00 = 5.32$  5.30 2.00

=7.98 7.95 3.00 至此,最后边三个数均可看成整数,因为它们与整数相差的尾数都在提供的数据的实验误差范围内,可用四舍五入得整数,因此最简式为  $C_8H_8O_3$ 。

$$I_2 + 2S_2O_3^{2-} = 2I^- + S_4O_6^{2-}$$
$$\frac{22.5 \times 0.100}{2 \times 25.0} = 0.0450 \text{mol} \cdot L^{-1}$$

(2)求稀释后 SO。水溶液浓度

$$\begin{split} SO_2 + I_2 + 2H_2O = &= SO_4^{2-} + 2I^- + 4H^+ \\ \frac{(25.0 \times 0.045 - 9.30 \times 0.100 / 2) \times 1}{1 \times 10.0} = 0.0660 \text{mol} \cdot L^{-1} \end{split}$$

(3)求原始 SO<sub>2</sub>水溶液的浓度

$$\frac{0.0660 \times 500}{10.0} = 3.30 \text{mol} \cdot L^{-1}$$

(4)求  $S_2CI_2$ 与  $SO_2$ 反应的物质的量之比,并书写反应式。

$$S_2Cl_2+2SO_2+2H_2O === H_2S_4O_6+2HCl$$

(5)求无水钾盐(即  $K_2S_4O_6$ )与  $KIO_3$  反应的物质的量之比 ,并书写反应式。

$$\begin{split} n_{_{S_4O_6{}^{2-}}} \quad n_{_{IO_3^-}} &= (\frac{50.0 \times 10^{-3}}{302.6}) \quad (23.2 \times .0.0250 \times 10^{-3}) \\ &= 1.65 \times 10^{-4} \quad 5.8 \times 10^{-4} = 2 \quad 7.03 \quad 2 \quad 7 \\ 2S_4O_6^{2-} + 7IO_3^- + 7Cl^- + 10H^+ &== 7ICl + 8HSO_4^- + H_2O \\ \vec{\boxtimes} \ 2K_2S_4O_6 + 7KIO_3 + 10HCI &== 7ICI + 8KHSO_4 + 3KCI + H_2O \end{split}$$

#### 1987 年复赛试题

一、1.(2)>(3)>(1) 2.(2)>(1)>(3) 3.(1)>(3)>(2)
4.(1)>(2)>(3) 5.(3)>(1)>(2)
二、
A、
$$Cr_2O_3$$
 B、 $CrCl_3$  C、 $Cl_2$  D、 $K_2Cr_2O_7$  E、 $Cr_2(SO_4)_3$  F、 $NaCrO_2$  G、 $Na_2CrO_4$  H、 $Na_2Cr_2O_7$  I、 $H_2CrO_4$ (或  $CrO_5$ ) J、 $Cr(OH)_3$  三、(1)室温下铜丝变黑反应如下:
$$Cu(s)+\frac{1}{2}O_2(g) \quad CuO(s)$$

$$298K$$
  $\triangle H_0^{\infty}=-155kI \cdot mol^{-1}$ 

298K 
$$\triangle H_{m}^{\infty} = -155 \text{kJ} \cdot \text{mol}^{-1}$$
  
 $\triangle S_{m}^{\infty} = 43.5 - 33.3 - \frac{1}{2} \times 205 = -92.3 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot \text{M}^{-1} \cdot \text{M}^{$ 

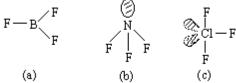
故在室温时上述反应自发进行。

(2)2CuO(s) === 
$$Cu_2O(s) + \frac{1}{2}O_2(g)$$

298K 时 , H m=0-167-2 x

$$(-155)=143$$
kJ·mol<sup>-1</sup>  $S_3^{\varnothing}=205 \times \frac{1}{2}+101-2 \times 43.5=116.5$ J·K<sup>-1</sup>·mol<sup>-1</sup>°

 $H_m^{\infty}$ ,  $S_m^{\infty}$ 在相当宽的温度范围内,可视为基本不变。 T 时,  $G_m^{\infty}=143-T\times116.5/1000$ ,当  $G_m^{\infty}<0$ 时,该反应才能自发进行143-T  $\times$  116.5/1000<0, T>1227K


四、
$$Zn+2NaNH_2+2NH_3$$
  $== Na_2Zn(NH_2)_4+H_2$   
 $Zn(NH_2)^{2-}_4+2NH_4I$   $== Zn(NH_2)_2$  (白)+ $4NH_3+2I-$   
 $Zn(NH_2)_2+2NH_4I$   $ZnI_2+4NH_3$   
2.  $2Cu^{2+}+4I^ == 2CuI + I_2$ 

由于CuI是沉淀,则在溶液中[Cu $^+$ ]很小,致使  $\frac{0.059}{1}\log\frac{[Cu^{2+}]}{[Cu^+]}$  值增大,所以 $E_{Cu^{2+}/Cu^+}$ 值增大,使上述反应能够自发进行。

4. 纠正酸中毒,补给 NaHCO3, 过程如下:

纠正碱中毒,补给 NH<sub>4</sub>CI,大致过程如下:

5.在  $BF_3$ 分子中,B 原子采取  $sp^2$ 杂化,3 个  $sp^2$ 杂化轨道在同一平面如同(a)。在  $NF_3$ 分子中,N 原子取不等性  $sp^3$ 杂化,杂化轨道间的夹角如图(b)。在  $CIF_3$ 分子中,CI 原子取  $sp^3$ d 杂化,杂化轨道间的夹角如图(c)。(或用价层电子对互斥理论解释)。



(a) (b) (c)  $6 \cdot BF_3 \setminus BCI_3 \setminus BBr_3$ 均为平面形分子,在  $BF_3$ 分子中,B 原子的 2p

空 轨道与三个F原子的有孤对电子占据的2p轨道形成离域 键 $\Pi_4^6$ ,使B原子的 缺电子情况大为改善。在BCl $_3$ 分子中,这种 $\Pi_4^6$ 很弱,B原子的缺电子情况 没有多少改善。在BBr $_3$ 分子中,不存在这种 $\Pi_4^6$ 键,因此,其中的B原子最易 接受电子对。

$$eta$$
,

 $CH_3$ 
 $CH_$ 

HBr + CH<sub>2</sub>CH<sub>2</sub>ONa → CH<sub>2</sub>CH<sub>2</sub>OH+Na Br

六、假如等电点时氨基酸为 R — CHCOO<sup>-</sup>,当 pH >等电点时, NH<sub>3</sub><sup>+</sup>

R—CHCOO-OH-R—CHCOO-,产物带负电荷,向正极移动。当pH<等NH<sub>3</sub> NH<sub>2</sub> 电点时,R—CHCOO-H-R—CHCOOH,产物带正电荷,向负极移动。

因此,缬氨酸,赖氨酸,谷氨酸带负电荷,向正极移动。丝氨酸 pH=1 < 5.68, 带正电荷, 向负极移动。

七、此测定是基于下列反应:

还原:  $PbO_2 + 4H^+ + C_2O_4^{2-} === Pb^{2+} + 2H_2O + 2CO_2$ 

滴定: $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ === 2Mn^{2+} + 10CO_2 + 8H_2O$ 

故KMnO<sub>4</sub>的当量为其分子量的 $\frac{1}{5}$ , 0.0400mol·1 $^{-1}$   $\Leftrightarrow$  0.200N, PbO<sub>2</sub> 的当量为其分子量的 5。

滤液酸化后,KMnO4滴定的毫克当量是多余的H2C2O4的毫克当量 数:0.200×10.20=2.04(毫克当量)

 $PbC_2O_4$  沉淀消耗的  $KMnO_4$  是全部  $Pb^2$ +的毫克当量数: 0.200 × 30.25=6.05(毫克当量)

还原 PbO<sub>2</sub>和生成的 PbC<sub>2</sub>O<sub>4</sub>沉淀共消耗草酸为: $2 \times 0.2500 \times$ 

20.00-2.04=7.96(毫克当量)。其中用于  $PbO_2$ 的还原的毫克当量数是:

7.96-6.05=1.91(毫克当量);用于 Pb0 的沉淀的毫克当量数是:

6.05-1.91=4.14(毫克当量)所以样品分析结果为:

PbO<sub>2</sub>% = 
$$\frac{1.91 \times \frac{239.2}{2}}{0.7340 \times 1000} \times 100\% = 31.12\%$$
  
PbO% =  $\frac{4.14 \times \frac{223.2}{2}}{0.7340 \times 1000} \times 100\% = 62.95\%$ 

 $NaOH+NCI = NaCI+H_2O$  (5)

2. (1)由上述方程式可知,干燥尾气中仅有稀有气体和氢气,所以  $n(\Re)+n(H_2)=PV/RT=101.3\times0.2549/(8.314\times290.0)=1.071\times$ 

 $10^{-2}$  (moI)(2)由原始气体的体积比,可知稀有气体和氢气的物质的量相等;又由反应(1),(2)可知,通过舟皿后体系中 HI 的物质的量,是被消耗的  $H_2$  的物质的量的 2 倍,故有:

$$n(稀)+n(H_2)$$
 ===  $[n(H_2)+n(HI)/_2)]+n(H_2)$   
 $1.071 \times 10^{-2}=2n(H_2)+n(HI)/2$   
 $n(HI)=2.142 \times 10^{-2}-4n(H_2)$  (1)  
 $(3)$  由反应(3)、(4) 可知  
 $n(HI)+2n(I_2)=(20.00-4.50) \times 10^{-3} \times 0.1000$   
 $n(HI)+2n(I_2)=1.550 \times 10^{-3} (moI)$   
 $n(I_2)=0.775 \times 10^{-3}-1.071 \times 10^{-2}+2n(H_2)$   
 $n(I_2)=2n(H_2)-0.9935 \times 10^{-2}$  (2)

(4)根据 760 纯 HI 的分解百分率可求得 760 时的 Kc:

$$2HI \rightleftharpoons H_2 + I_2$$
  
开始时  $n_i$  /mol :  $x$  0 0  $\frac{1}{2} \times 0.30x$   $\frac{1}{2} \times 0.30x$ 

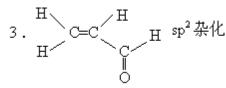
$$K_{c} = \frac{\left[\frac{1}{2} \times 0.30x / V\right] \left[\frac{1}{2} \times 0.30x / V\right]}{\left[x(1 - 0.30) / V\right]^{2}} = 0.04592$$

 $0.04592=n(H_2) \cdot n(I_2)/[n(HI)]^2.....(3)$ 

解(1)、(2)、(3)联立方程组,可求得  $n(H_2)=0.4973 \times 10^{-2} mol$ 

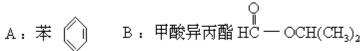
3.反应(1)产生的 HI,在反应(2)中部分分解,由反应(1),(2)的化学计量数可知,反应(1)产生的 HI 的总物质的量为: $n(HI)+2n(I_2)$ ,此也是反应(1)生成的 Ag 的物质的量。由前述方程式(2)可知:  $n(HI)+2n(I_2)=1.550\times 10^{-3} moI$ , $n(Ag)=1.550\times 10^{-3} moI$ 

4 . 舟皿中的混合物冷却后 ,可用 NaCN 溶液处理 ,AgI 溶解 :AgI+2CN<sup>-</sup> [Ag(CN)<sub>2</sub>]<sup>-</sup>+I<sup>-</sup>过滤分离出不溶物即为银。


1988 年复赛试题

#### 一、选择题

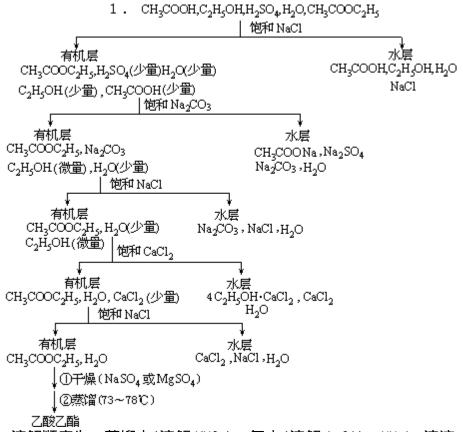
| 1 . (B)  | 2.(C)    | 3 . (E)  | 4 . (C , D) |
|----------|----------|----------|-------------|
| 5.(D)    | 6.(C)    | 7.(D)    | 8.(D, E)    |
| 9.(D)    | 10 . (D) | 11 . (B) | 12 . (E)    |
| 13 . (C) | 14 . (D) | 15 . (C) | 16 . (D)    |
| 17.(C)   | 18 . (D) | 19 . (C) | 20 . (D)    |
| 21 . (A) | 22 . (C) | 23 . (A) | 24 . (D)    |


## 二、填空题

1.UF<sub>6</sub> 2.-519.7



4.a.色散力 b.共价键 c.离子键 d.共价键和离子键 属键 f.共价键 5.Hg 6.不能 7.2.0×10<sup>-10</sup> 9.  $HI < NH_4Br < KBr < NH_3 < KCN < NaOH 10. 11.33 11.339.6$ 0.0499 0.05 (b) 0.075 13.8种 3-甲基-2-丁醇和 2-戊醇(能 够氧化成羧酸的是)正戊醇、异戊醇、仲丁基甲醇、新戊醇(不能生成烯 烃的是)新戊醇 14.CO<sub>2</sub>H H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>


三、



C:乙醛 CH<sub>3</sub>CHO D:甲酸 HCOOH

E:异丙醇(CH<sub>3</sub>)<sub>2</sub>CHOH

推导根据:(1)根据 A 的摩尔质量为 4.9×16=78 克/摩,以及燃烧产 生浓烟,不与 $KMnO_4$ 和 $Br_2$ 水反应,可以判断A为苯;(2)根据C的摩尔 质量为  $2.75 \times 16=44$  克/摩,及有碘仿反应,必在 -C 上有三个 H,判断 C 为乙醛, (3)B 有银镜反应, 说明它含有醛基; 它在碱性溶液中水解成 小分子,可判断它为酯。而 D 和 E 分别为羧酸和醇。E(醇)在 I2-KI 的碱 性溶液中被氧化成醛或酮,而后者又有碘仿反应,结合 B 的摩尔质量: 5.5×16=88 克/摩,则可判断 B 为甲酸异丙酯; E 为异丙醇; D 为甲酸。 四、



2.溶解顺序为:蒸馏水(溶解 KNO<sub>3</sub>) 氨水(溶解 AgCI) NH<sub>4</sub>Ac 溶液 (溶解 PbSO<sub>4</sub>) (NH<sub>4</sub>)<sub>2</sub>S 溶液(溶解 SnS<sub>2</sub>) 热 HNO<sub>3</sub>溶液(溶解 CuS)。

五、A:碘化物(如 KI) B:浓 $H_2SO_4$  C: $I_2$  D: $I_3$  E: $S_2O_3^{2-3}$ (如  $Na_2S_2O_3$ ) == F: $CI_2$ 

#### 反应方程式:

$$2 \cdot l_2 + l^- = l_3^-$$

$$3 \cdot I_3^- + 2S_2O_3^{2-} = = S_4O_6^{2-} + 3I^-$$

4 . 
$$I_3^-+8Cl_2+9H_2O === 3IO_3^-+16Cl^-+18H^+$$

$$5 \cdot S_2O_3^{2-} + 2H^+ = = SO_2 + S + H_2O$$

6 . 
$$4Cl_2+S_2O_3^{2-}+10OH^- === 2SO_4^{2-}+8Cl^-+5H_2O$$

$$7 \cdot SO_4^{2-} + Ba^{2+} === BaSO_4$$

$$\dot{A}$$
, 1.  $VO_4^{3-} + 4H^+ = VO_2^+ + 2H_2O$  (1)

$$2VO_2^+ + SO_2 === 2VO^{2+} + SO_4^{2-}$$
 (2)

$$5VO^{2+}+MnO_4^-+H_2O === 5VO_2^++Mn^{2+}+2H^+$$
 (3)

2. 根据方程式(3)可知 VO<sup>2+</sup>的物质的量为:

$$n(V0^{2+})=5 \times 18.73 \times 23.2 \times 10^{-6}/1=2.173 \times 10^{-3} (mol)$$
由方程式(1)(2)可知:

$$n(VO_4^{3-}) = n(VO_2^{+}) = n(VO^{2+}) = 2.173 \times 10^{-3} \text{(mol)}$$

钒酸铵的浓度为:

$$C(NH_4)_3VO_4 = (2.173 \times 10^{-3}/25.0) \times 10^6 = 86.9 \text{ (mol} \cdot \text{m}^{-3})$$

3. 钒酸铵溶液酸化后被锌汞齐还原, 所得含钒物种(紫色)的物质的 量与原始钒酸铵(NH<sub>4</sub>)<sub>3</sub>VO<sub>4</sub>物质的量相等,即为:

 $n=86.9 \times 10 \times 10^{-6}=8.69 \times 10^{-4} (mol)$ 设该紫色含钒物种 V 的化合价为+n , 则在酸性条件下 , 它被 KMnO4 氧化为 VO<sub>2</sub> , MnO<sub>4</sub> 被还原为Mn<sup>2+</sup> , 根据氧化 - 还原反应中氧化剂与还原剂化合价

改变相等的原则,得出紫色含钒物种与 KMnO<sub>4</sub> 在酸性溶液中反应的物质的 量之比为:5 (5-n)

$$(5-n) \times 8.69 \times 10^{-4} = 5 \times 18.73 \times 27.8 \times 10^{-6}$$
  
 $(5-n) = 2.60 \times 10^{-3} / 8.69 \times 10^{-4} = 2.99$   
 $n=2$ 

- 4.根据两次滴定数据分析,确定第一次滴定的是 $\mathrm{VO}^{2+}$ 和 $\mathrm{C_2O_4^{2-}}$ ,第
- 二次滴定的是 VO<sup>2+</sup>, 因此计算过程如下:

蓝色络合物的摩尔质量 M=(14.0+1.01 x 4)x+50.9+16.0+(12.0 x

 $2+16.0 \times 4)y+(16.0+1.01 \times 2) \times$ 2=18.0x+88.0y+102.9 = 18.0x+88.0y+103

$$5VO^{2+} + H_2O + MnO_4^- === 5VO_2^+ + Mn^{2+} + 2H^+$$

$$\frac{237.4 \times 10^{-3}}{103 + 18.0x + 88.0y} \quad 19.4 \times 7.8 \times 10^{-6}$$

$$237.4 \times 10^{-3} \times 1/[103+18.0x+88.0y]=7.8 \times 10^{-6} \times 19.4 \times 5$$
  
整理得:18.0x+88.0y=210.8 (1)

$$\frac{-1}{5C_2O_4^{2-}} + 16H^+ + 2MnO_4^- = = 2Mn^{2+} + 10CO_2 + 8H_2O$$

$$\frac{237.4 \times 10^{-3} \,\mathrm{y}}{103 + 18.0 \,\mathrm{x} + 88.0 \,\mathrm{y}} \qquad 19.4 \times (38.95 - 7.80) \times 10^{-6}$$

$$2 \times 237.4 \times 10^{-3}$$
y/[103+18.0x+88.0y]

$$=5 \times 19.4 \times (38.95-7.80) \times 10^{-6}$$

$$(1)-(2):157y=313.8$$

$$x=1.93$$
 2.0

$$x = 2$$
,  $y = 2$ 

## 1989 年竞赛试题

#### 一、选择题

B)

三、填空题

2. C<sub>2</sub>H<sub>4</sub> 3.33—34%范围值都正确 1.3

4 .  $5RuS_2+4KCIO_3+6HCI=3RuO_4+2RuCI_3+3H_2S+7S+4KCI$ 

5. 
$$CH - CH$$
  $CH - CH$   $CH_2$ 
6.  $CH_3 - CH - CH_2 - CH_2 - CH_3$ 

## 四、填空题

## 五、推理题

1 . 
$$(1)Na_2CO_3+SO_2 = Na2SO3+CO2$$

$$(2)Na_2S+SO_2+H_2O=Na_2SO_3+H_2S$$

$$(3)2H_2S+SO_2=3S+2H_2O$$

$$(4) Na_2 SO_3 + S = Na_2 S_2 O_2$$

总反应: 2Na<sub>2</sub>S+Na<sub>2</sub>CO<sub>3</sub>+4SO<sub>2</sub>==3Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>+CO<sub>2</sub>

$$\begin{array}{c} \text{CH}_3 - \begin{array}{c} \begin{array}{c} \\ \end{array} - \begin{array}{c} \\ \end{array} -$$

$$CH_3 - \langle \_ \rangle - CH_2CH_2$$
 $O_2N$ 

六、判断题

1 
$$.MgSO_4$$
 2  $.KI$  3  $.Ba(NO_3)_2$  4  $.Na_2CO_3$  5  $.NH_4CI$  6  $.AI_2(SO_4)_3$ 

9.  $AgNO_3$ 7.  $Pb(NO_3)_2$  8. NaOH

#### 七、计算题

(1)烧瓶内所发生的反应有:

$$FeCl2(s)+H2S(g) = FeS(s)+2HCl(g)$$
 (1)

$$FeS(s) + xH_2S(g) === FeS_{1+x}(s) + xH_2(g)$$
 (2)

因反应达到平衡后,烧瓶内无 FeS(s),所以上两式相加,得烧瓶内发生 的总反应式:

 $FeCI_2(s)+(1+x)H_2S(g)$  ==  $FeS_{1+x}(S)+2HCI(g)+xH_2(g)$  反应前,体系内无 HCI(g) 和  $H_2(g)$ ,因此反应生成 HCI 和  $H_2$  的摩尔比即等于其分压比:

(2)烧瓶内发生的平衡反应式为:

$$FeCI_2(s)+1.14H_2S(g) \Longrightarrow FeS_{1.14}(s)+2HCI(g)+0.14H_2(g)$$

平衡分压/atm 0.300

0.803 0.0563

$$K_p = \frac{(0.0563)^{0.14}(0.803)^2}{(0.300)^{1.14}}$$

$$lgk_p=0.141g(0.0563)+21g(0.803)-1.141g(0.300)$$
  
=0.231<sub>o</sub>

#### 1989 年复赛试题

$$(3)3N0_2 + H_20 = 2HN0_3 + N0$$

(4) 每次氧化、吸收后剩余 
$$\frac{1}{3}$$
 的NO,则三次后NO为  $\frac{1}{3^3} = \frac{1}{27}$ 

$$a = (1 - \frac{1}{27}) \times 100\% = 96.3\%$$

(5)设开始时 $NO_2$ 为 $n_0$ 摩,平衡时 $N_2O_4$ 为x摩,则平衡时 $NO_2$ ,为 $(n_0-2x)$ 摩,混合气体为 $(n_0-x)$ 摩

$$K_{p} = \frac{P_{N_{2}O_{4}}}{P_{NO_{2}}^{2}} = \left(\frac{x}{n_{0} - x}p\right) / \left(\frac{n_{0} - 2x}{n_{0} - x}p\right)^{2}$$

$$K_{p} = \frac{x(n_{0} - x)}{(n_{0} - 2x)^{2} \cdot p}$$
(1)

设开始时体积为 №, 平衡时为 ٧, 则恒温恒压下:

$$V/V_0 = (n_0 - x)/n_0$$
 (2) 由质量守恒定律有  $d/d_0 = V_0/V$  (3)  $\Rightarrow \frac{d_0}{d} = \frac{n_0 - x}{n_0}$  (4) 由(4)式,有

$$\frac{d-d_0}{d} = \frac{x}{n_0} \tag{5}$$

将(4),(5),(6)式代入(1)式,有

$$K_{p} = \frac{\frac{d - d_{0}}{d} \cdot n_{0} \cdot \frac{d_{0}}{d} n_{0}}{(\frac{2d_{0} - d}{d} \cdot n_{0})^{2} p} = \frac{(d - d_{0})d_{0}}{(2d_{0} - d)^{2} p}$$

$$\equiv$$
,  $(1)n = \frac{PV}{PT} = \frac{(101.325 - 3.167) \times 0.5052}{8.314 \times 298.2} = 0.02000 \text{(mol)}$ 

(2)在氧气中燃烧时,不溶物为 -AI<sub>2</sub>O<sub>3</sub>,则铝的质量为:

$$m_{Al} = \frac{0.3399 \times 26.98 \times 2}{26.98 \times 2 + 16.00 \times 3} = 0.1799$$
(克)

铝的物质的量为:

$$n_{A1} = \frac{0.1799}{26.98} = 6.668 \times 10^{-3} \text{ (mol)}$$

镁的物质的量为:

$$n_{Mg} = 0.02000 - 6.668 \times 10^{-3} \times \frac{3}{2} = 9.998 \times 10^{-3} \text{ (mol)}$$

MgO 的质量为

$$M_{Mgo} = 9.998 \times 10^{-3} \times (24.31 + 16.00) = 0.4030$$
(克)

(3)

$$2Mg+O_2$$
 燃烧  $2MgO$   $4Al+3O_2$  燃烧  $2Al_2O_3$   $3Mg+N_2$  燃烧  $Mg_3N_2$   $2Al+N_2$   $2AlN$   $Mg_3N_2+6H_2O$   $2NH_3+3Mg(OH)_2$   $AlN+3H_2O===NH_3+Al(OH)_3$   $Al(OH)_3+NaOH===NaAlO_2+2H_2O$ 

合并为一个反应式:

$$A IN+NaOH + H_2O = NH_3+NaAIO_2$$

- (4)在空气中燃烧的产物  $-AI_2O_3$ 不溶于NaOH液 燃烧的产物经NaOH溶液处理后再灼烧,MgO 的量与在氧气中的相等,所以总质量减去 MgO 质量即为  $AI_2O_3$  的质量:
  - 0.7090-0.4030=0.3060(克)
  - (5)合金粉中 AI 的百分含量:

A1% = 
$$\frac{0.1799}{0.1799 + 0.009998 \times 24.31} \times 100\% = 42.53\%$$

$$(1) \text{CH}_{3} - \overset{\bigcirc{}_{\text{C}}}{\text{C}} - \text{CH}_{2} - \overset{\bigcirc{}_{\text{C}}}{\text{C}} - \text{CC}_{2} \text{H}_{5}$$

$$(2) \text{CH}_{3} - \overset{\bigcirc{}_{\text{C}}}{\text{C}} - \text{CH}_{2} \text{CH}_{2} (\text{有光学异构}) \quad (3) \text{CH}_{3} \text{CH}_{2} \text{OH}$$

$$\overset{\bigcirc{}_{\text{H}}}{\text{H}} \quad \overset{\bigcirc{}_{\text{OH}}}{\text{OH}}$$

$$(4) \text{CH}_{3} - \overset{\bigcirc{}_{\text{C}}}{\text{CHCH}_{2}} \overset{\bigcirc{}_{\text{C}}}{\text{C}} - \text{CC}_{2} \text{H}_{5} (\text{有光学异构})$$

$$\overset{\bigcirc{}_{\text{OH}}}{\text{OH}} \overset{\bigcirc{}_{\text{C}}}{\text{O}}$$

$$(5) \text{CH}_{3} - \overset{\bigcirc{}_{\text{C}}}{\text{C}} - \text{CH}_{2} - \overset{\bigcirc{}_{\text{C}}}{\text{C}} - \text{CC}_{2} \text{H}_{5}} \quad (6) \text{CH}_{3} - \overset{\bigcirc{}_{\text{C}}}{\text{C}} - \text{CH}_{2} \text{COOK}$$

$$\overset{\bigcirc{}_{\text{C}}}{\text{OC}_{2}} \overset{\bigcirc{}_{\text{H}_{5}}}{\text{OC}_{2}} \overset{\bigcirc{}_{\text{C}}}{\text{C}} - \text{CH}_{2} \text{COOK}$$

- 四、1.(1)氧化  $N_2$ 中所含的还原性物质 (2)除去可溶性杂质 (3)除去  $N_2$  中的微量  $N_2$  (4)除去鼓风机中可能带入的雾状油滴
- 2.(1)氧化时间固定时,亚铁离子的氧化百分率随 pH 值的增大而增大,即[OH<sup>-</sup>]增大有利于 Fe<sup>2+</sup>氧化 (2)pH 值固定时,亚铁离子的氧化百分率随时间的延长而增大 (3)在一定时间范围内,亚铁离子必须在 pH > 4.5 时才开始氧化。
- 3.同一 pH 值下,开始时随时间延长,速率增大,说明反应产物有催化作用(自催化作用);随后,速率又减小,是由于亚铁离子浓度减小所到因此同-pH 值下的速率-时间曲线有极大值。
- 4.  $Fe(H_2O)^{2+}_6$ 中, $Fe^{2+}$ 被 6 个水分子严密包围着,所以氧化作用缓慢,甚至不发生,即有"遮蔽效应"。但当 $[OH^-]$ 增大时, $OH^-$ 能夺取  $Fe^{2+}$ 周围配位水分子中的  $H^+$ ,而促进  $Fe^{2+}$ 的水解, $Fe^{2+}$ 水解产物对中心  $Fe^{2+}$ 的电性中和,使其对配体水分子的极化能力减弱而水分子脱离,使"遮蔽效应"消失,从而使  $O_2$ 对  $Fe^{2+}$ 的氧化速率增大。
- 5.  $Fe^{3+}$ 水解的 pH 值较小,能在  $Fe^{2+}$ 水解前发生水解,当它的水解产物氢氧化物沉淀时,能吸附  $Fe^{2+}$ 而与  $Fe^{2+}$ 水解产物共沉淀。在这样的固相沉淀中,被吸附的  $Fe^{2+}$ 由于同  $OH^-$ 结合,破坏了  $Fe^{2+}$ 的水合结构,减弱了阻碍电子迁移的"遮蔽效应",也能使氧化速率增加。

五、(1)A:  $[Cr(diPy)_3]Br_2 \cdot 4H_20$  或 $[Cr(diPy)_3]Br_2$ 

B:  $[Cr(diPy)_3](CIO_4)_3$  C:  $[Cr(diPy)_3]CIO_4$ 

C: 
$$\mu = \sqrt{1(1+2)} = 1.732 \approx 2.05 \text{B.M.}$$

上述是仅考虑成单电子对磁矩的贡献,除此之外还有电子轨道运动对磁矩的贡献,所以理论值近似于实验值。

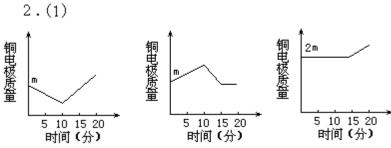
$$(4)\frac{0.1906}{(52+156.2\times3+35.5+64)}\times\frac{10^3}{0.1} = 3.07(\text{ml})$$

1990 年竞赛试题

#### 一、选择题

# 三、填空题

1.Cr 或 Mn As 或 Se 2.每个水分子平均最多可形成 2 个氢键,每个 HF 分子平均最多生成 1 个氢键。前者氢键数目多,总键能较大,故沸点较高。 3.0.20mo l·dm $^{-3}$ 


4 . 
$$2KMnO_4+2KF+10HF+3H_2O_2=2K_2MnF_6+3O_2+8H_2O_3$$

 $2K_2MnF_6+4SbF_5=4KSbF_6+2MnF_3+F_2$ 

5.25% 6.酸 33.3

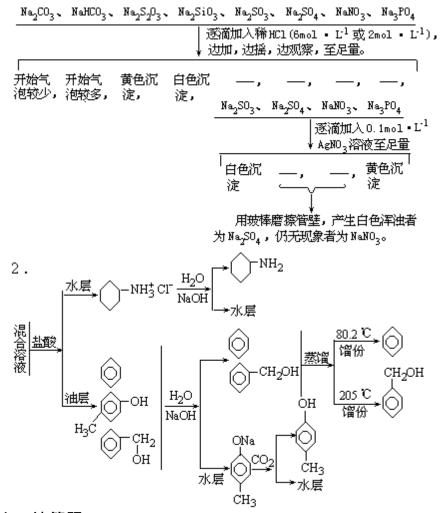
#### 四、填空题

$$\begin{array}{c} \text{CH}_{3} \\ \text{CH}_{3} \\ \text{C} \\ \text{C} \\ \text{C}_{2} \text{H}_{5} \end{array} \qquad \begin{array}{c} \text{CH}_{3} \\ \text{C} \\ \text{C}_{2} \text{C} \\ \text{C}_{2} \text{H}_{5} \end{array}$$



(2)铜电极:变薄 增厚

铂电极:铜沉积 铜溶解,后5分钟有气泡。


(3)铜电极:Cu<sup>2+</sup>+2e==Cu

铂电极:40H<sup>-</sup>===0, +2H<sub>2</sub>0+4e

3. 三氯化铁 氯化亚铜 氧化铝(或氢氧化铝)

五、实验题

1. 本题考查学生对实验现象观察的细致程度,并有"量"的概念。



六、计算题

$$C$$
 , D混合气体  $\overline{M} = \frac{6.90 - 5.40}{0.84} \times 22.4 = 40 \text{g} \cdot \text{mol}^{-1}$ 。  $C(\vec{\mathfrak{g}}D)$  与灼热铜 粉反应的现象,说明它是 $O_2$ 。  $Mo_2 \times \frac{0.84 - 0.56}{0.84} + M_D \times \frac{0.56}{0.84} = \overline{M}, M_D = 44 \text{g} \cdot \overline{M}$ 

mo I  $^{-1}$ 。 D(或 C)可能是 N $^2$ O 或 CO $^2$ 。由于 A 难溶于水,故 A 不是硝酸盐,也说明 D(或 C)不可能是 N $_2$ O;而只能是 CO $_2$ 。

由 A 的热分解产物,可知它是碳酸盐:

$$M_2 CO_3 \xrightarrow{\Delta} 2M + CO_2 + \frac{1}{2}O_2 \quad n_{CO_2} = \frac{0.56}{22.4} = 0.025 \text{mol}$$
 $n_B = 0.025 \times 2 = 0.050 \text{mol} \quad M_B = \frac{5.40}{0.05} = 108 \text{g} \cdot \text{mol}^{-1}$ 
B 为 Ag , A 为 Ag<sub>2</sub>CO<sub>3</sub>

2.(1)根据无残存硫,判断生成了0.095moISO2。

(2)该SO2与O2反应,并达成平衡:

$$2SO_3 = 2SO_2 + O_2$$

平衡时 ni/mol: x, 0.095-x, 0.005

n 总=(0.095-x)+0.005+x=0.1(mol)

K, 
$$= \frac{p_{SO_2}^2 \cdot p_{O_2}}{p_{SO_3}^2} = \frac{(\frac{0.095 - x}{0.1} \times 1)^2 (\frac{0.005}{0.1} \times 1)}{(\frac{x}{0.1} \times 1)^2}$$
$$\frac{0.05 \times 0.1}{0.005} = \frac{(0.095 - x)^2}{x^2}$$

$$1 = \frac{0.095 - x}{x}, x = 0.0475 \text{(mol)}$$

即
$$n_{SO_2} = 0.0475$$
mol  $n_{SO_2} = 0.095 - 0.0475 = 0.0475$ (mol)  $n_{O_2} = 0.005$ mol

对于第一个反应而言:
$$p_{SO_2} \times p_{SO_3} = (\frac{0.0475}{0.1} \times 1)^2 = 0.475^2$$
 0.2256 >  $K_{p_{(1)}} = 0.159$ 

此时  $FeSO_4(s)$ 不可能发生分解,残渣物为无水  $FeSO_4$ 。 1990 年复赛试题

一、 
$$N_2$$
 +  $3H_2$  =  $2NH_3$    
一次平衡  $c/mol \cdot dm^{-3}$  1.0 0.50 0.50   
重新平衡  $c/mol \cdot dm^{-3}$  1.1  $x$  0.50-0.20=0.30   
 $K_P = \frac{(0.50)^2}{1.0 \times (0.50)^3} = 2$  
$$2 = \frac{(0.30)^2}{1.1 \times x^3} \qquad x \approx 0.34 (mol \cdot dm^{-3})$$
 取走的  $H_2$  为  $(0.5+0.3-0.34) mol \cdot dm^{-3} \times 1 dm^3 = 0.46 mol$ 

二、(1)首先计算 KMn0<sup>4</sup> 溶液的浓度

$$5C_2O_4^{2-}$$
 +  $2MnO_4^-$  + $16H^+$  =  $10CO_2$  + $2Mn^{2+}$  + $8H_2O$  5

 $25.00 \times 0.0500$  24.80x

 $x=0.02016mol \cdot dm^{-3}$ 

(2)然后计算亚铁离子物质的量

$$5Fe^{2+}+MnO_{4}^{-}+8H^{+}=Mn^{2+}+5Fe^{3+}+4H_{2}O$$

5 1

 $y = 24.65 \times 0.02016 \times 10^{-3}$ 

 $y=2.485 \times 10^{-3} (mol)$ 

(3)最后计算 NH<sub>2</sub>OH 与 Fe(III)离子的物质的量之比:

$$n_{NH,OH}$$
  $n_{Ea^{3+}} = 25.00 \times 0.0494 \times 10^{-3}$   $2.485 \times 10^{-3} = 1$  2

即每摩的  $NH_2OH$  应得到两摩电子,所以  $N^{-1}$   $N^{+1}$ ,氧化产物是  $N_2O$ 。 反应方程式:

 $2NH_2OH + 2Fe_2(SO_4)_3 \triangleq N_2O + 4FeSO_4 + 2H_2SO_4 + H_2O$ 

或 2HN<sub>2</sub>ON+4Fe<sup>3+</sup> <del>\_\_\_\_</del>N<sub>2</sub>O 4Fe<sup>2+</sup>+4H<sup>+</sup>+H<sub>2</sub>O

三、

1. 干法:

Ru S 
$$H_2O = \frac{60.06}{101.1} = \frac{37.26}{32.06} = \frac{2.73}{18.00}$$
  
= 0.5941 1.162 0.151

=1 1.96 0.26 考虑硫化物的微量吸湿性,所以化学式

为 RuS<sub>2</sub>

湿法:

Ru S 
$$H_2O = \frac{41.84}{101.1} \frac{20.63}{32.06} \frac{37.36}{18.00}$$
  
=0.4138 0.6435 2.076  
=2 3.11 10.03

考虑到硫化物的微量吸湿性,所以化学式为 Ru<sub>2</sub>S<sub>3</sub>·10H<sub>2</sub>O

$$\begin{array}{c} & & \text{S} \\ \parallel & \\ 2 \text{ . } & 2\text{H}_2[\text{RuCl}_6] + 4\text{CH}_3 - \text{C} - \text{NH}_2 + 18\text{H}_2\text{O} \\ & = \text{Ru}_2\text{S}_3 \cdot 10\text{H}_2\text{O} & + 4\text{CH}_3\text{COOH} + 4\text{NH}_4\text{CI} + \text{S} & + 8\text{HCI} \end{array}$$

- 3.湿法制得的硫化物含硫结果偏高,这是由于它吸附硫,未完全洗净的缘故。
  - 4. 干法制得的硫化物对氢作用更稳定。
- 5.有两个脱硫峰说明有两种硫化物,即为 RuS·RuS<sub>2</sub>,所以氢还原过程:第一步,约 200 以前脱去结晶水;第二步,~200—360 RuS+H<sub>2</sub> Ru+H<sub>2</sub>S;第三步,360—550 , RuS<sub>2</sub>+2H<sub>2</sub> Ru+2H<sub>2</sub>S
- 6. 湿法制得的硫化物的第一个脱硫峰产生的新生态钌,可能对第二个脱硫峰的脱硫过程具催化作用。

四、

1.在一个氯化钠晶胞中含有  $4 \land Na^{\dagger}$ 和  $4 \land CI^{-}$ , 即  $4 \land NaCI$  单元,

因此  $Fe_xO$  晶胞中亦含有 4 个  $Fe_xO$  单元。一摩  $Fe_xO$  晶胞的质量为:

$$4 \times (55.85 \times +16) g = 6.02 \times 10^{23} \times (428 \times 10^{-10})^3 \times 5.71 g$$
  
x=0.92

2. Fe<sub>0.92</sub>0,根据正负化合价相等的原则,设化学式中 Fe(II)为y,则 Fe(III)为 0.92-y,

$$(0.92-y) \times 3+y \times 2=2$$
 , y=0.76  
Fe(II)占Fe总量% =  $\frac{0.76}{0.92} \times 100\% = 82.6\%$ 

Fe(III)占Fe总量% = 
$$\frac{0.92 - 0.76}{0.92} \times 100\% = 17.4\%$$

- 3. FexO的化学式: Fe<sub>0.76</sub>Fe<sub>0.16</sub>O
- $4\cdot 0^{2-}$ 取立方密堆积 , Fe(II)和 Fe(III)占据八面体空隙 ,只占全部八面体空隙的 92% ,尚有 8%是缺限。
  - 5 . Fe Fe之间的最短距离:  $\frac{428}{2} \times \sqrt{2} = 302.6 (pm)$

五、

1. 
$$(1)_{37}^{87} \text{Rb} \rightarrow_{38}^{37} \text{Sr} +_{-1}^{0} \text{e}$$
  
 $(2)_{92}^{238} \text{U} \rightarrow_{82}^{206} \text{Pb} + 8_{2}^{4} \text{He} + 6_{-1}^{0} \text{e}$   
2.  $\frac{N_{0}}{N} = e^{\lambda t}$ ,  $2.301g \frac{N_{0}}{N} = \lambda t$  (1)  
 $\stackrel{\text{\frac{1}}}{=} \frac{N_{0}}{N} = 2$ ,  $t = t_{\frac{1}{2}}$ ,  $0.693 = \lambda t_{\frac{1}{2}}$   
 $\lambda = \frac{0.693}{t_{\frac{1}{2}}}$  (2)

将(2)式代入(1)式得:2.301g
$$\frac{N_0}{N} = \frac{0.693t}{t_{\frac{1}{2}}}$$
 (3)

代入(3)式, 
$$2.301g1.041 = \frac{0.693t}{(5.7 \times 10^{10})}$$
,

求得 t = 3.3 × 10<sup>9</sup>年

同理,根据核反应(2), $^{206}Pb\:/^{238}\:U=0.66\:\:N_{_0}\:/\:N=1.66$ ,

2.30lg1.66 = 
$$\frac{0.693t}{4.5 \times 10^9}$$
 ,  $t = 3.3 \times 10^9$  年

由此可见,月球岩石年龄为3.3×10<sup>9</sup>年。3.(略)

六、

A: 
$$\bullet$$
 =0 B:  $\bullet$   $\overset{CH_3}{\circ}$  C:  $\bullet$   $\overset{C}{\circ}$   $\overset{CH_3}{\circ}$  C:  $\bullet$   $\overset{C}{\circ}$   $\overset{CH_3}{\circ}$  C:  $\bullet$   $\overset{C}{\circ}$   $\overset{CH_3}{\circ}$   $\overset{C}{\circ}$   $\overset{C}$ 

七、

## 1991 年竞赛试题

## 一、选择题

| ,         |           |           |           |          |
|-----------|-----------|-----------|-----------|----------|
| 1.(B)     | 2.(DE)    | 3.(C)     | 4 . (BE)  | 5 . (E)  |
| 6.(A)     | 7.(B)     | 8.(CE)    | 9 . (AC)  | 10 . (BC |
| 11 . (C)  | 12 . (BD) | 13 . (AD) | 14 . (D)  | 15 . (C) |
| 16.(C)    | 17 . (D)  | 18 . (E)  | 19 . (BD) | 20 . (B) |
| 21 . (C)  | 22 . (BD) | 23 . (CE) | 24 . (C)  | 25.(C)   |
| 26 . (CE) | 27 . (AB) | 28 . (D)  | 29 . (A)  | 30 . (A) |
|           |           |           |           |          |

## 二、填空题

- $31.1.5 \times 10^{-3}$
- 32 . 48.0( $W_1 W_2 W_3$ )/( $W_4 W_1 + W_2$ )
- 33. 氟原子半径小,外层孤对电子多,电子云密度大,电子间斥力大,使得氟原子结合一个电子形成气态 F 时放出能量较少。
- 34.压强突然减小,气体膨胀做功,吸收本身的热量,使  $CO_2$  温度降至凝固点以下所致。

35. 
$$H_2N - CH_2 - COOH \bigcirc C < \frac{HN - CH_2}{CH_2 - NH} > C = O$$

36.3 2或19 1

37. 
$$(1)0_2 + 4H^+ + 4e = 2H_20$$
  $Zn - 2e = Zn^{2+}$   $(2)5 \times 10^{-5}$   $(3) \sim 9$ 

年

38 . 
$$N_2H_4+2H_2O_2 = N_2+4H_2O$$
 (CH<sub>3</sub>)<sub>2</sub>NNH<sub>2</sub>+2N<sub>2</sub>O<sub>4</sub> = 2CO<sub>2</sub>+3N<sub>2</sub>+4H<sub>2</sub>O

三、判断未知物,并写出有关反应式

39. (1) 
$$NaNO_2$$
,  $AgNO_3$ ,  $NH_4CI$ 或  $NaNO_2$ ,  $AgNO_3$ ,  $FeCI_3$ ,  $NH_4F$  (2)  $Ca(OH)_2$ ,  $CuCI_2$ 。 (3)  $NH_4NO_3+NaNO_2$   $\triangle$   $NaNO_3+N_2$  +2 $H_2O$ 

$$(4)5NO_2^- + 2MnO_4^- + 6H^+ === 2Mn^{2+} + 5NO_3^- + 3H_2O$$
40.

## (2)B 有旋光性, C 无旋光性。

(3) 
$$CH = CH_2$$
  $CHBrCH_2Br$   $CH_3 = COH + Br_2 \rightarrow CH_3 = COH$   $CH_2CH_3$   $CH_2CH_3$   $CH_2CH_3$   $CH_3 = CH_2CH_3$   $CH_3 = CH_3 =$ 

| 实验步骤 | 加入试剂                                     | 实验现象                  | 可鉴定的离子      |
|------|------------------------------------------|-----------------------|-------------|
| 1    | 红色石蕊试纸                                   | 变蓝                    | OH_         |
| 2    | HNO3酸化至强酸性                               | 有无色气体放出*              | $CO_3^{2-}$ |
| 3    | CCl <sub>4</sub> 萃取                      | CCl <sub>4</sub> 层呈紫色 | Ī           |
| 4    | 适量 AgNO <sub>3</sub> 溶液                  | 白色沉淀                  | Cl          |
| 5    | Na <sub>2</sub> CO <sub>3</sub> 中和至 pH ~ | 7 黄色沉淀                | $PO_4^{3-}$ |
|      | 再加 AgNO <sub>3</sub> 溶液                  |                       |             |

 $*溶液变黄或棕色,这是 <math>I^-$ 被氧化析出  $I_{,}$  之故。

41.

五、

- 42.(1)、M=WRT/(PV)=0.0267×8.31×460/(1.01×0.378)=267 克/ 摩。
- (2)化合物中含 A: 267×0.2= 53.4 克/摩,含 B: 267×0.8=213.6 克/摩。

推证 B 元素。B 可能是 Na(3s1), AI(3s23p1), CI(3s23p5), Sc(3d1  $4s^2$ ),

在化合物的一个分子中,只有氯含有整数个原子 $(213.6 \div 23 \simeq 6.0)$ 。因此 B 元素是氯。

推证 A 元素。化合物的一个分子中含 A 元素原子的质子数之和为: 128-17 x 6=26 个。它可能是 Fe,那么分子式将为 FeCI6,但 Fe 的原子量 为 56,与化合物分子中含 A 的相对质量 53.4 不相符,因此 A 不是 Fe。 它可能是 2 个 AI 原子,并且原子量之和 27 x 2=54,与上述 53.4 颇为一 致。

由上分析,可得化合物分子式为:A1<sub>2</sub>C1<sub>6</sub>。

(3)结构式:

$$C1$$
  $A1$   $C1$   $A1$   $C1$   $C1$ 

六、

43.设加入氨水的烧杯中 Ag<sup>+</sup>浓度为[Ag<sup>+</sup>]<sub>2</sub>,未加入氨水的烧杯中 Ag<sup>+</sup> 浓度为[Ag<sup>+</sup>]<sub>1</sub>,则

$$0.254 = E^{\varnothing} + \frac{0.0591}{1} \lg[Ag^{+}]_{1} - E^{\varnothing} - \frac{0.0591}{1} \lg[Ag^{+}]_{2}$$
$$= 0.05911 g \frac{[Ag^{+}]_{1}}{[Ag^{+}]_{2}}$$

$$[Ag^{+}]_{1}/[Ag^{+}]_{2}=19852$$
 (1)

 $[Ag^{+}]_{1}=50 \times 0.0100/(50+50)=5.00 \times 10^{-3} \text{mol} \cdot I^{-1}$ 

代入(1)式,得:

$$[Ag^+]_2 = 2.52 \times 10^{-7} \text{mol} \cdot I^{-1}$$

考虑  $Ag(NH_3)^+_2$  的生成与解离平衡:

$$Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$$

开始 n;/mmol

 $50 \times 0.01$   $50 \times 0.1$ 

反应 
$$n_i / \text{mmol}$$
  $-0.5$   $-1.0$   $+0.5$  平衡  $c_i / \text{mol} \cdot \text{L}^{-1} \quad 2.52 \times 10^{-7} \quad \frac{5.0 - 1.0}{150} + 5.04 \times 10^{-7} \quad \frac{0.5}{150} - 2.52 \times 10^{-7}$  
$$[\text{Ag}(\text{NH}_3)_2^+] \simeq \frac{0.5}{150} \, \text{mol} \cdot \text{L}^{-1}$$
 
$$[\text{NH}_3] \simeq \frac{4.0}{150} \, \text{mol} \cdot 1^{-1}$$

[Ag(NH<sub>3</sub>)<sub>2</sub>]<sup>+</sup>的解离常数 K<sub>D</sub>

$$K_D = \frac{[Ag^+][NH_3]^2}{[Ag(NH_3)_2^+]} = 5.38 \times 10^{-8} \text{ mol} \cdot 1^{-1}$$

## 1991 年复赛试题

一、

(1)Cr 含量的计算

$$8H^{+} + 3Fe^{2+} + CrO_{4}^{2-} === 3Fe^{3+} + Cr^{3+} + 4H_{2}O$$

$$8H^{+} + 5Fe^{2+} + MnO_{4}^{-} === 5Fe^{3+} + Mn^{2+} + 4H_{2}O$$

KMnO₄滴定的 Fe<sup>2+</sup>:

$$5 \times 17.20 \times 0.0200 = 1.72 \text{mmo I}$$

与CrO<sub>4</sub><sup>2-</sup>反应的Fe<sup>2+</sup>:

$$25.00 \times 0$$
.  $100-1$ .  $72 = 0$ . 78mmol

$$n_{CrO_4^{2-}} = \frac{1}{3} \times 0.78 = 0.26 \text{mmol}(在150 \text{mg合金中})$$

在 1500mg 合金中:

$$m_{cr} = 0.26 \times 10 \times 52.00 = 135.2 \text{mg}$$

Cr 的百分含量=135. 2/1500=9.013%

(2)铜、银含量的计算。

$$600$$
mg样品(1500mg ×  $\frac{200}{300}$ )中,定量析出铬、银、铜的耗电量:

 $Q=(2 \times 14.5 \times 60/96480) \times 0.90=0.01623F$ 

=16.23mF 或 16.23 毫摩电子。

600mg 样品中 Cr3+定量析出需要的电量

 $Q_{Cr}$ =2.6mmo $I \times 3 \times 600/1500$ =3.12mmoI 电子

600mg 样品中 Cu<sup>2+</sup>、Ag<sup>+</sup>定量析出需要的电量:

Q<sub>Cu</sub>+Q<sub>Aq</sub>=16.23-3.12=13.11mmoI 电子

 $m_{Cu} + m_{Ag} = 600 - 135.2 \times 600/1500 = 545.9 mg$ 

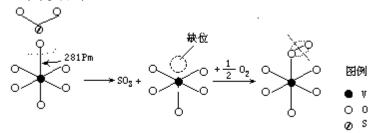
设其中含铜 xmg,则含银(545.9-x)mg。 所以

$$\frac{2x}{63.55} + \frac{545.9 - x}{107.9} = 13.11$$

求得:x=362.6mg

铜的百分含量=362.6/600=60.4%

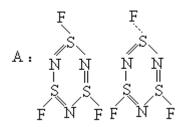
银的百分含量=(545.9-362.6)/600=30.6%


二、

- 1.(1)式与(5)式相当,(2)式与(3)式相当。
- 2.因为 $v_{+3}/v_{-3} < 1$ ,所以氧的化学吸附为控制步骤。即(3)式或(2)

#### 式为控制步骤。

3. 从(1)式、(2)式可知, $V_2O_5$ 从  $SO_2$ 中夺得了电子(变为  $V^{+4}$ ),又 把电子授予了  $O_2$ ,本身氧化为  $V^{+5}$ 。所以它起了传输电子的"电子泵"作用。


## 4. 图示如下:



因为  $V_2O_5$  端基氧键长较长,最活泼,在反应物  $SO_2$  的直接进攻时,端基氧最易失去,而造成  $V_2O_5$  晶格的氧负离子缺位(同时  $SO_2$  氧化为  $SO_3$ )。由于氧负离子缺位的存在,使其易于吸附  $O_2$  分子, $O_2$  又把它氧化为  $V^{+5}$ 。

三、

( )比( )稳定,( )尚未合成出来。



( )、( )互为异构体。

B: 
$$N=S F$$

 $C:\ M\!\equiv\!\mathbb{S}^{+}$ 

(2)A 中 S—N 键最长; C 中 S—N 键最短, 皆由结构式可知。 四、

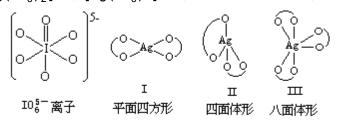
1. [Na<sup>+</sup>]=8.0mmol·1<sup>-1</sup>
 [Ur<sup>-</sup>]+[HUr]=8.0mmol·1<sup>-1</sup>
 [Ur<sup>-</sup>]≃8.0mmol·1<sup>-1</sup>
 反应(2)的平衡常数为:

 $K=1/([Na^+][Ur^-])=15625$ 

- 2.脚趾、手指等处温度比体内低,尿酸钠溶解度较小,容易结晶,使关节发炎。这说明温度下降,反应(2)K增大;温度升高,K减小。
  - 降低温度使平衡向右移动,说明该反应是放热的。
  - 3.pH=5.4+1g([Ur<sup>-</sup>]/[HUr]) pH=7.4 当 HUr 沉淀时,[HUr]=0.5mmoI·1<sup>-1</sup>,代入上式求得:

$$\frac{1}{[Na^+][Ur^-]} = \frac{1}{130 \times 10^{-3} \times 50 \times 10^{-3}} < K$$

所以不会出现 NaUr 结晶,即尿酸在血清中沉淀,与关节炎发作无关。

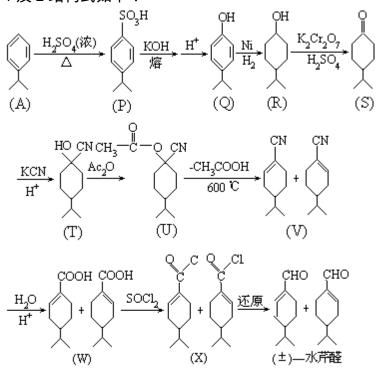

- 4. 当尿酸饱和时,[HUr]=0.50×10<sup>-3</sup>mol·I<sup>-1</sup>,[Ur<sup>-</sup>]=(2.0-0.5) × 10<sup>-3</sup>=1.50×10<sup>-3</sup>mol·1<sup>-1</sup>
- 5. 病人和正常人排尿速率相对尿酸浓度是一级反应。因为根据排尿实验,正常人和病人的半衰期都是恒定的值(40 小时)。半衰期为常数为一级反应的特征。
  - 6. 正常人 t<sub>1/2</sub>=40×60×60s k=In2/t<sub>1/2</sub>=4.8×10<sup>-6</sup>s<sup>-1</sup> 病人 t<sub>1/2</sub>=40×60×60s k=4.8×10<sup>-6</sup>s<sup>-1</sup>

因为他们排出尿酸的速率常数是相同的,因而可以结论:病人血液中尿酸含量过高不是肾排出尿酸减少(肾功能减退)所致,而是由于病人体内尿酸合成速率较高引起的。

五、

1. 高氯酸根离子的 Lewis 结构式如右图所示。它的配位能力弱可归因于 CI—0 键有较多的双键特征,中心 CI<sup>+7</sup> 把离子表面的负电荷抽到氯原子上。

2. 高碘酸根离子的 Lewis 结构如下图。它为八面体构型离子,它的空间位阻效应和螯合效应使它最适宜作为双齿配体,因此分子式可能是 $[Ag(IO_6)_2]^{7-}$ , $[Ag(IO_6)^3]^{12-}$ ,结构式如下图 , 所示。




图例: 6 表示双齿配体 [IO<sub>6</sub>]<sup>5—</sup>

磁化率测定可以帮助确定其结构。若为平面四方形,则  $\mu$  =0( $d^8$  组态  $Ag^{3+}$  宜取  $dsp^2$  杂化);若为四面体和八面体形,均有 2 个未成对电子,为顺磁性。

六、

# 1及2结构式如下:



3.合成所得者为外消旋体,手征性出现在 U V,双键可有机会相等的两种形成途径,从而造成外消旋体,而且一直维持到生成(±)一水芹醛。

七、

1.3,7-二甲基-2,6-辛二烯醛。

2. 
$$CH_3 - C - CH_3$$
 $CH_3 - C - CH_3$ 
 $CH_3 - C - CH_3$ 
 $CH_2 - C - CH_3$ 
 $CH_3 - C - CH_3 - C - CH_3$ 
 $CH_3 - C - CH_3 - C - CH_3$ 

$$\begin{array}{c|c} & & & \\ & & & \\ \hline \\ & & \\ \hline \\ & & \\ \hline \end{array} \begin{array}{c} & & \\ & \\ & \\ \hline \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} & \\ & \\ \end{array} \begin{array}{c} \\ \\$$

4. 无手性。不是唯一产物,因为:

前者较后者共轭体系大,易生成。