
Part V
Arrays and Pointers

473

EXAMPLE
C++ By

23

Introducing Arrays

This chapter discusses different types of arrays. You are already

familiar with character arrays, which are the only method for storing

character strings in the C++ language. A character array isn’t the

only kind of array you can use, however. There is an array for every

data type in C++. By learning how to process arrays, you greatly

improve the power and efficiency of your programs.

This chapter introduces

♦ Array basics of names, data types, and subscripts

♦ Initializing an array at declaration time

♦ Initializing an array during program execution

♦ Selecting elements from arrays

The sample programs in these next few chapters are the most

advanced that you have seen in this book. Arrays are not difficult to

use, but their power makes them well-suited to more advanced

programming.

Chapter 23 ♦ Introducing Arrays

474

Array Basics
Although you have seen arrays used as character strings, you

still must have a review of arrays in general. An array is a list of more

than one variable having the same name. Not all lists of variables are

arrays. The following list of four variables, for example, does not

qualify as an array.

sales bonus_92 first_initial ctr

This is a list of variables (four of them), but it isn’t an array

because each variable has a different name. You might wonder how

more than one variable can have the same name; this seems to violate

the rules for variables. If two variables have the same name, how can

C++ determine which you are referring to when you use that name?

Array variables, or array elements, are differentiated by a

subscript, which is a number inside brackets. Suppose you want to

store a person’s name in a character array called name. You can do

this with

char name[] = “Ray Krebbs”;

or

char name[11] = “Ray Krebbs”;

Because C++ reserves an extra element for the null zero at the

end of every string, you don’t have to specify the 11 as long as you

initialize the array with a value. The variable name is an array because

brackets follow its name. The array has a single name, name, and it

contains 11 elements. The array is stored in memory, as shown in

Figure 23.1. Each element is a character.

NOTE: All array subscripts begin with 0.

You can manipulate individual elements in the array by refer-

encing their subscripts. For instance, the following cout prints Ray’s

initials.

Print the first and fifth elements of the array called name.

cout << name[0] << “ “ << name[4];

An array is a list of
more than one
variable having the
same name.

475

EXAMPLE
C++ By

Figure 23.1. Storing the name character array in memory.

You can define an array as any data type in C++. You can have

integer arrays, long integer arrays, double floating-point arrays,

short integer arrays, and so on. C++ recognizes that the brackets []

following the array name signify that you are defining an array, and

not a single nonarray variable.

The following line defines an array called ages, consisting of

five integers:

int ages[5];

The first element in the ages array is ages[0]. The second element

is ages[1], and the last one is ages[4]. This declaration of ages does not

assign values to the elements, so you don’t know what is in ages and

your program does not automatically zero ages for you.

Here are some more array definitions:

int weights[25], sizes[100]; // Declare two integer arrays.

float salaries[8]; // Declare a floating-point array.

double temps[50]; // Declare a double floating-point

 // array.

char letters[15]; // Declare an array of characters.

When you declare an array, you instruct C++ to reserve a

specific number of memory locations for that array. C++ protects

Chapter 23 ♦ Introducing Arrays

476

those elements. In the previous lines of code, if you assign a value to

letters[2] you don’t overwrite any data in weights, sizes, salaries, or

temps. Also, if you assign a value to sizes[94], you don’t overwrite

data stored in weights, salaries, temps, or letters.

Each element in an array occupies the same amount of storage

as a nonarray variable of the same data type. In other words, each

element in a character array occupies one byte. Each element in an

integer array occupies two or more bytes of memory—depending

on the computer’s internal architecture. The same is true for every

other data type.

Your program can reference elements by using formulas for

subscripts. As long as the subscript can evaluate to an integer, you

can use a literal, a variable, or an expression for the subscript. All the

following are references to individual array elements:

ara[4]

sales[ctr+1]

bonus[month]

salary[month[i]*2]

All array elements are stored in a contiguous, back-to-back

fashion. This is important to remember, especially as you write more

advanced programs. You can always count on an array’s first

element preceding the second. The second element is always placed

immediately before the third, and so on. Memory is not “padded”;

meaning that C++ guarantees there is no extra space between array

elements. This is true for character arrays, integer arrays, floating-

point arrays, and every other type of array. If a floating-point value

occupies four bytes of memory on your computer, the next element

in a floating-point array always begins exactly four bytes after the

previous element.

The Size of Arrays

The sizeof() function returns the number of bytes needed to

hold its argument. If you request the size of an array name,

sizeof() returns the number of bytes reserved for the entire

array.

Array elements
follow each other in
memory, with
nothing between
them.

477

EXAMPLE
C++ By

For example, suppose you declare an integer array of 100

elements called scores. If you were to find the size of the array,

as in the following,

n = sizeof(scores);

n holds either 200 or 400 bytes, depending on the integer size of

your computer. The sizeof() function always returns the re-

served amount of storage, no matter what data are in the array.

Therefore, a character array’s contents—even if it holds a very

short string—do not affect the size of the array that was

originally reserved in memory. If you request the size of an

individual array element, however, as in the following,

n = sizeof(scores[6]);

n holds either 2 or 4 bytes, depending on the integer size of your

computer.

You must never go out-of-bounds of any array. For example,

suppose you want to keep track of the exemptions and salary codes

of five employees. You can reserve two arrays to hold such data, like

this:

int exemptions[5]; // Holds up to five employee exemptions.

char sal_codes[5]; // Holds up to five employee codes.

Figure 23.2 shows how C++ reserves memory for these arrays.

The figure assumes a two-byte integer size, although this might

differ on some computers. Notice that C++ reserves five elements

for exemptions from the array declaration. C++ starts reserving

memory for sal_codes after it reserves all five elements for exemptions.

If you declare several more variables—either locally or globally—

after these two lines, C++ always protects these reserved five

elements for exemptions and sal_codes.

Because C++ does its part to protect data in the array, so must

you. If you reserve five elements for exemptions, you have five inte-

ger array elements referred to as exemptions[0], exemptions[1],

exemptions[2], exemptions[3], and exemptions[4]. C++ does not protect

C++ protects only as
many array elements
as you specify.

Chapter 23 ♦ Introducing Arrays

478

more than five elements for exemptions! Suppose you put a value in

an exemptions element you did not reserve:

exemptions[6] = 4; // Assign a value to an

 // out-of-range element.

Figure 23.2. Locating two arrays in memory.

C++ enables you to do this—but the results are damaging! C++

overwrites other data (in this case, sal_codes[2] and sal_codes[3]

because they are reserved in the location of the seventh element of

exemptions). Figure 23.3 shows the damaging results of assigning a

value to an out-of-range element.

Figure 23.3. The arrays in memory after overwriting part of sal_codes.

Although you can define an array of any data type, you cannot

declare an array of strings. A string is not a C++ variable data type.

You learn how to hold multiple strings in an array-like structure in

Chapter 27, “Pointers and Arrays.”

479

EXAMPLE
C++ By

CAUTION: Unlike most programming languages, AT&T

C++ enables you to assign values to out-of-range (nonreserved)

subscripts. You must be careful not to do this; otherwise, you

start overwriting your other data or code.

Initializing Arrays
You must assign values to array elements before using them.

Here are the two ways to initialize elements in an array:

♦ Initialize the elements at declaration time

♦ Initialize the elements in the program

NOTE: C++ automatically initializes global arrays to null

zeros. Therefore, global character array elements are null, and

all numeric array elements contain zero. You should limit your

use of global arrays. If you use global arrays, explicitly initialize

them to zero, even though C++ does this for you, to clarify your

intentions.

Initializing Elements
at Declaration Time

You already know how to initialize character arrays that hold

strings when you define the arrays: You simply assign them a string.

For example, the following declaration reserves six elements in a

character array called city:

char city[6]; // Reserve space for city.

If you want also to initialize city with a value, you can do it like

this:

char city[6] = “Tulsa”; // Reserve space and

 // initialize city.

Chapter 23 ♦ Introducing Arrays

480

The 6 is optional because C++ counts the elements needed to

hold Tulsa, plus an extra element for the null zero at the end of the

quoted string.

You also can reserve a character array and initialize it —a single

character at a time—by placing braces around the character data.

The following line of code declares an array called initials and

initializes it with eight characters:

char initials[8] = {‘Q’, ‘K’, ‘P’, ‘G’, ‘V’, ‘M’, ‘U’, ‘S’};

The array initials is not a string! Its data does not end in a null

zero. There is nothing wrong with defining an array of characters

such as this one, but you must remember that you cannot treat the

array as if it were a string. Do not use string functions with it, or

attempt to print the array with cout.

By using brackets, you can initialize any type of array. For

example, if you want to initialize an integer array that holds your

five children’s ages, you can do it with the following declaration:

int child_ages[5] = {2, 5, 6, 8, 12}; // Declare and

 // initialize array.

In another example, if you want to keep track of the previous

three years’ total sales, you can declare an array and initialize it at

the same time with the following:

double sales[] = {454323.43, 122355.32, 343324.96};

As with character arrays, you do not have to state explicitly the

array size when you declare and initialize an array of any type. C++

determines, in this case, to reserve three double floating-point array

elements for sales. Figure 23.4 shows the representation of child_ages

and sales in memory.

NOTE: You cannot initialize an array, using the assignment

operator and braces, after you declare it. You can initialize

arrays in this manner only when you declare them. If you want

to fill an array with data after you declare the array, you must

do so element-by-element or by using functions as described in

the next section.

481

EXAMPLE
C++ By

Figure 23.4. In-memory representation of two different types of arrays.

Although C++ does not automatically initialize the array ele-

ments, if you initialize some but not all the elements when you

declare the array, C++ finishes the job for you by assigning the

remainder to zero.

TIP: To initialize every element of a large array to zero at the

same time, declare the entire array and initialize only its first

value to zero. C++ fills the rest of the array to zero.

For instance, suppose you have to reserve array storage for

profit figures of the three previous months as well as the three

months to follow. You must reserve six elements of storage, but you

know values for only the first three. You can initialize the array as

follows:

double profit[6] = {67654.43, 46472.34, 63451.93};

Because you explicitly initialized three of the elements, C++

initializes the rest to zero. If you use cout to print the entire array,

one element per line, you receive:

67654.43

46472.34

63451.93

00000.00

00000.00

00000.00

C++ assigns zero
nulls to all array
values that you do
not define explicitly
at declaration time.

child–ages

sales

Floating-points

Integers

Chapter 23 ♦ Introducing Arrays

482

CAUTION: Always declare an array with the maximum

number of subscripts, unless you initialize the array at the same

time. The following array declaration is illegal:

int count[]; // Bad array declaration!

C++ does not know how many elements to reserve for count, so

it reserves none. If you then assign values to count’s nonreserved

elements, you can (and probably will) overwrite other data.

The only time you can leave the brackets empty is if you also

assign values to the array, such as the following:

int count[] = {15, 9, 22, -8, 12}; // Good definition.

C++ can determine, from the list of values, how many elements

to reserve. In this case, C++ reserves five elements for count.

Examples

1. Suppose you want to track the stock market averages for the

previous 90 days. Instead of storing them in 90 different

variables, it is much easier to store them in an array. You can

declare the array like this:

float stock[90];

The remainder of the program can assign values to the

averages.

2. Suppose you just finished taking classes at a local university

and want to average your six class scores. The following

program initializes one array for the school name and an-

other for the six classes. The body of the program averages

the six scores.

// Filename: C23ARA1.CPP

// Averages six test scores.

#include <iostream.h>

#include <iomanip.h>

void main()

483

EXAMPLE
C++ By

{

 char s_name[] = “Tri Star University”;

 float scores[6] = {88.7, 90.4, 76.0, 97.0, 100.0, 86.7};

 float average=0.0;

 int ctr;

 // Computes total of scores.

 for (ctr=0; ctr<6; ctr++)

 { average += scores[ctr]; }

 // Computes the average.

 average /= float(6);

 cout << “At “ << s_name << “, your class average is “

 << setprecision(2) << average << “\n”;

 return;

}

The output follows:

At Tri Star University, your class average is 89.8.

Notice that using arrays makes processing lists of informa-

tion much easier. Instead of averaging six differently named

variables, you can use a for loop to step through each array

element. If you had to average 1000 numbers, you can still

do so with a simple for loop, as in this example. If the 1000

variables were not in an array, but were individually named,

you would have to write a considerable amount of code just

to add them.

3. The following program is an expanded version of the previ-

ous one. It prints the six scores before computing the aver-

age. Notice that you must print array elements individually;

you cannot print an entire array in a single cout. (You can

print an entire character array with cout, but only if it holds a

null-terminated string of characters.)

// Filename: C23ARA2.CPP

// Prints and averages six test scores.

#include <iostream.h>

#include <iomanip.h>

void pr_scores(float scores[]); // Prototype

Chapter 23 ♦ Introducing Arrays

484

void main()

{

 char s_name[] = “Tri Star University”;

 float scores[6] = {88.7, 90.4, 76.0, 97.0, 100.0, 86.7};

 float average=0.0;

 int ctr;

 // Call function to print scores.

 pr_scores(scores);

 // Computes total of scores.

 for (ctr=0; ctr<6; ctr++)

 { average += scores[ctr]; }

 // Computes the average.

 average /= float(6);

 cout << “At “ << s_name << “, your class average is “

 << setprecision(2) << average;

 return;

}

void pr_scores(float scores[6])

{

 // Prints the six scores.

 int ctr;

 cout << “Here are your scores:\n”; // Title

 for (ctr=0; ctr<6; ctr++)

 cout << setprecision(2) << scores[ctr] << “\n”;

 return;

}

To pass an array to a function, you must specify its name

only. In the receiving function’s parameter list, you must

state the array type and include its brackets, which tell the

function that it is an array. (You do not explicitly have to

state the array size in the receiving parameter list, as shown

in the prototype.)

485

EXAMPLE
C++ By

4. To improve the maintainability of your programs, define all

array sizes with the const instruction. What if you took four

classes next semester but still wanted to use the same pro-

gram? You can modify it by changing all the 6s to 4s, but if

you had defined the array size with a constant, you have to

change only one line to change the program’s subscript

limits. Notice how the following program uses a constant for

the number of classes.

// Filename: C23ARA3.CPP

// Prints and averages six test scores.

#include <iostream.h>

#include <iomanip.h>

void pr_scores(float scores[]);

const int CLASS_NUM = 6; // Constant holds array size.

void main()

{

 char s_name[] = “Tri Star University”;

 float scores[CLASS_NUM] = {88.7, 90.4, 76.0, 97.0,

 100.0, 86.7};

 float average=0.0;

 int ctr;

 // Calls function to print scores.

 pr_scores(scores);

 // Computes total of scores.

 for (ctr=0; ctr<CLASS_NUM; ctr++)

 { average += scores[ctr]; }

 // Computes the average.

 average /= float(CLASS_NUM);

 cout << “At “ << s_name << “, your class average is “

 << setprecision(2) << average;

 return;

}

void pr_scores(float scores[CLASS_NUM])

Chapter 23 ♦ Introducing Arrays

486

{

 // Prints the six scores.

 int ctr;

 cout << “Here are your scores:\n”; // Title

 for (ctr=0; ctr<CLASS_NUM; ctr++)

 cout << setprecision(2) << scores[ctr] << “\n”;

 return;

}

For such a simple example, using a constant for the maxi-

mum subscript might not seem like a big advantage. If you

were writing a larger program that processed several arrays,

however, changing the constant at the top of the program

would be much easier than searching the program for each

occurrence of that array reference.

Using constants for array sizes has the added advantage

of protecting you from going out of the subscript bounds.

You do not have to remember the subscript when looping

through arrays; you can use the constant instead.

Initializing Elements in the
Program

Rarely do you know the contents of arrays when you declare

them. Usually, you fill an array with user input or a disk file’s data.

The for loop is a perfect tool for looping through arrays when you fill

them with values.

CAUTION: An array name cannot appear on the left side of

 an assignment statement.

You cannot assign one array to another. Suppose you want to

copy an array called total_sales to a second array called saved_sales.

You cannot do so with the following assignment statement:

saved_sales = total_sales; // Invalid!

487

EXAMPLE
C++ By

Rather, you have to copy the arrays one element at a time, using

a loop, such as the following section of code does:

You want to copy one array to another. You have to do so one element at a
time, so you need a counter. Initialize a variable called ctr to 0; the value of
ctr represents a position in the array.

1. Assign the element that occupies the position in the first array
represented by the value of ctr to the same position in the second
array.

2. If the counter is less than the size of the array, add one to the
counter. Repeat step one.

for (ctr=0; ctr<ARRAY_SIZE; ctr++)

 { saved_sales[ctr] = total_sales[ctr]; }

The following examples illustrate methods for initializing ar-

rays in a program. After learning about disk processing later in the

book, you learn to read array values from a disk file.

Examples

1. The following program uses the assignment operator to

assign 10 temperatures to an array.

// Filename: C23ARA4.CPP

// Fills an array with 10 temperature values.

#include <iostream.h>

#include <iomanip.h>

const int NUM_TEMPS = 10;

void main()

{

 float temps[NUM_TEMPS];

 int ctr;

 temps[0] = 78.6; // Subscripts always begin at 0.

 temps[1] = 82.1;

 temps[2] = 79.5;

 temps[3] = 75.0;

 temps[4] = 75.4;

Chapter 23 ♦ Introducing Arrays

488

 temps[5] = 71.8;

 temps[6] = 73.3;

 temps[7] = 69.5;

 temps[8] = 74.1;

 temps[9] = 75.7;

 // Print the temps.

 cout << “Daily temperatures for the last “ <<

 NUM_TEMPS << “ days:\n”;

 for (ctr=0; ctr<NUM_TEMPS; ctr++)

 { cout << setprecision(1) << temps[ctr] << “\n”; }

 return;

}

2. The following program uses a for loop and cin to assign

eight integers entered individually by the user. The program

then prints a total of the numbers.

// Filename: C23TOT.CPP

// Totals eight input values from the user.

#include <iostream.h>

const int NUM = 8;

void main()

{

 int nums[NUM];

 int total = 0; // Holds total of user’s eight numbers.

 int ctr;

 for (ctr=0; ctr<NUM; ctr++)

 { cout << “Please enter the next number...”;

 cin >> nums[ctr];

 total += nums[ctr]; }

 cout << “The total of the numbers is “ << total << “\n”;

 return;

}

3. You don’t have to access an array in the same order as you

initialized it. Chapter 24, “Array Processing,” shows you

how to change the order of an array. You also can use the

subscript to select items from an array of values.

489

EXAMPLE
C++ By

The following program requests sales data for the preceding

12 months. Users can then type a month they want to see.

That month’s sales figure is then printed, without figures

from other months getting in the way. This is how you begin

to build a search program to find requested data: You store

the data in an array (or in a disk file that can be read into an

array, as you learn later), then wait for a user’s request to see

specific pieces of the data.

// Filename: C23SAL.CPP

// Stores twelve months of sales and

// prints selected ones.

#include <iostream.h>

#include <ctype.h>

#include <conio.h>

#include <iomanip.h>

const int NUM = 12;

void main()

{

 float sales[NUM];

 int ctr, ans;

 int req_month; // Holds user’s request.

 // Fill the array.

 cout << “Please enter the twelve monthly sales values\n”;

 for (ctr=0; ctr<NUM; ctr++)

 { cout << “What are sales for month number “

 << ctr+1 << “? \n”;

 cin >> sales[ctr]; }

 // Wait for a requested month.

 for (ctr=0; ctr<25; ctr++)

 { cout << “\n”; } // Clears the screen.

 cout << “*** Sales Printing Program ***\n”;

 cout << “Prints any sales from the last “ << NUM

 << “ months\n\n”;

 do

 { cout << “For what month (1-” << NUM << “) do you want “

 << “to see a sales value? “;

 cin >> req_month;

Chapter 23 ♦ Introducing Arrays

490

 // Adjust for zero-based subscript.

 cout << “\nMonth “ << req_month <<

 “‘s sales are “ << setprecision(2) <<

 sales[req_month-1];

 cout << “\nDo you want to see another (Y/N)? “;

 ans=getch();

 ans=toupper(ans);

 } while (ans == ‘Y’);

 return;

}

Notice the helpful screen-clearing routine that prints 23

newline characters. This routine scrolls the screen until it is

blank. (Most compilers come with a better built-in screen-

clearing function, but the AT&T C++ standard does not offer

one because the compiler is too closely linked with specific

hardware.)

The following is the second screen from this program. After

the 12 sales values are entered in the array, any or all can be

requested, one at a time, simply by supplying the month’s

number (the number of the subscript).

*** Sales Printing Program ***

Prints any sales from the last 12 months

For what month (1-12) do you want to see a sales value? 2

Month 2’s sales are 433.22

Do you want to see another (Y/N)?

For what month (1-12) do you want to see a sales value? 5

Month 5’s sales are 123.45

Do you want to see another (Y/N)?

491

EXAMPLE
C++ By

Review Questions
Answers to the review questions are in Appendix B.

1. True or false: A single array can hold several values of

different data types.

2. How do C++ programs tell one array element from another

if all elements have identical names?

3. Why must you initialize an array before using it?

4. Given the following definition of an array, called weights,

what is the value of weights[5]?

int weights[10] = {5, 2, 4};

5. If you pass an integer array to a function and change it, does

the array change also in the calling function? (Hint: Remem-

ber how character arrays are passed to functions.)

6. How does C++ initialize global array elements?

Review Exercises
1. Write a program to store the ages of six of your friends in a

single array. Store each of the six ages using the assignment

operator. Print the ages on-screen.

2. Modify the program in Exercise 1 to print the ages in reverse

order.

3. Write a simple data program to track a radio station’s ratings

(1, 2, 3, 4, or 5) for the previous 18 months. Use cin to initial-

ize the array with the ratings. Print the ratings on-screen

with an appropriate title.

4. Write a program to store the numbers from 1 to 100 in an

array of 100 integer elements. (Hint: The subscripts should

begin at 0 and end at 99.)

Chapter 23 ♦ Introducing Arrays

492

5. Write a program a small business owner can use to track

customers. Assign each customer a number (starting at 0).

Whenever a customer purchases something, record the sale

in the element that matches the customer’s number (that is,

the next unused array element). When the store owner

signals the end of the day, print a report consisting of each

customer number with its matching sales, a total sales figure,

and an average sales figure per customer.

Summary
You now know how to declare and initialize arrays consisting

of various data types. You can initialize an array either when you

declare it or in the body of your program. Array elements are much

easier to process than other variables because each has a different

name.

C++ has powerful sorting and searching techniques that make

your programs even more serviceable. The next chapter introduces

these techniques and shows you still other ways to access array

elements.

207

EXAMPLE
C++ By

10

Logical Operators

C++’s logical operators enable you to combine relational operators

into more powerful data-testing statements. The logical operators

are sometimes called compound relational operators. As C++’s prece-

dence table shows, relational operators take precedence over logical

operators when you combine them. The precedence table plays an

important role in these types of operators, as this chapter empha-

sizes.

This chapter introduces you to

♦ The logical operators

♦ How logical operators are used

♦ How logical operators take precedence

This chapter concludes your study of the conditional testing

that C++ enables you to perform, and it illustrates many examples

of if statements in programs that work on compound conditional

tests.

Defining Logical Operators
There may be times when you have to test more than one set of

variables. You can combine more than one relational test into a

compound relational test by using C++’s logical operators, as shown in

Table 10.1.

Chapter 10 ♦ Logical Operators

208

Table 10.1. Logical operators.

Operator Meaning

&& AND

|| OR

! NOT

The first two logical operators, && and ||, never appear by

themselves. They typically go between two or more relational tests.

Table 10.2 shows you how each logical operator works. These

tables are called truth tables because they show you how to achieve

True results from an if statement that uses these operators. Take

some time to study these tables.

Table 10.2. Truth tables.

The AND (&&) truth table

(Both sides must be True)

True AND True = True

True AND False = False

False AND True = False

False AND False = False

The OR (||) truth table

(One or the other side must be True)

True OR True = True

True OR False = True

False OR True = True

False OR False = False

The NOT (!) truth table

(Causes an opposite relation)

NOT True = False

NOT False = True

Logical operators
enable the user to
compute compound
relational tests.

209

EXAMPLE
C++ By

Logical Operators and
Their Uses

The True and False on each side of the operators represent a

relational if test. The following statements, for example, are valid if

tests that use logical operators (sometimes called compound relational
operators).

If the variable a is less than the variable b, and the variable c is greater than
the variable d, then print Results are invalid. to the screen.

if ((a < b) && (c > d))

 { cout << “Results are invalid.”; }

The variable a must be less than b and, at the same time, c must

be greater than d for the printf() to execute. The if statement still

requires parentheses around its complete conditional test. Consider

this portion of a program:

if ((sales > 5000) || (hrs_worked > 81))

 { bonus=500; }

The sales must be more than 5000, or the hrs_worked must be

more than 81, before the assignment executes.

if (!(sales < 2500))

 { bonus = 500; }

If sales is greater than or equal to 2500, bonus is initialized. This

illustrates an important programming tip: Use ! sparingly. Or, as

some professionals so wisely put it: “Do not use ! or your programs

will not be !(unclear).” It is much clearer to rewrite the previous

example by turning it into a positive relational test:

if (sales >= 2500)

 { bonus 500; }

But the ! operator is sometimes helpful, especially when testing

for end-of-file conditions for disk files, as you learn in Chapter 30,

“Sequential Files.” Most the time, however, you can avoid using ! by

using the reverse logic shown in the following:

The || is
sometimes called
inclusive OR. Here is
a program segment
that includes the not
(!) operator:

Chapter 10 ♦ Logical Operators

210

!(var1 == var2) is the same as (var1 != var2)

!(var1 <= var2) is the same as (var1 > var2)

!(var1 >= var2) is the same as (var1 < var2)

!(var1 != var2) is the same as (var1 == var2)

!(var1 > var2) is the same as (var1 <= var2)

!(var1 < var2) is the same as (var1 >= var2)

Notice that the overall format of the if statement is retained

when you use logical operators, but the relational test expands to

include more than one relation. You even can have three or more, as

in the following statement:

if ((a == B) && (d == f) || (l = m) || !(k <> 2)) ...

This is a little too much, however, and good programming

practice dictates using at most two relational tests inside a single if

statement. If you have to combine more than two, use more than one

if statement to do so.

As with other relational operators, you also use the following

logical operators in everyday conversation.

“If my pay is high and my vacation time is long, we can go

to Italy this summer.”

“If you take the trash out or clean your room, you can watch

TV tonight.”

“If you aren’t good, you’ll be punished.”

Internal Truths

The True or False results of relational tests occur internally at

the bit level. For example, take the if test:

if (a == 6) ...

to determine the truth of the relation, (a==6). The computer

takes a binary 6, or 00000110, and compares it, bit-by-bit, to

the variable a. If a contains 7, a binary 00000111, the result of

this equal test is False, because the right bit (called the least-
significant bit) is different.

211

EXAMPLE
C++ By

C++’s Logical Efficiency

C++ attempts to be more efficient than other languages. If you

combine multiple relational tests with one of the logical operators,

C++ does not always interpret the full expression. This ultimately

makes your programs run faster, but there are dangers! For ex-

ample, if your program is given the conditional test:

if ((5 > 4) || (sales < 15) && (15 != 15))...

C++ only evaluates the first condition, (5 > 4), and realizes it does

not have to look further. Because (5 > 4) is True and because || (OR)

anything that follows it is still True, C++ does not bother with the

rest of the expression. The same holds true for the following state-

ment:

if ((7 < 3) && (age > 15) && (initial == ‘D’))...

Here, C++ evaluates only the first condition, which is False.

Because the && (AND) anything else that follows it is also False, C++

does not interpret the expression to the right of (7 < 3). Most of the

time, this doesn’t pose a problem, but be aware that the following

expression might not fulfill your expectations:

if ((5 > 4) || (num = 0))...

The (num = 0) assignment never executes, because C++ has to

interpret only (5 > 4) to determine whether the entire expression is

True or False. Due to this danger, do not include assignment

expressions in the same condition as a logical test. The following

single if condition:

if ((sales > old_sales) || (inventory_flag = ‘Y’))...

should be broken into two statements, such as:

inventory_flag) = ‘Y’;

if ((sales > old_sales) || (inventory_flag))...

so the inventory_flag is always assigned the ‘Y’ value, no matter how

the (sales > old_sales) expression tests.

Chapter 10 ♦ Logical Operators

212

Examples

1. The summer Olympics are held every four years during each

year that is divisible evenly by 4. The U.S. Census is taken

every 10 years, in each year that is evenly divisible by 10.

The following short program asks for a year, and then tells

the user if it is a year of the summer Olympics, a year of the

census, or both. It uses relational operators, logical opera-

tors, and the modulus operator to determine this output.

// Filename: C10YEAR.CPP

// Determines if it is Summer Olympics year,

// U.S. Census year, or both.

#include <iostream.h>

main()

{

 int year;

 // Ask for a year

 cout << “What is a year for the test? “;

 cin >> year;

 // Test the year

 if (((year % 4)==0) && ((year % 10)==0))

 { cout << “Both Olympics and U.S. Census!”;

 return 0; } // Quit program, return to operating

 // system.

 if ((year % 4)==0)

 { cout << “Summer Olympics only”; }

 else

 { if ((year % 10)==0)

 { cout << “U.S. Census only”; }

 }

 return 0;

}

2. Now that you know about compound relations, you can

write an age-checking program like the one called

C9AGE.CPP presented in Chapter 9, “Relational Operators.”

That program ensured the age would be above 10. This is

another way you can validate input for reasonableness.

213

EXAMPLE
C++ By

The following program includes a logical operator in its if to

determine whether the age is greater than 10 and less than

100. If either of these is the case, the program concludes that

the user did not enter a valid age.

// Filename: C10AGE.CPP

// Program that helps ensure age values are reasonable.

#include <iostream.h>

main()

{

 int age;

 cout << “What is your age? “;

 cin >> age;

 if ((age < 10) || (age > 100))

 { cout << “ \x07 \x07 \n”; // Beep twice

 cout << “*** The age must be between 10 and”

 “100 ***\n”; }

 else

 { cout << “You entered a valid age.”; }

 return 0;

}

3. The following program could be used by a video store to

calculate a discount, based on the number of rentals people

transact as well as their customer status. Customers are

classified either R for Regular or S for Special. Special custom-

ers have been members of the rental club for more than one

year. They automatically receive a 50-cent discount on all

rentals. The store also holds “value days” several times a

year. On value days, all customers receive the 50-cent dis-

count. Special customers do not receive an additional 50

cents off during value days, because every day is a discount

for them.

The program asks for each customer’s status and whether or

not it is a value day. It then uses the || relation to test for the

discount. Even before you started learning C++, you would

probably have looked at this problem with the following

idea in mind.

Chapter 10 ♦ Logical Operators

214

“If a customer is Special or if it is a value day, deduct 50

cents from the rental.”

That’s basically the idea of the if decision in the following

program. Even though Special customers do not receive an

additional discount on value days, there is one final if test

for them that prints an extra message at the bottom of the

screen’s indicated billing.

// Filename: C10VIDEO.CPP

// Program that computes video rental amounts and gives

// appropriate discounts based on the day or customer status.

#include <iostream.h>

#include <stdio.h>

main()

{

 float tape_charge, discount, rental_amt;

 char first_name[15];

 char last_name[15];

 int num_tapes;

 char val_day, sp_stat;

 cout << “\n\n *** Video Rental Computation ***\n”;

 cout << “ ------------------------\n”;

 // Underline title

 tape_charge = 2.00;

 // Before-discount tape fee-per tape.

 // Receive input data.

 cout << “\nWhat is customer’s first name? “;

 cin >> first_name;

 cout << “What is customer’s last name? “;

 cin >> last_name;

 cout << “\nHow many tapes are being rented? “;

 cin >> num_tapes;

 cout << “Is this a Value day (Y/N)? “;

 cin >> val_day;

 cout << “Is this a Special Status customer (Y/N)? “;

 cin >> sp_stat;

 // Calculate rental amount.

215

EXAMPLE
C++ By

 discount = 0.0; // Increase discount if they are eligible.

 if ((val_day == ‘Y’) || (sp_stat == ‘Y’))

 { discount = 0.5;

 rental_amt=(num_tapes*tape_charge)

 (discount*num_tapes); }

 // Print the bill.

 cout << “\n\n** Rental Club **\n\n”;

 cout << first_name << “ “ << last_name << “ rented “

 << num_tapes << “ tapes\n”;

 printf(“The total was %.2f\n”, rental_amt);

 printf(“The discount was %.2f per tape\n”, discount);

 // Print extra message for Special Status customers.

 if (sp_stat == ‘Y’)

 { cout << “\nThank them for being a Special “

 << “Status customer\n”;}

 return 0;

}

The output of this program appears below. Notice that

Special customers have the extra message at the bottom of

the screen. This program, due to its if statements, performs

differently depending on the data entered. No discount is

applied for Regular customers on nonvalue days.

*** Video Rental Computation ***

What is customer’s first name? Jerry

What is customer’s last name? Parker

How many tapes are being rented? 3

Is this a Value day (Y/N)? Y

Is this a Special Status customer (Y/N)? Y

** Rental Club **

Jerry Parker rented 3 tapes

The total was 4.50

The discount was 0.50 per tape

Thank them for being a Special Status customer

Chapter 10 ♦ Logical Operators

216

Logical Operators and
Their Precedence

The math precedence order you read about in Chapter 8,

“Using C++ Math Operators and Precedence,” did not include the

logical operators. To be complete, you should be familiar with the

entire order of precedence, as presented in Appendix D, “C++

Precedence Table.”

You might wonder why the relational and logical operators are

included in a precedence table. The following statement helps show

you why:

if ((sales < min_sal * 2 && yrs_emp > 10 * sub) ...

Without the complete order of operators, it is impossible to

determine how such a statement would execute. According to the

precedence order, this if statement executes as follows:

if ((sales < (min_sal * 2)) && (yrs_emp > (10 * sub))) ...

This still might be confusing, but it is less so. The two multipli-

cations are performed first, followed by the relations < and >. The &&

is performed last because it is lowest in the precedence order of

operators.

To avoid such ambiguous problems, be sure to use ample

parentheses—even if the default precedence order is your intention.

It is also wise to resist combining too many expressions inside a

single if relational test.

Notice that || (OR) has lower precedence than && (AND).

Therefore, the following if tests are equivalent:

if ((first_initial==’A’) && (last_initial==’G’) || (id==321)) ...

if (((first_initial==’A’) && (last_initial==’G’)) || (id==321)) ...

The second is clearer, due to the parentheses, but the precedence

table makes them identical.

217

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. What are the three logical operators?

2. The following compound relational tests produce True or

False comparisons. Determine which are True and which are

False.

a. ! (True || False)

b. (True && False) && (False || True)

c. ! (True && False)

d. True || (False && False) || False

3. Given the statement:

int i=12, j=10, k=5;

What are the results (True or False) of the following state-

ments? (Hint: Remember that C++ interprets any nonzero

statement as True.)

a. i && j

b. 12 - i || k

c. j != k && i != k

4. What is the value printed in the following program? (Hint:
Don’t be misled by the assignment operators on each side of

the ||.)

// Filename: C10LOGO.CPP

// Logical operator test

#include <iostream.h>

main()

{

 int f, g;

 g = 5;

 f = 8;

 if ((g = 25) || (f = 35))

Chapter 10 ♦ Logical Operators

218

 { cout << “g is “ << g << “ and f got changed to “ << f; }

 return 0;

}

5. Using the precedence table, determine whether the follow-

ing statements produce a True or False result. After this, you

should appreciate the abundant use of parentheses!

a. 5 == 4 + 1 || 7 * 2 != 12 - 1 && 5 == 8 / 2

b. 8 + 9 != 6 - 1 || 10 % 2 != 5 + 0

c. 17 - 1 > 15 + 1 && 0 + 2 != 1 == 1 || 4 != 1

d. 409 * 0 != 1 * 409 + 0 || 1 + 8 * 2 >= 17

6. Does the following cout execute?

if (!0)

 { cout << “C++ By Example \n”; }

Review Exercises
1. Write a program (by using a single compound if state-

ment) to determine whether the user enters an odd positive

number.

2. Write a program that asks the user for two initials. Print a

message telling the user if the first initial falls alphabetically

before the second.

3. Write a number-guessing game. Assign a value to a variable

called number at the top of the program. Give a prompt that

asks for five guesses. Receive the user’s five guesses with a

single scanf() for practice with scanf(). Determine whether

any of the guesses match the number and print an appropriate

message if one does.

4. Write a tax-calculation routine, as follows: A family pays no

tax if its income is less than $5,000. It pays a 10 percent tax if

its income is $5,000 to $9,999, inclusive. It pays a 20 percent

tax if the income is $10,000 to $19,999, inclusive. Otherwise,

it pays a 30 percent tax.

219

EXAMPLE
C++ By

Summary
This chapter extended the if statement to include the &&, ||, and

! logical operators. These operators enable you to combine several

relational tests into a single test. C++ does not always have to

look at every relational operator when you combine them in an ex-

pression.

This chapter concludes the explanation of the if statement. The

next chapter explains the remaining regular C++ operators. As you

saw in this chapter, the precedence table is still important to the C++

language. Whenever you are evaluating expressions, keep the pre-

cedence table in the back of your mind (or at your fingertips) at all

times!

Chapter 10 ♦ Logical Operators

220

221

EXAMPLE
C++ By

11

Additional C++
Operators

C++ has several other operators you should learn besides those you

learned in Chapters 9 and 10. In fact, C++ has more operators than

most programming languages. Unless you become familiar with

them, you might think C++ programs are cryptic and difficult to

follow. C++’s heavy reliance on its operators and operator prece-

dence produces the efficiency that enables your programs to run

more smoothly and quickly.

This chapter teaches you the following:

♦ The ?: conditional operator

♦ The ++ increment operator

♦ The –– decrement operator

♦ The sizeof operator

♦ The (,) comma operator

♦ The Bitwise Operators (&, |, and ^)

Chapter 11 ♦ Additional C++ Operators

222

Most the operators described in this chapter are unlike those

found in any other programming language. Even if you have

programmed in other languages for many years, you still will be

surprised by the power of these C++ operators.

The Conditional Operator
The conditional operator is C++’s only ternary operator, requir-

ing three operands (as opposed to the unary’s single-and the binary’s

double-operand requirements). The conditional operator is used to

replace if-else logic in some situations. The conditional operator is

a two-part symbol, ?:, with a format as follows:

conditional_expression ? expression1 : expression2;

The conditional_expression is any expression in C++ that results

in a True (nonzero) or False (zero) answer. If the result of

conditional_expression is True, expression1 executes. Otherwise, if

the result of conditional_expression is False, expression2 executes.

Only one of the expressions following the question mark ever

executes. Only a single semicolon appears at the end of expression2.
The internal expressions, such as expression1, do not have a semico-

lon. Figure 11.1 illustrates the conditional operator more clearly.

The conditional
operator is a ternary
operator.

Figure 11.1. Format of the conditional operator.

223

EXAMPLE
C++ By

If you require simple if-else logic, the conditional operator

usually provides a more direct and succinct method, although you

should always prefer readability over compact code.

To glimpse the conditional operator at work, consider the

section of code that follows.

if (a > b)

 { ans = 10; }

else

 { ans = 25; }

You can easily rewrite this kind of if-else code by using a single

conditional operator.

If the variable a is greater than the variable b, make the variable ans
equal to 10; otherwise, make ans equal to 25.

a > b ? (ans = 10) : (ans = 25);

A l t h o u g h p a r e n t h e s e s a r e n o t r e q u i r e d a r o u n d

conditional_expression to make it work, they usually improve read-

ability. This statement’s readability is improved by using parenthe-

ses, as follows:

(a > b) ? (ans = 10) : (ans = 25);

Because each C++ expression has a value—in this case, the

value being assigned—this statement could be even more succinct,

without loss of readability, by assigning ans the answer to the left of

the conditional:

ans = (a > b) ? (10) : (25);

This expression says: If a is greater than b, assign 10 to ans;

otherwise, assign 25 to ans. Almost any if-else statement can be

rewritten as a conditional, and vice versa. You should practice

converting one to the other to familiarize yourself with the condi-

tional operator’s purpose.

NOTE: A n y v a l i d if C + + s t a t e m e n t a l s o c a n b e a

conditional_expression, including all relational and logical op-

erators as well as any of their possible combinations.

Chapter 11 ♦ Additional C++ Operators

224

Examples

1. Suppose you are looking over your early C++ programs, and

you notice the following section of code.

if (production > target)

 { target *= 1.10; }

else

 { target *= .90; }

You should realize that such a simple if-else statement can

be rewritten using a conditional operator, and that more

efficient code results. You can therefore change it to the

following single statement.

(production > target) ? (target *= 1.10) : (target *= .90);

2. Using a conditional operator, you can write a routine to find

the minimum value between two variables. This is some-

times called a minimum routine. The statement to do this is

minimum = (var1 < var2) ? var1 : var2;

If var1 is less than var2, the value of var1 is assigned to mini-

mum. If var2 is less, the value of var2 is assigned to minimum. If

the variables are equal, the value of var2 is assigned to

minimum, because it does not matter which is assigned.

3. A maximum routine can be written just as easily:

maximum = (var1 > var2) ? var1 : var2;

4. Taking the previous examples a step further, you can also

test for the sign of a variable. The following conditional

expression assigns –1 to the variable called sign if testvar is

less than 0; 0 to sign if testvar is zero; and +1 to sign if testvar

is 1 or more.

sign = (testvar < 0) ? -1 : (testvar > 0);

It might be easy to spot why the less-than test results in a –1,

but the second part of the expression can be confusing. This

works well due to C++’s 1 and 0 (for True and False, respec-

tively) return values from a relational test. If testvar is 0 or

greater, sign is assigned the answer (testvar > 0). The value

225

EXAMPLE
C++ By

of (testvar > 0) is 1 if True (therefore, testvar is more than 0)

or 0 if testvar is equal to 0.

The preceding statement shows C++’s efficient conditional

operator. It might also help you understand if you write the

statement using typical if-else logic. Here is the same

problem written with a typical if-else statement:

if (testvar < 0)

 { sign = -1; }

else

 { sign = (testvar > 0); } // testvar can only be

 // 0 or more here.

The Increment and
Decrement Operators

C++ offers two unique operators that add or subtract 1 to or

from variables. These are the increment and decrement operators: ++

and ––. Table 11.1 shows how these operators relate to other types of

expressions you have seen. Notice that the ++ and –– can appear on

either side of the modified variable. If the ++ or –– appears on the left,

it is known as a prefix operator. If the operator appears on the right,

it is a postfix operator.

Table 11.1. The ++ and –– operators.

Operator Example Description Equivalent Statements

++ i++; postfix i = i + 1; i += 1;

++ ++i; prefix i = i + 1; i += 1;

–– i––; postfix i = i - 1; i -= 1;

–– ––i; prefix i = i - 1; i -= 1;

Any time you have to add 1 or subtract 1 from a variable, you

can use these two operators. As Table 11.1 shows, if you have to

increment or decrement only a single variable, these operators

enable you to do so.

The ++ operator
adds 1 to a variable.
The –– operator
subtracts 1 from a
variable.

Chapter 11 ♦ Additional C++ Operators

226

Increment and Decrement Efficiency

The increment and decrement operators are straightforward,

efficient methods for adding 1 to a variable and subtracting 1

from a variable. You often have to do this during counting or

processing loops, as discussed in Chapter 12, “The while Loop”

and beyond.

These two operators compile directly into their assembly lan-

guage equivalents. Almost all computers include, at their

lowest binary machine-language commands, increment and

decrement instructions. If you use C++’s increment and decre-

ment operators, you ensure that they compile to these low-level

equivalents.

If, however, you code expressions to add or subtract 1 (as you

do in other programming languages), such as the expression

i = i - 1, you do not actually ensure that C++ compiles

this instruction in its efficient machine-language equivalent.

Whether you use prefix or postfix does not matter—if you are

incrementing or decrementing single variables on lines by them-

selves. However, when you combine these two operators with other

operators in a single expression, you must be aware of their differ-

ences. Consider the following program section. Here, all variables

are integers because the increment and decrement operators work

only on integer variables.

Make a equal to 6. Increment a, subtract 1 from it, then assign the result
to b.

a = 6;

b = ++a - 1;

What are the values of a and b after these two statements finish?

The value of a is easy to determine: it is incremented in the second

statement, so it is 7. However, b is either 5 or 6 depending on when

the variable a increments. To determine when a increments, consider

the following rule:

227

EXAMPLE
C++ By

♦ If a variable is incremented or decremented with a prefix
operator, the increment or decrement occurs before the

variable’s value is used in the remainder of the expression.

♦ If a variable is incremented or decremented with a postfix
operator, the increment or decrement occurs after the

variable’s value is used in the remainder of the expression.

In the previous code, a contains a prefix increment. Therefore,

its value is first incremented to 7, then 1 is subtracted from 7, and the

result (6) is assigned to b. If a postfix increment is used, as in

a = 6;

b = a++ - 1;

a is 6, therefore, 5 is assigned to b because a does not increment

to 7 until after its value is used in the expression. The precedence

table in Appendix D, “C++ Precedence Table,” shows that prefix

operators contain much higher precedence than almost every other

operator, especially low-precedence postfix increments and decre-

ments.

TIP: If the order of prefix and postfix confuses you, break

your expressions into two lines of code and type the increment

or decrement before or after the expression that uses it.

By taking advantage of this tip, you can now rewrite the

previous example as follows:

a = 6;

b = a - 1;

a++;

There is now no doubt as to when a is incremented: a incre-

ments after b is assigned to a-1.

Even parentheses cannot override the postfix rule. Consider

the following statement.

x = p + (((amt++)));

Chapter 11 ♦ Additional C++ Operators

228

There are too many unneeded parentheses here, but even the

redundant parentheses are not enough to increment amt before

adding its value to p. Postfix increments and decrements always
occur after their variables are used in the surrounding expression.

CAUTION: Do not attempt to increment or decrement an

expression. You can apply these operators only to variables.

The following expression is invalid:

sales = ++(rate * hours); // Not allowed!!

Examples

1. As you should with all other C++ operators, keep the prece-

dence table in mind when you evaluate expressions that

increment and decrement. Figures 11.2 and 11.3 show you

some examples that illustrate these operators.

2. The precedence table takes on even more meaning when you

see a section of code such as that shown in Figure 11.3.

3. Considering the precedence table—and, more importantly,

what you know about C++’s relational efficiencies—what is

the value of the ans in the following section of code?

int i=1, j=20, k=-1, l=0, m=1, n=0, o=2, p=1;

ans = i || j–– && k++ || ++l && ++m || n–– & !o || p––;

This, at first, seems to be extremely complicated. Neverthe-

less, you can simply glance at it and determine the value of

ans, as well as the ending value of the rest of the variables.

Recall that when C++ performs a relation || (or), it ignores

the right side of the || if the left value is True (any nonzero

value is True). Because any nonzero value is True, C++ does

229

EXAMPLE
C++ By

Figure 11.2. C++ operators incrementing (above) and decrementing
(below) by order of precedence.

int i=1;

int j=2;

int k=3;

ans = i++ * j - ––k;

 |
 i++ * j - 2

 2 - 2

 0

ans = 0, then i increments by 1 to its final value of 2.

int i=1;

int j=2;

int k=3;

ans = ++i * j - k––;

 |
 2 * j - k––

 4 - k––

 1

ans = 1, then k decrements by 1 to its final value of 2.

not evaluate the values on the right. Therefore, C++ per-

forms this expression as shown:

ans = i || j–– && k++ || ++l && ++m || n–– & !o || p––;

 |
 1 (TRUE)

Chapter 11 ♦ Additional C++ Operators

230

int i=0;

int j=-1;

int k=0;

int m=1

ans = i++ && ++j || k || m++;

 |
 i++ && 0 || k || m++

 0 || k || m++

 0 || m++

 1

ans = 1, then i increments by 1 to its final value of 1,

and m increments by 1 to its final value of 2.

Figure 11.3. Another example of C++ operators and their precedence.

NOTE: Because i is True, C++ evaluates the entire expression

as True and ignores all code after the first ||. Therefore, every
other increment and decrement expression is ignored. Because C++

ignores the other expressions, only ans is changed by this

expression. The other variables, j through p, are never

incremented or decremented, even though several of them

contain increment and decrement operators. If you use rela-

tional operators, be aware of this problem and break out all

increment and decrement operators into statements by them-

selves, placing them on lines before the relational statements

that use their values.

The sizeof Operator
There is another operator in C++ that does not look like an

operator at all. It looks like a built-in function, but it is called the

231

EXAMPLE
C++ By

sizeof operator. In fact, if you think of sizeof as a function call, you

might not become confused because it works in a similar way. The

format of sizeof follows:

sizeof data

or

sizeof(data type)

The sizeof operator is unary, because it operates on a single

value. This operator produces a result that represents the size, in

bytes, of the data or data type specified. Because most data types and

variables require different amounts of internal storage on different

computers, the sizeof operator enables programs to maintain con-

sistency on different types of computers.

TIP: Most C++ programmers use parentheses around the

sizeof argument, whether that argument is data or data type .
Because you must use parentheses around data type arguments

and you can use them around data arguments, it doesn’t hurt to

always use them.

The sizeof operator is sometimes called a compile-time operator.
At compile time, rather than runtime, the compiler replaces each

occurrence of sizeof in your program with an unsigned integer

value. Because sizeof is used more in advanced C++ programming,

this operator is better utilized later in the book for performing more

advanced programming requirements.

If you use an array as the sizeof argument, C++ returns the

number of bytes you originally reserved for that array. Data inside

the array have nothing to do with its returned sizeof value—even if

it’s only a character array containing a short string.

Examples

1. Suppose you want to know the size, in bytes, of floating-

point variables for your computer. You can determine

this by entering the keyword float in parentheses—after

sizeof—as shown in the following program.

The sizeof
operator returns its
argument’s size in
bytes.

Chapter 11 ♦ Additional C++ Operators

232

// Filename: C11SIZE1.CPP

// Prints the size of floating-point values.

#include <iostream.h>

main()

{

 cout << “The size of floating-point variables on \n”;

 cout << “this computer is “ << sizeof(float) << “\n”;

 return 0;

}

This program might produce different results on different

computers. You can use any valid data type as the sizeof

argument. On most PCs, this program probably produces

this output:

The size of floating-point variables on

this computer is: 4

The Comma Operator
Another C++ operator, sometimes called a sequence point, works

a little differently. This is the comma operator (,), which does not

directly operate on data, but produces a left-to-right evaluation of

expressions. This operator enables you to put more than one expres-

sion on a single line by separating each one with a comma.

You already saw one use of the sequence point comma when

you learned how to declare and initialize variables. In the following

section of code, the comma separates statements. Because the comma

associates from the left, the first variable, i, is declared and initial-

ized before the second variable.

main()

{

 int i=10, j=25;

 // Remainder of the program follows.

233

EXAMPLE
C++ By

However, the comma is not a sequence point when it is used

inside function parentheses. Then it is said to separate arguments,

but it is not a sequence point. Consider the printf() that follows.

printf(“%d %d %d”, i, i++, ++i);

Many results are possible from such a statement. The commas

serve only to separate arguments of the printf(), and do not generate

the left-to-right sequence that they otherwise do when they aren’t

used in functions. With the statement shown here, you are not

ensured of any order! The postfix i++ might possibly be performed

before the prefix ++i, even though the precedence table does not

require this. Here, the order of evaluation depends on how your

compiler sends these arguments to the printf() function.

TIP: Do not put increment operators or decrement operators

in function calls because you cannot predict the order in which

they execute.

Examples

1. You can put more than one expression on a line, using the

comma as a sequence point. The following program does

this.

// Filename: C11COM1.CPP

// Illustrates the sequence point.

#include <iostream.h>

main()

{

 int num, sq, cube;

 num = 5;

 // Calculate the square and cube of the number.

 sq = (num * num), cube = (num * num * num);

 cout << “The square of “ << num << “ is “ << sq <<

 “ and the cube is “ << cube;

 return 0;

}

Chapter 11 ♦ Additional C++ Operators

234

This is not necessarily recommended, however, because it

doesn’t add anything to the program and actually decreases

its readability. In this example, the square and cube are

probably better computed on two separate lines.

2. The comma enables some interesting statements. Consider

the following section of code.

i = 10

j = (i = 12, i + 8);

When this code finishes executing, j has the value of 20—

even though this is not necessarily clear. In the first state-

ment, i is assigned 10. In the second statement, the comma

causes i to be assigned a value of 12, then j is assigned the

value of i + 8, or 20.

3. In the following section of code, ans is assigned the value

of 12, because the assignment before the comma is per-

formed first. Despite this right-to-left associativity of the

assignment operator, the comma’s sequence point forces

the assignment of 12 to x before x is assigned to ans.

ans = (y = 8, x = 12);

When this fragment finishes, y contains 8, x contains 12, and

ans also contains 12.

Bitwise Operators
The bitwise operators manipulate internal representations of

data and not just “values in variables” as the other operators do.

These bitwise operators require an understanding of Appendix A’s

binary numbering system, as well as a computer’s memory. This

section introduces the bitwise operators. The bitwise operators are

used for advanced programming techniques and are generally used

in much more complicated programs than this book covers.

Some people program in C++ for years and never learn the

bitwise operators. Nevertheless, understanding them can help you

improve a program’s efficiency and enable you to operate at a more

advanced level than many other programming languages allow.

235

EXAMPLE
C++ By

Bitwise Logical Operators

There are four bitwise logical operators, and they are shown in

Table 11.2. These operators work on the binary representations of

integer data. This enables systems programmers to manipulate

internal bits in memory and in variables. The bitwise operators are

not just for systems programmers, however. Application program-

mers also can improve their programs’ efficiency in several ways.

Table 11.2. Bitwise logical operators.

Operator Meaning

& Bitwise AND

| Bitwise inclusive OR

^ Bitwise exclusive OR

~ Bitwise 1’s complement

Each of the bitwise operators makes a bit-by-bit comparison of

internal data. Bitwise operators apply only to character and integer

variables and constants, and not to floating-point data. Because

binary numbers consist of 1s and 0s, these 1s and 0s (called bits) are

compared to each other to produce the desired result for each

bitwise operator.

Before you study the examples, you should understand Table

11.3. It contains truth tables that describe the action of each bitwise

operator on an integer’s—or character’s—internal-bit patterns.

Table 11.3. Truth tables.

Bitwise AND (&)

0 & 0 = 0

0 & 1 = 0

1 & 0 = 0

1 & 1 = 1

Bitwise operators
make bit-by-bit
comparisons of
internal data.

continues

Chapter 11 ♦ Additional C++ Operators

236

Table 11.3. Continued.

Bitwise inclusive OR (|)

0 | 0 = 0

0 | 1 = 1

1 | 0 = 1

1 | 1 = 1

Bitwise exclusive OR (^)

0 ^ 0 = 0

0 ^ 1 = 1

1 ^ 0 = 1

1 ^ 1 = 0

Bitwise 1’s complement (~)

~0 = 1

~1 = 0

In bitwise truth tables, you can replace the 1 and 0 with True

and False, respectively, if it helps you to understand the result better.

For the bitwise AND (&) truth table, both bits being compared by the

& operator must be True for the result to be True. In other words,

“True AND True results in True.”

TIP: By replacing the 1s and 0s with True and False, you might

be able to relate the bitwise operators to the regular logical

operators, && and ||, that you use for if comparisons.

The | bitwise operator is sometimes called the bitwise inclusive
OR operator. If one side of the | operator is 1 (True)—or if both sides

are 1—the result is 1 (True).

The ̂ operator is called bitwise exclusive OR. It means that either

side of the ^ operator must be 1 (True) for the result to be 1 (True), but

both sides cannot be 1 (True) at the same time.

For bitwise ^, one
side or the other—
but not both—must
be 1.

237

EXAMPLE
C++ By

The ~ operator, called bitwise 1’s complement, reverses each bit to

its opposite value.

NOTE: Bitwise 1’s complement does not negate a number. As

Appendix A, “Memory Addressing, Binary, and Hexadecimal

Review,” shows, most computers use a 2’s complement to

negate numbers. The bitwise 1’s complement reverses the bit

pattern of numbers, but it doesn’t add the additional 1 as the 2’s

complement requires.

You can test and change individual bits inside variables to

check for patterns of data. The following examples help to illustrate

each of the four bitwise operators.

Examples

1. If you apply the bitwise & operator to numerals 9 and 14, you

receive a result of 8. Figure 11.4 shows you why this is so.

When the binary values of 9 (1001) and 14 (1110) are com-

pared on a bitwise & basis, the resulting bit pattern is 8

(1000).

Figure 11.4. Performing bitwise & on 9 and 14.

In a C++ program, you can code this bitwise comparison as

follows.

Make result equal to the binary value of 9 (1001) ANDed to the
binary value of 14 (1110).

result = 9 & 14;

Chapter 11 ♦ Additional C++ Operators

238

The result variable holds 8, which is the result of the bitwise

&. The 9 (binary 1001) or 14 (binary 1110)—or both—also can

be stored in variables with the same result.

2. When you apply the bitwise | operator to the numbers 9 and

14, you get 15. When the binary values of 9 (1001) and 14

(1110) are compared on a bitwise | basis, the resulting bit

pattern is 15 (1111). result’s bits are 1 (True) in every posi-

tion where a 1 appears in both numbers.

In a C++ program, you can code this bitwise comparison as

follows:

result = 9 | 14;

The result variable holds 15, which is the result of the

bitwise |. The 9 or 14 (or both) also can be stored in

variables.

3. The bitwise ^ applied to 9 and 14 produces 7. Bitwise ^ sets

the resulting bits to 1 if one number or the other’s bit is 1, but

not if both of the matching bits are 1 at the same time.

In a C++ program, you can code this bitwise comparison as

follows:

result = 9 ^ 14;

The result variable holds 7 (binary 0111), which is the result

of the bitwise ^. The 9 or 14 (or both) also can be stored in

variables with the same result.

4. The bitwise ~ simply negates each bit. It is a unary bitwise

operator because you can apply it to only a single value at

any one time. The bitwise ~ applied to 9 results in 6, as

shown in Figure 11.5.

Figure 11.5. Performing bitwise ~ on the number 9.

239

EXAMPLE
C++ By

In a C++ program, you can code this bitwise operation like

this:

result = ~9;

The result variable holds 6, which is the result of the bit-

wise ~. The 9 can be stored in a variable with the same result.

5. You can take advantage of the bitwise operators to perform

tests on data that you cannot do as efficiently in other ways.

For example, suppose you want to know if the user typed an

odd or even number (assuming integers are being input).

You can use the modulus operator (%) to determine whether

the remainder—after dividing the input value by 2—is 0

or 1. If the remainder is 0, the number is even. If the remain-

der is 1, the number is odd.

The bitwise operators are more efficient than other operators

because they directly compare bit patterns without using

any mathematical operations.

Because a number is even if its bit pattern ends in a 0 and

odd if its bit pattern ends in 1, you also can test for odd or

even numbers by applying the bitwise & to the data and to a

binary 1. This is more efficient than using the modulus

operator. The following program informs users if their input

value is odd or even using this technique.

Identify the file and include the input/output header file. This
program tests for odd or even input. You need a place to put the
user’s number, so declare the input variable as an integer.

Ask the user for the number to be tested. Put the user’s answer in
input. Use the bitwise operator, &, to test the number. If the bit on
the extreme right in input is 1, tell the user that the number is odd.
If the bit on the extreme right in input is 0, tell the user that the
number is even.

// Filename: C11ODEV.CPP

// Uses a bitwise & to determine whether a

// number is odd or even.

#include <iostream.h>

main()

{

Chapter 11 ♦ Additional C++ Operators

240

Only bit 6
is different

 int input; // Will hold user’s number

 cout << “What number do you want me to test? “;

 cin >> input;

 if (input & 1) // True if result is 1;

 // otherwise it is false (0)

 { cout << “The number “ << input << “ is odd\n”; }

 else

 { cout << “The number “ << input << “ is even\n”; }

 return 0;

}

6. The only difference between the bit patterns for uppercase

and lowercase characters is bit number 5 (the third bit from

the left, as shown in Appendix A, “Memory Addressing,

Binary, and Hexadecimal Review”). For lowercase letters, bit

5 is a 1. For uppercase letters, bit 5 is a 0. Figure 11.6 shows

how A and B differ from a and b by a single bit.

Only bit 6
is different

Figure 11.6. Bitwise difference between two uppercase and two lower-
case ASCII letters.

To convert a character to uppercase, you have to turn off

(change to a 0) bit number 5. You can apply a bitwise & to the

input character and 223 (which is 11011111 in binary) to turn

off bit 5 and convert any input character to its uppercase

equivalent. If the number is already in uppercase, this

bitwise & does not change it.

The 223 (binary 11011111) is called a bit mask because it

masks (just as masking tape masks areas not to be painted)

bit 5 so it becomes 0, if it is not already. The following

program does this to ensure that users typed uppercase

characters when they were asked for their initials.

241

EXAMPLE
C++ By

// Filename: C11UPCS1.CPP

// Converts the input characters to uppercase

// if they aren’t already.

#include <iostream.h>

main()

{

 char first, middle, last; // Will hold user’s initials

 int bitmask=223; // 11011111 in binary

 cout << “What is your first initial? “;

 cin >> first;

 cout << “What is your middle initial? “;

 cin >> middle;

 cout << “What is your last initial? “;

 cin >> last;

 // Ensure that initials are in uppercase.

 first = first & bitmask; // Turn off bit 5 if

 middle = middle & bitmask; // it is not already

 last = last & bitmask; // turned off.

 cout << “Your initials are “ << first << “ “ <<

 middle << “ “ << last;

 return 0;

}

The following output shows what happens when two of the

initials are typed with lowercase letters. The program con-

verts them to uppercase before printing them again. Al-

though there are other ways to convert to lowercase, none

are as efficient as using the & bitwise operator.

What is your first initial? g

What is your middle initial? M

What is your last initial? p

Your initials are: G M P

Chapter 11 ♦ Additional C++ Operators

242

Review Questions
The answers to the review questions are in Appendix B.

1. What set of statements does the conditional operator

replace?

2. Why is the conditional operator called a “ternary” operator?

3. Rewrite the following conditional operator as an if-else

statement.

ans = (a == b) ? c + 2 : c + 3;

4. True or false: The following statements produce the same

results.

var++;

and

var = var + 1;

5. Why is using the increment and decrement operators more

efficient than using the addition and subtraction operators?

6. What is a sequence point?

7. Can the output of the following code section be determined?

age = 20;

printf(“You are now %d, and will be %d in one year”,

 age, age++);

8. What is the output of the following program section?

char name[20] = “Mike”;

cout << “The size of name is “ << sizeof(name) << “\n”;

9. What is the result of each of the following bitwise True-False

expressions?

a. 1 ^ 0 & 1 & 1 | 0

b. 1 & 1 & 1 & 1

c. 1 ^ 1 ^ 1 ^ 1

d. ~(1 ^ 0)

243

EXAMPLE
C++ By

Review Exercises
1. Write a program that prints the numerals from 1 to 10. Use

ten different couts and only one variable called result to hold

the value before each cout. Use the increment operator to

add 1 to result before each cout.

2. Write a program that asks users for their ages. Using a single

printf() that includes a conditional operator, print on-screen

the following if the input age is over 21,

You are not a minor.

or print this otherwise:

You are still a minor.

This printf() might be long, but it helps to illustrate how the

conditional operator can work in statements where if-else

logic does not.

3. Use the conditional operator—and no if-else statements—to

write the following tax-calculation routine: A family pays no

tax if its annual salary is less than $5,000. It pays a 10 percent

tax if the salary range begins at $5,000 and ends at $9,999. It

pays a 20 percent tax if the salary range begins at $10,000

and ends at $19,999. Otherwise, the family pays a 30 percent

tax.

4. Write a program that converts an uppercase letter to a

lowercase letter by applying a bitmask and one of the bit-

wise logical operators. If the character is already in lower-

case, do not change it.

Summary
Now you have learned almost every operator in the C++

language. As explained in this chapter, conditional, increment, and

decrement are three operators that enable C++ to stand apart from

many other programming languages. You must always be aware of

the precedence table whenever you use these, as you must with all

operators.

Chapter 11 ♦ Additional C++ Operators

244

The sizeof and sequence point operators act unlike most others.

The sizeof is a compile operator, and it works in a manner similar to

the #define preprocessor directive because they are both replaced by

their values at compile time. The sequence point enables you to have

multiple statements on the same line—or in a single expression.

Reserve the sequence point for declaring variables only because it

can be unclear when it’s combined with other expressions.

This chapter concludes the discussion on C++ operators. Now

that you can compute just about any result you will ever need, it is

time to discover how to gain more control over your programs. The

next few chapters introduce control loops that give you repetitive

power in C++.

245

EXAMPLE
C++ By

12

The while Loop

The repetitive capabilities of computers make them good tools for

processing large amounts of information. Chapters 12-15 introduce

you to C++ constructs, which are the control and looping commands

of programming languages. C++ constructs include powerful, but

succinct and efficient, looping commands similar to those of other

languages you already know.

The while loops enable your programs to repeat a series of

statements, over and over, as long as a certain condition is always

met. Computers do not get “bored” while performing the same tasks

repeatedly. This is one reason why they are so important in business

data processing.

This chapter teaches you the following:

♦ The while loop

♦ The concept of loops

♦ The do-while loop

♦ Differences between if and while loops

♦ The exit() function

♦ The break statement

♦ Counters and totals

Chapter 12 ♦ The while Loop

246

After completing this chapter, you should understand the first

of several methods C++ provides for repeating program sections.

This chapter’s discussion of loops includes one of the most impor-

tant uses for looping: creating counter and total variables.

The while Statement
The while statement is one of several C++ construct statements.

Each construct (from construction) is a programming language state-

ment—or a series of statements—that controls looping. The while,

like other such statements, is a looping statement that controls the

execution of a series of other statements. Looping statements cause

parts of a program to execute repeatedly, as long as a certain

condition is being met.

The format of the while statement is

while (test expression)

 { block of one or more C++ statements; }

The parentheses around test expression are required. As long

as test expression is True (nonzero), the block of one or more C++

statements executes repeatedly until test expression becomes False

(evaluates to zero). Braces are required before and after the body of

the while loop, unless you want to execute only one statement. Each

statement in the body of the while loop requires an ending semi-

colon.

The placeholder test expression usually contains relational,

and possibly logical, operators. These operators provide the True-

False condition checked in test expression. If test expression is False

when the program reaches the while loop for the first time, the body

of the while loop does not execute at all. Regardless of whether the

body of the while loop executes no times, one time, or many times,

the statements following the while loop’s closing brace execute if test

expression becomes False.

Because test expression determines when the loop finishes, the

body of the while loop must change the variables used in test

expression. Otherwise, test expression never changes and the while

loop repeats forever. This is known as an infinite loop, and you should

avoid it.

The body of a
while loop
executes repeatedly
as long as test
expression is True.

247

EXAMPLE
C++ By

TIP: If the body of the while loop contains only one statement,

the braces surrounding it are not required. It is a good habit to

enclose all while loop statements in braces, however, because if

you have to add statements to the body of the while loop later,

your braces are already there.

The Concept of Loops
You use the loop concept in everyday life. Any time you have

to repeat the same procedure, you are performing a loop—just as

your computer does with the while statement. Suppose you are

wrapping holiday gifts. The following statements represent the

looping steps (in while format) that you follow while gift-wrapping.

while (there are still unwrapped gifts)
 { Get the next gift;

Cut the wrapping paper;
Wrap the gift;
Put a bow on the gift;
Fill out a name card for the gift;
Put the wrapped gift with the others; }

Whether you have 3, 15, or 100 gifts to wrap, you use this

procedure (loop) repeatedly until every gift is wrapped. For an

example that is more easily computerized, suppose you want to total

all the checks you wrote in the previous month. You could perform

the following loop.

while (there are still checks from the last month to be totaled)
 { Add the amount of the next check to the total; }

The body of this pseudocode while loop has only one statement,

but that single statement must be performed until you have added

each one of the previous month’s checks. When this loop ends (when

no more checks from the previous month remain to be totaled), you

have the result.

The body of a while loop can contain one or more C++ state-

ments, including additional while loops. Your programs will be

Chapter 12 ♦ The while Loop

248

more readable if you indent the body of a while loop a few spaces to

the right. The following examples illustrate this.

Examples

1. Some programs presented earlier in the book require user

input with cin. If users do not enter appropriate values, these

programs display an error message and ask the user to enter

another value, which is an acceptable procedure.

Now that you understand the while loop construct, however,

you should put the error message inside a loop. In this way,

users see the message continually until they type proper

input values, rather than once.

The following program is short, but it demonstrates a while

loop that ensures valid keyboard input. It asks users

whether they want to continue. You can incorporate this

program into a larger one that requires user permission to

continue. Put a prompt, such as the one presented here, at

the bottom of a text screen. The text remains on-screen until

the user tells the program to continue executing.

Identify the file and include the necessary header file. In this
program, you want to ensure the user enters Y or N.
You have to store the user’s answer, so declare the ans variable as a
character. Ask the users whether they want to continue, and get
the response. If the user doesn’t type Y or N, ask the user for
another response.

// Filename: C12WHIL1.CPP

// Input routine to ensure user types a

// correct response. This routine can be part

// of a larger program.

#include <iostream.h>

main()

{

 char ans;

 cout << “Do you want to continue (Y/N)? “;

 cin >> ans; // Get user’s answer

249

EXAMPLE
C++ By

 while ((ans != ‘Y’) && (ans != ‘N’))

 { cout << “\nYou must type a Y or an N\n”; // Warn

 // and ask

 cout << “Do you want to continue (Y/N)?”; // again.

 cin >> ans;

 } // Body of while loop ends here.

 return 0;

}

Notice that the two cin functions do the same thing. You

must use an initial cin, outside the while loop, to provide an

answer for the while loop to check. If users type something

other than Y or N, the program prints an error message, asks

for another answer, then checks the new answer. This vali-

dation method is preferred over one where the reader only

has one additional chance to succeed.

The while loop tests the test expression at the top of the loop.

This is why the loop might never execute. If the test is

initially False, the loop does not execute even once. The

output from this program is shown as follows. The program

repeats indefinitely, until the relational test is True (as soon

as the user types either Y or N).

Do you want to continue (Y/N)? k

You must type a Y or an N

Do you want to continue (Y/N)? c

You must type a Y or an N

Do you want to continue (Y/N)? s

You must type a Y or an N

Do you want to continue (Y/N)? 5

You must type a Y or an N

Do you want to continue (Y/N)? Y

2. The following program is an example of an invalid while

loop. See if you can find the problem.

Chapter 12 ♦ The while Loop

250

// Filename: C12WHBAD.CPP

// Bad use of a while loop.

#include <iostream.h>

main()

{

 int a=10, b=20;

 while (a > 5)

 { cout << “a is “ << a << “, and b is “ << b << “\n”;

 b = 20 + a; }

 return 0;

}

This while loop is an example of an infinite loop. It is vital

that at least one statement inside the while changes a variable

in the test expression (in this example, the variable a); other-

wise, the condition is always True. Because the variable a

does not change inside the while loop, this program will

never end.

TIP: If you inadvertently write an infinite loop, you must stop

the program yourself. If you use a PC, this typically means

pressing Ctrl-Break. If you are using a UNIX-based system,

your system administrator might have to stop your program’s

execution.

3. The following program asks users for a first name, then uses

a while loop to count the number of characters in the name.

This is a string length program; it counts characters until it

reaches the null zero. Remember that the length of a string

equals the number of characters in the string, not including

the null zero.

// Filename: C12WHIL2.CPP

// Counts the number of letters in the user’s first name.

#include <iostream.h>

main()

{

 char name[15]; // Will hold user’s first name

251

EXAMPLE
C++ By

 int count=0; // Will hold total characters in name

 // Get the user’s first name

 cout << “What is your first name? “;

 cin >> name;

 while (name[count] > 0) // Loop until null zero reached.

 { count++; } // Add 1 to the count.

 cout << “Your name has “ << count << “ characters”;

 return 0;

}

The loop continues as long as the value of the next character

in the name array is greater than zero. Because the last charac-

ter in the array is a null zero, the test is False on the name’s

last character and the statement following the body of the

loop continues.

NOTE: A built-in string function called strlen() determines

the length of strings. You learn about this function in Chap-

ter 22, “Character, String, and Numeric Functions.”

4. The previous string-length program’s while loop is not as

efficient as it could be. Because a while loop fails when its test

expression is zero, there is no need for the greater-than test.

By changing the test expression as the following program

shows, you can improve the efficiency of the string length

count.

// Filename: C12WHIL3.CPP

// Counts the number of letters in the user’s first name.

#include <iostream.h>

main()

{

 char name[15]; // Will hold user’s first name

 int count=0; // Will hold total characters in name

 // Get the user’s first name

Chapter 12 ♦ The while Loop

252

 cout << “What is your first name? “;

 cin >> name;

 while (name[count]) // Loop until null zero is reached.

 { count++; } // Add 1 to the count.

 cout << “Your name has “ << count << “ characters”;

 return 0;

}

The do-while Loop
The do-while statement controls the do-while loop, which is

similar to the while loop except the relational test occurs at the end

(rather than beginning) of the loop. This ensures the body of the loop

executes at least once. The do-while tests for a positive relational test;
as long as the test is True, the body of the loop continues to execute.

The format of the do-while is

do

 { block of one or more C++ statements; }

while (test expression)

test expression must be enclosed in parentheses, just as it must

in a while statement.

Examples

1. The following program is just like the first one you saw with

the while loop (C12WHIL1.CPP), except the do-while is used.

Notice the placement of test expression. Because this expres-

sion concludes the loop, user input does not have to appear

before the loop and again in the body of the loop.

// Filename: C12WHIL4.CPP

// Input routine to ensure user types a

// correct response. This routine might be part

// of a larger program.

The body of the
do-while loop
executes at least
once.

253

EXAMPLE
C++ By

#include <iostream.h>

main()

{

 char ans;

 do

 { cout << “\nYou must type a Y or an N\n”; // Warn

 // and ask

 cout << “Do you want to continue (Y/N) ?”; // again.

 cin >> ans; } // Body of while loop

 // ends here.

 while ((ans != ‘Y’) && (ans != ‘N’));

 return 0;

}

2. Suppose you are entering sales amounts into the computer

to calculate extended totals. You want the computer to print

the quantity sold, part number, and extended total (quantity

times the price per unit), as the following program does.

// Filename: C12INV1.CPP

// Gets inventory information from user and prints

// an inventory detail listing with extended totals.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int part_no, quantity;

 float cost, ext_cost;

 cout << “*** Inventory Computation ***\n\n”; // Title

 // Get inventory information.

 do

 { cout << “What is the next part number (-999 to end)? “;

 cin >> part_no;

 if (part_no != -999)

 { cout << “How many were bought? “;

 cin >> quantity;

 cout << “What is the unit price of this item? “;

Chapter 12 ♦ The while Loop

254

 cin >> cost;

 ext_cost = cost * quantity;

 cout << “\n” << quantity << “ of # “ << part_no <<

 “ will cost “ << setprecision(2) <<

 ext_cost;

 cout << “\n\n\n”; // Print two blank lines.

 }

 } while (part_no != -999); // Loop only if part

 // number is not -999.

 cout << “End of inventory computation\n”;

 return 0;

}

Here is the output from this program:

*** Inventory Computation ***

What is the next part number (-999 to end)? 213

How many were bought? 12

What is the unit price of this item? 5.66

12 of # 213 will cost 67.92

What is the next part number (-999 to end)? 92

How many were bought? 53

What is the unit price of this item? .23

53 of # 92 will cost 12.19

What is the next part number (-999 to end)? -999

End of inventory computation

The do-while loop controls the entry of the customer sales

information. Notice the “trigger” that ends the loop. If the

user enters –999 for the part number, the do-while loop quits

because no part numbered –999 exists in the inventory.

However, this program can be improved in several ways.

The invoice can be printed to the printer rather than the

255

EXAMPLE
C++ By

screen. You learn how to direct your output to a printer in

Chapter 21, “Device and Character Input/Output.” Also, the

inventory total (the total amount of the entire order) can be

computed. You learn how to total such data in the “Counters

and Totals” section later in this chapter.

The if Loop Versus the while
Loop

Some beginning programmers confuse the if statement with

loop constructs. The while and do-while loops repeat a section of code

multiple times, depending on the condition being tested. The if

statement may or may not execute a section of code; if it does, it

executes that section only once.

Use an if statement when you want to conditionally execute a

section of code once, and use a while or do-while loop if you want to

execute a section more than once. Figure 12.1 shows differences

between the if statement and the two while loops.

Body executes only
once if test is true.

Test at top of loop.

Body loops continuously
as long as test is true.

Test at top of loop.

Figure 12.1. Differences between the if statement and the two while
loops.

Chapter 12 ♦ The while Loop

256

The exit() Function and break
Statement

C++ provides the exit() function as a way to leave a program

early (before its natural finish). The format of exit() is

exit(status);

where status is an optional integer variable or literal. If you are

familiar with your operating system’s return codes, status enables

you to test the results of C++ programs. In DOS, status is sent to the

operating system’s errorlevel environment variable, where it can be

tested by batch files.

Many times, something happens in a program that requires the

program’s termination. It might be a major problem, such as a disk

drive error. Perhaps users indicate that they want to quit the

program—you can tell this by giving your users a special value to

type with cin or scanf(). You can isolate the exit() function on a line

by itself, or anywhere else that a C++ statement or function can

appear. Typically, exit() is placed in the body of an if statement to

end the program early, depending on the result of some relational

test.

Always include the stdlib.h header file when you use exit().

This file describes the operation of exit() to your program. When-

ever you use a function in a program, you should know its corre-

sponding #include header file, which is usually listed in the compiler’s

reference manual.

Instead of exiting an entire program, however, you can use the

break statement to exit the current loop. The format of break is

break;

The break statement can go anywhere in a C++ program that

any other statement can go, but it typically appears in the body of a

while or do-while loop, used to leave the loop early. The following

examples illustrate the exit() function and the break statement.

NOTE: The break statement exits only the most current loop. If

you have a while loop in another while loop, break exits only the

internal loop.

The exit()
function provides an
early exit from your
program.

The break
statement ends the
current loop.

257

EXAMPLE
C++ By

Examples

1. Here is a simple program that shows you how the exit()

function works. This program looks as though it prints

several messages on-screen, but it doesn’t. Because exit()

appears early in the code, this program quits immediately

after main()’s opening brace.

// C12EXIT1.CPP

// Quits early due to exit() function.

#include <iostream.h>

#include <stdlib.h> // Required for exit().

main()

{

 exit(0); // Forces program to end here.

 cout << “C++ programming is fun.\n”;

 cout << “I like learning C++ by example!\n”;

 cout << “C++ is a powerful language that is “ <<

 “not difficult to learn.”;

 return 0;

}

2. The break statement is not intended to be as strong a pro-

gram exit as the exit() function. Whereas exit() ends the

entire program, break quits only the loop that is currently

active. In other words, break is usually placed inside a while

or do-while loop to “simulate” a finished loop. The statement

following the loop executes after a break occurs, but the

program does not quit as it does with exit().

The following program appears to print C++ is fun! until the

user enters N to stop it. The message prints only once, how-

ever, because the break statement forces an early exit from

the loop.

// Filename: C12BRK.CPP

// Demonstrates the break statement.

#include <iostream.h>

main()

Chapter 12 ♦ The while Loop

258

{

 char user_ans;

 do

 { cout << “C++ is fun! \n”;

 break; // Causes early exit.

 cout << “Do you want to see the message again (N/Y)? “;

 cin >> user_ans;

 } while (user_ans == ‘Y’);

 cout << “That’s all for now\n”;

 return 0;

}

This program always produces the following output:

C++ is fun!

That’s all for now

You can tell from this program’s output that the break state-

ment does not allow the do-while loop to reach its natural

conclusion, but causes it to finish early. The final cout prints

because only the current loop—and not the entire pro-

gram—exits with the break statement.

3. Unlike the previous program, break usually appears after an

if statement. This makes it a conditional break, which occurs

only if the relational test of the if statement is True.

A good illustration of this is the inventory program you saw

earlier (C12INV1.CPP). Even though the users enter –999

when they want to quit the program, an additional if test is

needed inside the do-while. The –999 ends the do-while loop,

but the body of the do-while still needs an if test, so the

remaining quantity and cost prompts are not given.

If you insert a break after testing for the end of the user’s

input, as shown in the following program, the do-while will

not need the if test. The break quits the do-while as soon as

the user signals the end of the inventory by entering –999 as

the part number.

259

EXAMPLE
C++ By

// Filename: C12INV2.CPP

// Gets inventory information from user and prints

// an inventory detail listing with extended totals.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int part_no, quantity;

 float cost, ext_cost;

 cout << “*** Inventory Computation ***\n\n”; // Title

 // Get inventory information

 do

 { cout << “What is the next part number (-999 to end)? “;

 cin >> part_no;

 if (part_no == -999)

 { break; } // Exit the loop if

 // no more part numbers.

 cout << “How many were bought? “;

 cin >> quantity;

 cout << “What is the unit price of this item? “;

 cin >> cost;

 cout << “\n” << quantity << “ of # “ << part_no <<

 “ will cost “ << setprecision(2) << cost*quantity;

 cout << “\n\n\n”; // Print two blank lines.

 } while (part_no != -999); // Loop only if part

 // number is not -999.

 cout << “End of inventory computation\n”;

 return 0;

}

4. You can use the following program to control the two other

programs. This program illustrates how C++ can pass in-

formation to DOS with exit(). This is your first example of a

menu program. Similar to a restaurant menu, a C++ menu

program lists possible user choices. The users decide what

they want the computer to do from the menu’s available

options. The mailing list application in Appendix F, “The

Mailing List Application,” uses a menu for its user options.

Chapter 12 ♦ The while Loop

260

This program returns either a 1 or a 2 to its operating system,

depending on the user’s selection. It is then up to the oper-

ating system to test the exit value and run the proper

program.

// Filename: C12EXIT2.CPP

// Asks user for his or her selection and returns

// that selection to the operating system with exit().

#include <iostream.h>

#include <stdlib.h>

main()

{

 int ans;

 do

 { cout << “Do you want to:\n\n”;

 cout << “\t1. Run the word processor \n\n”;

 cout << “\t2. Run the database program \n\n”;

 cout << “What is your selection? “;

 cin >> ans;

 } while ((ans != 1) && (ans != 2)); // Ensures user

 // enters 1 or 2.

 exit(ans); // Return value to operating system.

 return 0; // Return does not ever execute due to exit().

}

Counters and Totals
Counting is important for many applications. You might have

to know how many customers you have or how many people scored

over a certain average in your class. You might want to count how

many checks you wrote in the previous month with your computer-

ized checkbook system.

Before you develop C++ routines to count occurrences, think of

how you count in your own mind. If you were adding a total number

of something, such as the stamps in your stamp collection or the

261

EXAMPLE
C++ By

number of wedding invitations you sent out, you would probably

do the following:

Start at 0, and add 1 for each item being counted. When you are finished,
you should have the total number (or the total count).

This is all you do when you count with C++: Assign 0 to a

variable and add 1 to it every time you process another data value.

The increment operator (++) is especially useful for counting.

Examples

1. To illustrate using a counter, the following program prints

“Computers are fun!” on-screen 10 times. You can write a

program that has 10 cout statements, but that would not be

efficient. It would also be too cumbersome to have 5000 cout

statements, if you wanted to print that same message 5000

times.

By adding a while loop and a counter that stops after a

certain total is reached, you can control this printing, as the

following program shows.

// Filename: C12CNT1.CPP

// Program to print a message 10 times.

#include <iostream.h>

main()

{

 int ctr = 0; // Holds the number of times printed.

 do

 { cout << “Computers are fun!\n”;

 ctr++; // Add one to the count,

 // after each cout.

 } while (ctr < 10); // Print again if fewer

 // than 10 times.

 return 0;

}

Chapter 12 ♦ The while Loop

262

The output from this program is shown as follows. Notice

that the message prints exactly 10 times.

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

The heart of the counting process in this program is the

statement that follows.

ctr++;

You learned earlier that the increment operator adds 1 to a

variable. In this program, the counter variable is

incremented each time the do-while loops. Because the only

operation performed on this line is the increment of ctr, the

prefix increment (++ctr) produces the same results.

2. The previous program not only added to the counter vari-

able, but also performed the loop a specific number of times.

This is a common method of conditionally executing parts of

a program for a fixed number of times.

The following program is a password program. A password

is stored in an integer variable. The user must correctly enter

the matching password in three attempts. If the user does

not type the correct password in that time, the program

ends. This is a common method that dial-up computers use.

They enable a caller to try the password a fixed number of

times, then hang up the phone if that limit is exceeded. This

helps deter people from trying hundreds of different pass-

words at any one sitting.

If users guess the correct password in three tries, they see the

secret message.

263

EXAMPLE
C++ By

// Filename: C12PASS1.CPP

// Program to prompt for a password and

// check it against an internal one.

#include <iostream.h>

#include <stdlib.h>

main()

{

 int stored_pass = 11862;

 int num_tries = 0; // Counter for password attempts.

 int user_pass;

 while (num_tries < 3) // Loop only three

 // times.

 { cout << “What is the password (You get 3 tries...)? “;

 cin >> user_pass;

 num_tries++; // Add 1 to counter.

 if (user_pass == stored_pass)

 { cout << “You entered the correct password.\n”;

 cout << “The cash safe is behind the picture “ <<

 “of the ship.\n”;

 exit(0);

 }

 else

 { cout << “You entered the wrong password.\n”;

 if (num_tries == 3)

 { cout << “Sorry, you get no more chances”; }

 else

 { cout << “You get “ << (3-num_tries) <<

 “ more tries...\n”;}

 }

 } // End of while loop.

 exit(0);

 return 0;

}

This program gives users three chances in case they type

some mistakes. After three unsuccessful attempts, the pro-

gram quits without displaying the secret message.

Chapter 12 ♦ The while Loop

264

3. The following program is a letter-guessing game. It includes

a message telling users how many tries they made before

guessing the correct letter. A counter counts the number of

these tries.

// Filename: C12GUES.CPP

// Letter-guessing game.

#include <iostream.h>

main()

{

 int tries = 0;

 char comp_ans, user_guess;

 // Save the computer’s letter

 comp_ans = ‘T’; // Change to a different

 // letter if desired.

 cout << “I am thinking of a letter...”;

 do

 { cout << “What is your guess? “;

 cin >> user_guess;

 tries++; // Add 1 to the guess-counting variable.

 if (user_guess > comp_ans)

 { cout << “Your guess was too high\n”;

 cout << “\nTry again...”;

 }

 if (user_guess < comp_ans)

 { cout << “Your guess was too low\n”;

 cout << “\nTry again...”;

 }

 } while (user_guess != comp_ans); // Quit when a

 // match is found.

 // They got it right, let them know.

 cout << “*** Congratulations! You got it right! \n”;

 cout << “It took you only “ << tries <<

 “ tries to guess.”;

 return 0;

}

265

EXAMPLE
C++ By

Here is the output of this program:

I am thinking of a letter...What is your guess? E

Your guess was too low

Try again...What is your guess? X

Your guess was too high

Try again...What is your guess? H

Your guess was too low

Try again...What is your guess? O

Your guess was too low

Try again...What is your guess? U

Your guess was too high

Try again...What is your guess? Y

Your guess was too high

Try again...What is your guess? T

*** Congratulations! You got it right!

It took you only 7 tries to guess.

Producing Totals

Writing a routine to add values is as easy as counting. Instead

of adding 1 to the counter variable, you add a value to the total

variable. For instance, if you want to find the total dollar amount of

checks you wrote during December, you can start at nothing (0) and

add the amount of every check written in December. Instead of

building a count, you are building a total.

When you want C++ to add values, just initialize a total

variable to zero, then add each value to the total until you have

included all the values.

Chapter 12 ♦ The while Loop

266

Examples

1. Suppose you want to write a program that adds your grades

for a class you are taking. The teacher has informed you that

you earn an A if you can accumulate over 450 points.

The following program keeps asking you for values until

you type –1. The –1 is a signal that you are finished entering

grades and now want to see the total. This program also

prints a congratulatory message if you have enough points

for an A.

// Filename: C12GRAD1.CPP

// Adds grades and determines whether you earned an A.

#include <iostream.h>

include <iomanip.h>

main()

{

 float total_grade=0.0;

 float grade; // Holds individual grades.

 do

 { cout << “What is your grade? (-1 to end) “;

 cin >> grade;

 if (grade >= 0.0)

 { total_grade += grade; } // Add to total.

 } while (grade >= 0.0); // Quit when -1 entered.

 // Control begins here if no more grades.

 cout << “\n\nYou made a total of “ << setprecision(1) <<

 total_grade << “ points\n”;

 if (total_grade >= 450.00)

 { cout << “** You made an A!!”; }

 return 0;

}

Notice that the -1 response is not added to the total number

of points. This program checks for the -1 before adding to

total_grade. Here is the output from this program:

267

EXAMPLE
C++ By

What is your grade? (-1 to end) 87.6

What is your grade? (-1 to end) 92.4

What is your grade? (-1 to end) 78.7

What is your grade? (-1 to end) -1

You made a total of 258.7 points

2. The following program is an extension of the grade-

calculating program. It not only totals the points, but also

computes their average.

To calculate the average grade, the program must first

determine how many grades were entered. This is a subtle

problem because the number of grades to be entered is

unknown in advance. Therefore, every time the user enters a

valid grade (not –1), the program must add 1 to a counter as

well as add that grade to the total variable. This is a combi-

nation counting and totaling routine, which is common in

many programs.

// Filename: C12GRAD2.CPP

// Adds up grades, computes average,

// and determines whether you earned an A.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float total_grade=0.0;

 float grade_avg = 0.0;

 float grade;

 int grade_ctr = 0;

 do

 { cout << “What is your grade? (-1 to end) “;

 cin >> grade;

 if (grade >= 0.0)

 { total_grade += grade; // Add to total.

 grade_ctr ++; } // Add to count.

 } while (grade >= 0.0); // Quit when -1 entered.

Chapter 12 ♦ The while Loop

268

 // Control begins here if no more grades.

 grade_avg = (total_grade / grade_ctr); // Compute

 // average.

 cout << “\nYou made a total of “ << setprecision(1) <<

 total_grade << “ points.\n”;

 cout << “Your average was “ << grade_avg << “\n”;

 if (total_grade >= 450.0)

 { cout << “** You made an A!!”; }

 return 0;

}

Below is the output of this program. Congratulations! You

are on your way to becoming a master C++ programmer.

What is your grade? (-1 to end) 67.8

What is your grade? (-1 to end) 98.7

What is your grade? (-1 to end) 67.8

What is your grade? (-1 to end) 92.4

What is your grade? (-1 to end) -1

You made a total of 326.68 points.

Your average was 81.7

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between the while loop and the

do-while loop?

2. What is the difference between a total variable and a counter

variable?

3. Which C++ operator is most useful for counting?

4. True or false: Braces are not required around the body of

while and do-while loops.

269

EXAMPLE
C++ By

5. What is wrong with the following code?

while (sales > 50)

 cout << “Your sales are very good this month.\n”;

 cout << “You will get a bonus for your high sales\n”;

6. What file must you include as a header file if you use exit()?

7. How many times does this printf() print?

int a=0;

do

 { printf(“Careful \n”);

 a++; }

while (a > 5);

8. How can you inform DOS of the program exit status?

9. What is printed to the screen in the following section of

code?

a = 1;

while (a < 4)

 { cout << “This is the outer loop\n”;

 a++;

 while (a <= 25)

 { break;

 cout << “This prints 25 times\n”; }

 }

Review Exercises
1. Write a program with a do-while loop that prints the numer-

als from 10 to 20 (inclusive), with a blank line between each

number.

2. Write a weather-calculator program that asks for a list of the

previous 10 days’ temperatures, computes the average, and

prints the results. You have to compute the total as the input

occurs, then divide that total by 10 to find the average. Use a

while loop for the 10 repetitions.

Chapter 12 ♦ The while Loop

270

3. Rewrite the program in Exercise 2 using a do-while loop.

4. Write a program, similar to the weather calculator in Exer-

cise 2, but generalize it so it computes the average of any

number of days’ temperatures. (Hint: You have to count the

number of temperatures to compute the final average.)

5. Write a program that produces your own ASCII table on-

screen. Don’t print the first 31 characters because they are

nonprintable. Print the codes numbered 32 through 255 by

storing their numbers in integer variables and printing their

ASCII values using printf() and the “%c” format code.

Summary
This chapter showed you two ways to produce a C++ loop: the

while loop and the do-while loop. These two variations of while loops

differ in where they test their test condition statements. The while

tests at the beginning of its loop, and the do-while tests at the end.

Therefore, the body of a do-while loop always executes at least once.

You also learned that the exit() function and break statement add

flexibility to the while loops. The exit() function terminates the

program, and the break statement terminates only the current loop.

This chapter explained two of the most important applications

of loops: counters and totals. Your computer can be a wonderful tool

for adding and counting, due to the repetitive capabilities offered

with while loops.

The next chapter extends your knowledge of loops by showing

you how to create a determinate loop, called the for loop. This feature

is useful when you want a section of code to loop for a specified

number of times.

273

EXAMPLE
C++ By

13

The for Loop

The for loop enables you to repeat sections of your program for a

specific number of times. Unlike the while and do-while loops, the for

loop is a determinate loop. This means when you write your program

you can usually determine how many times the loop iterates. The

while and do-while loops repeat only until a condition is met. The for

loop does this and more: It continues looping until a count (or

countdown) is reached.

After the final for loop count is reached, execution continues

with the next statement, in sequence. This chapter focuses on the for

loop construct by introducing

♦ The for statement

♦ The concept of for loops

♦ Nested for loops

The for loop is a helpful way of looping through a section of

code when you want to count, or sum , specified amounts, but it does

not replace the while and do-while loops.

Chapter 13 ♦ The for Loop

274

The for Statement
The for statement encloses one or more C++ statements that

form the body of the loop. These statements in the loop continuously

repeat for a specified number of times. You, as the programmer,

control the number of loop repetitions.

The format of the for loop is

for (start expression; test expression; count expression)

{ Block of one or more C++ statements; }

C++ evaluates the start expression before the loop begins.

Typically, the start expression is an assignment statement (such as

ctr=1;), but it can be any legal expression you specify. C++ evaluates

start expression only once, at the top of the loop.

CAUTION: Do not put a semicolon after the right parenthesis.

If you do, the for loop interprets the body of the loop as zero

statements long! It would continue looping—doing nothing
each time—until the test expression becomes False.

Every time the body of the loop repeats, the count expression

executes, usually incrementing or decrementing a variable. The test

expression evaluates to True (nonzero) or False (zero), then deter-

mines whether the body of the loop repeats again.

TIP: If only one C++ statement resides in the for loop’s body,

braces are not required, but they are recommended. If you add

more statements, the braces are there already, reminding you

that they are now needed.

The Concept of for Loops
You use the concept of for loops throughout your day-to-day

life. Any time you have to repeat a certain procedure a specified

number of times, that repetition becomes a good candidate for a

computerized for loop.

The for loop
iterates for a
specified number
of times.

275

EXAMPLE
C++ By

To illustrate the concept of a for loop further, suppose you are

installing 10 new shutters on your house. You must do the following

steps for each shutter:

1. Move the ladder to the location of the shutter.

2. Take a shutter, hammer, and nails up the ladder.

3. Hammer the shutter to the side of the house.

4. Climb down the ladder.

You must perform each of these four steps exactly 10 times,

because you have 10 shutters. After 10 times, you don’t install

another shutter because the job is finished. You are looping through

a procedure that has several steps (the block of the loop). These steps

are the body of the loop. It is not an endless loop because there are

a fixed number of shutters; you run out of shutters only after you

install all 10.

For a less physical example that might be more easily comput-

erized, suppose you have to fill out three tax returns for each of your

teenage children. (If you have three teenage children, you probably

need more than a computer to help you get through the day!) For

each child, you must perform the following steps:

1. Add the total income.

2. Add the total deductions.

3. Fill out a tax return.

4. Put it in an envelope.

5. Mail it.

You then must repeat this entire procedure two more times.

Notice how the sentence before these steps began: For each child. This

signals an idea similar to the for loop construct.

NOTE: The for loop tests the test expression at the top of the

loop. If the test expression is False when the for loop begins, the

body of the loop never executes.

Chapter 13 ♦ The for Loop

276

The Choice of Loops

Any loop construct can be written with a for loop, a while loop,

or a do-while loop. Generally, you use the for loop when you

want to count or loop a specific number of times, and reserve

the while and do-while loops for looping until a False condition

is met.

Examples

1. To give you a glimpse of the for loop’s capabilities, this

example shows you two programs: one that uses a for loop

and one that does not. The first one is a counting program.

Before studying its contents, look at the output. The results

illustrate the for loop concept very well.

Identify the program and include the necessary header file. You
need a counter, so make ctr an integer variable.

1. Add one to the counter.

2. If the counter is less than or equal to 10, print its value and
repeat step one.

The program with a for loop follows:

// Filename: C13FOR1.CPP

// Introduces the for loop.

#include <iostream.h>

main()

{

 int ctr;

 for (ctr=1; ctr<=10; ctr++) // Start ctr at one.

 // Increment through loop.

 { cout << ctr << “\n”; } // Body of for loop.

 return 0;

}

277

EXAMPLE
C++ By

This program’s output is

1

2

3

4

5

6

7

8

9

10

Here is the same program using a do-while loop:

Identify the program and include the necessary header file. You need
a counter, so make ctr an integer variable.

1. Add one to the counter.
2. Print the value of the counter.
3. If the counter is less than or equal to 10, repeat step one.

// Filename: C13WHI1.CPP

// Simulating a for loop with a do-while loop.

#include <iostream.h>

main()

{

 int ctr=1;

 do

 { cout << ctr << “\n”; // Body of do-while loop.

 ctr++; }

 while (ctr <= 10);

 return 0;

}

Notice that the for loop is a cleaner way of controlling the

looping process. The for loop does several things that re-

quire extra statements in a while loop. With for loops, you do

not have to write extra code to initialize variables and incre-

ment or decrement them. You can see at a glance (in the

Chapter 13 ♦ The for Loop

278

expressions in the for statement) exactly how the loop

executes, unlike the do-while, which forces you to look at the

bottom of the loop to see how the loop stops.

2. Both of the following sample programs add the numbers

from 100 to 200. The first one uses a for loop; the second one

does not. The first example starts with a start expression

bigger than 1, thus starting the loop with a bigger count

expression as well.

This program has a for loop:

// Filename: C13FOR2.CPP

// Demonstrates totaling using a for loop.

#include <iostream.h>

main()

{

 int total, ctr;

 total = 0; // Holds a total of 100 to 200.

 for (ctr=100; ctr<=200; ctr++) // ctr is 100, 101,

 // 102,...200

 { total += ctr; } // Add value of ctr to each iteration.

 cout << “The total is “ << total << “\n”;

 return 0;

}

The same program without a for loop follows:

// Filename: C13WHI2.CPP

// A totaling program using a do-while loop.

#include <iostream.h>

main()

{

 int total=0; // Initialize total

 int num=100; // Starting value

 do

 { total += num; // Add to total

 num++; // Increment counter

279

EXAMPLE
C++ By

 } while (num <= 200);

 cout << “The total is “ << total << “\n”;;

 return 0;

}

Both programs produce this output:

The total is 15150

The body of the loop in both programs executes 101 times.

The starting value is 101, not 1 as in the previous example.

Notice that the for loop is less complex than the do-while

because the initialization, testing, and incrementing are

performed in the single for statement.

TIP: Notice how the body of the for loop is indented. This is a

good habit to develop because it makes it easier to see the

beginning and ending of the loop’s body.

3. The body of the for loop can have more than one statement.

The following example requests five pairs of data values:

children’s first names and their ages. It prints the teacher

assigned to each child, based on the child’s age. This illus-

trates a for loop with cout functions, a cin function, and an if

statement in its body. Because exactly five children are

checked, the for loop ensures the program ends after the

fifth child.

// Filename: C13FOR3.CPP

// Program that uses a loop to input and print

// the teacher assigned to each child.

#include <iostream.h>

main()

{

 char child[25]; // Holds child’s first name

 int age; // Holds child’s age

 int ctr; // The for loop counter variable

 for (ctr=1; ctr<=5; ctr++)

 { cout << “What is the next child’s name? “;

Chapter 13 ♦ The for Loop

280

 cin >> child;

 cout << “What is the child’s age? “;

 cin >> age;

 if (age <= 5)

 { cout << “\n” << child << “ has Mrs. “

 << “Jones for a teacher\n”; }

 if (age == 6)

 { cout << “\n” << child << “ has Miss “

 << “Smith for a teacher\n”; }

 if (age >= 7)

 { cout << “\n” << child << “ has Mr. “

 << “Anderson for a teacher\n”; }

 } // Quits after 5 times

 return 0;

}

Below is the output from this program. You can improve this

program even more after learning the switch statement in the

next chapter.

What is the next child’s name? Joe

What is the child’s age? 5

Joe has Mrs. Jones for a teacher

What is the next child’s name? Larry

What is the child’s age? 6

Larry has Miss Smith for a teacher

What is the next child’s name? Julie

What is the child’s age? 9

Julie has Mr. Anderson for a teacher

What is the next child’s name? Manny

What is the child’s age? 6

Manny has Miss Smith for a teacher

What is the next child’s name? Lori

What is the child’s age? 5

Lori has Mrs. Jones for a teacher

281

EXAMPLE
C++ By

4. The previous examples used an increment as the count

expression. You can make the for loop increment the loop

variable by any value. It does not have to increment by 1.

The following program prints the even numbers from 1 to

20. It then prints the odd numbers from 1 to 20. To do this,

two is added to the counter variable (rather than one, as

shown in the previous examples) each time the loop

executes.

// Filename: C13EVOD.CPP

// Prints the even numbers from 1 to 20,

// then the odd numbers from 1 to 20.

#include <iostream.h>

main()

{

 int num; // The for loop variable

 cout << “Even numbers below 21\n”; // Title

 for (num=2; num<=20; num+=2)

 { cout << num << “ “; } // Prints every other number.

 cout << “\nOdd numbers below 20\n”; // A second title

 for (num=1; num<=20; num+=2)

 { cout << num << “ “; } // Prints every other number.

 return 0;

}

There are two loops in this program. The body of each one

consists of a single printf() function. In the first half of the

program, the loop variable, num, is 2 and not 1. If it were 1,

the number 1 would print first, as it does in the odd number

section.

The two cout statements that print the titles are not part of

either loop. If they were, the program would print a title

before each number. The following shows the result of

running this program.

Chapter 13 ♦ The for Loop

282

Even numbers below 21

2 4 6 8 10 12 14 16 18 20

Odd numbers below 20

1 3 5 7 9 11 13 15 17 19

5. You can decrement the loop variable as well. If you do, the

value is subtracted from the loop variable each time through

the loop.

The following example is a rewrite of the counting program.

It produces the reverse effect by showing a countdown.

// Filename: C13CNTD1.CPP

// Countdown to the liftoff.

#include <iostream.h>

main()

{

 int ctr;

 for (ctr=10; ctr!=0; ctr--)

 { cout << ctr << “\n”; } // Print ctr as it

 // counts down.

 cout << “*** Blast off! ***\n”;

 return 0;

}

When decrementing a loop variable, the initial value should

be larger than the end value being tested. In this example,

the loop variable, ctr, counts down from 10 to 1. Each time

through the loop (each iteration), ctr is decremented by one.

You can see how easy it is to control a loop by looking at this

program’s output, as follows.

10

 9

 8

 7

 6

 5

 4

 3

283

EXAMPLE
C++ By

 2

 1

*** Blast Off! ***

TIP: This program’s for loop test illustrates a redundancy

that you can eliminate, thanks to C++. The test expression,
ctr!=0; tells the for loop to continue looping until ctr is not

equal to zero. However, if ctr becomes zero (a False value),

there is no reason to add the additional !=0 (except for clarity).

You can rewrite the for loop as

for (ctr=10; ctr; ctr--)

without loss of meaning. This is more efficient and such an

integral part of C++ that you should become comfortable with

it. There is little loss of clarity once you adjust to it.

6. You also can make a for loop test for something other than a

literal value. The following program combines much of what

you have learned so far. It asks for student grades and

computes an average. Because there might be a different

number of students each semester, the program first asks the

user for the number of students. Next, the program iterates

until the user enters an equal number of scores. It then com-

putes the average based on the total and the number of

student grades entered.

// Filename: C13FOR4.CPP

// Computes a grade average with a for loop.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float grade, avg;

 float total=0.0;

 int num; // Total number of grades.

 int loopvar; // Used to control the for loop

 cout << “\n*** Grade Calculation ***\n\n”; // Title

Chapter 13 ♦ The for Loop

284

 cout << “How many students are there? “;

 cin >> num; // Get total number to enter

 for (loopvar=1; loopvar<=num; loopvar++)

 { cout << “\nWhat is the next student’s grade? “;

 cin >> grade;

 total += grade; } // Keep a running total

 avg = total / num;

 cout << “\n\nThe average of this class is “ <<

 setprecision(1) << avg;

 return 0;

}

Due to the for loop, the total and the average calculations do

not have to be changed if the number of students changes.

7. Because characters and integers are so closely associated in

C++, you can increment character variables in a for loop.

The following program prints the letters A through Z with a

simple for loop.

// Filename: C13FOR5.CPP

// Prints the alphabet with a simple for loop.

#include <iostream.h>

main()

{

 char letter;

 cout << “Here is the alphabet:\n”;

 for (letter=’A’; letter<=’Z’; letter++) // Loops A to Z

 { cout << “ “ << letter; }

 return 0;

}

This program produces the following output:

Here is the alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

285

EXAMPLE
C++ By

8. A for expression can be a blank, or null expression. In the

following for loop, all the expressions are blank:

for (;;)

 { printf(“Over and over...”); }

This for loop iterates forever. Although you should avoid

infinite loops, your program might dictate that you make a

for loop expression blank. If you already initialized the start

expression earlier in the program, you are wasting computer

time to repeat it in the for loop—and C++ does not require it.

The following program omits the start expression and the

count expression, leaving only the for loop’s test expression.
Most the time, you have to omit only one of them. If you use

a for loop without two of its expressions, consider replacing

it with a while loop or a do-while loop.

// Filename: C13FOR6.CPP

// Uses only the test expression in

// the for loop to count by fives.

#include <iostream.h>

main()

{

 int num=5; // Starting value

 cout << “\nCounting by 5s: \n”; // Title

 for (; num<=100;) // Contains only the test expression.

 { cout << num << “\n”;

 num+=5; // Increment expression outside the loop.

 } // End of the loop’s body

 return 0;

}

The output from this program follows:

Counting by 5s:

5

10

15

Chapter 13 ♦ The for Loop

286

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Nested for Loops
Any C++ statement can go inside the body of a for loop—even

another for loop! When you put a loop in a loop, you are creating a

nested loop. The clock in a sporting event works like a nested loop.

You might think this is stretching the analogy a little far, but it truly

works. A football game counts down from 15 minutes to 0. It does

this four times. The first countdown loops from 15 to 0 (for each

minute). That countdown is nested in another that loops from 1 to 4

(for each of the four quarters).

If your program has to repeat a loop more than one time, it is a

good candidate for a nested loop. Figure 13.1 shows two outlines of

nested loops. You can think of the inside loop as looping “faster”

than the outside loop. In the first example, the inside for loop counts

from 1 to 10 before the outside loop (the variable out) can finish its

first iteration. When the outside loop finally does iterate a second

time, the inside loop starts over.

Use nested loops
when you want to
repeat a loop more
than once.

287

EXAMPLE
C++ By

Inside
Loop

First
Inner
Loop

Outside
Loop

Outside
Loop Second

Inner
Loop

Figure 13.1. Outlines of two nested loops.

The second nested loop outline shows two loops in an outside

loop. Both of these loops execute in their entirety before the outside

loop finishes its first iteration. When the outside loop starts its

second iteration, the two inside loops repeat again.

Notice the order of the braces in each example. The inside loop

always finishes, and therefore its ending brace must come before the

outside loop’s ending brace. Indention makes this much clearer

because you can align the braces of each loop.

Nested loops become important when you use them for array

and table processing in Chapter 23, “Introducing Arrays.”

NOTE: In nested loops, the inside loop (or loops) execute

completely before the outside loop’s next iteration.

Chapter 13 ♦ The for Loop

288

Examples

1. The following program contains a loop in a loop—a nested

loop. The inside loop counts and prints from 1 to 5. The

outside loop counts from 1 to 3. The inside loop repeats, in

its entirety, three times. In other words, this program prints

the values 1 to 5 and does so three times.

// Filename: C13NEST1.CPP

// Print the numbers 1-5 three times.

// using a nested loop.

#include <iostream.h>

main()

{

 int times, num; // Outer and inner for loop variables

 for (times=1; times<=3; times++)

 {

 for (num=1; num<=5; num++)

 { cout << num; } // Inner loop body

 cout << “\n”;

 } // End of outer loop

 return 0;

}

The indention follows the standard of for loops; every

statement in each loop is indented a few spaces. Because the

inside loop is already indented, its body is indented another

few spaces. The program’s output follows:

12345

12345

12345

2. The outside loop’s counter variable changes each time

through the loop. If one of the inside loop’s control variables

is the outside loop’s counter variable, you see effects such as

those shown in the following program.

289

EXAMPLE
C++ By

// Filename: C13NEST2.CPP

// An inside loop controlled by the outer loop’s

// counter variable.

#include <iostream.h>

main()

{

 int outer, inner;

 for (outer=5; outer>=1; outer--)

 { for (inner=1; inner<=outer; inner++)

 { cout << inner; } // End of inner loop.

 cout << “\n”;

 }

 return 0;

}

The output from this program follows. The inside loop

repeats five times (as outer counts down from 5 to 1) and

prints from five numbers to one number.

12345

1234

123

12

1

The following table traces the two variables through this

program. Sometimes you have to “play computer” when

learning a new concept such as nested loops. By executing a

line at a time and writing down each variable’s contents, you

create this table.

The outer variable The inner variable

5 1

5 2

5 3

5 4

5 5

4 1

4 2

continues

Chapter 13 ♦ The for Loop

290

The outer variable The inner variable

4 3

4 4

3 1

3 2

3 3

2 1

2 2

1 1

Tip for Mathematicians

The for statement is identical to the mathematical summation

symbol. When you write programs to simulate the summation

symbol, the for statement is an excellent candidate. A nested

for statement is good for double summations.

For example, the following summation

i = 30

Σ (i / 3 * 2)

i = 1

can be rewritten as

total = 0;

for (i=1; i<=30; i++)

 { total += (i / 3 * 2); }

4. A factorial is a mathematical number used in probability

theory and statistics. A factorial of a number is the multi-

plied product of every number from 1 to the number in

question.

291

EXAMPLE
C++ By

For example, the factorial of 4 is 24 because 4 ✕ 3 ✕ 2 ✕ 1 = 24.

The factorial of 6 is 720 because 6 ✕ 5 ✕ 4 ✕ 3 ✕ 2 ✕ 1 = 720. The

factorial of 1 is 1 by definition.

Nested loops are good candidates for writing a factorial

number-generating program. The following program asks

the user for a number, then prints the factorial of that

number.

// Filename: C13FACT.CPP

// Computes the factorial of numbers through

// the user’s number.

#include <iostream.h>

main()

{

 int outer, num, fact, total;

 cout << “What factorial do you want to see? “;

 cin >> num;

 for (outer=1; outer <= num; outer++)

 { total = 1; // Initialize total for each factorial.

 for (fact=1; fact<= outer; fact++)

 { total *= fact; } // Compute each factorial.

 }

 cout << “The factorial for “ << num << “ is “

 << total;

 return 0;

}

The following shows the factorial of seven. You can run this

program, entering different values when asked, and see

various factorials. Be careful: factorials multiply quickly.

(A factorial of 11 won’t fit in an integer variable.)

What factorial do you want to see? 7

The factorial for 7 is 5040

Chapter 13 ♦ The for Loop

292

Review Questions
The answers to the review questions are in Appendix B.

1. What is a loop?

2. True or false: The body of a for loop contains at most one

statement.

3. What is a nested loop?

4. Why might you want to leave one or more expressions out

of the for statement’s parentheses?

5. Which loop “moves” fastest: the inner loop or the outer

loop?

6. What is the output from the following program?

for (ctr=10; ctr>=1; ctr-=3)

 { cout << ctr << “\n”; }

7. True or false: A for loop is better to use than a while loop

when you know in advance exactly how many iterations a

loop requires.

8. What happens when the test expression becomes False in a

for statement?

9. True or false: The following program contains a valid nested

loop.

for (i=1; i<=10; i++);

 { for (j=1; j<=5; j++)

 { cout << i << j; }

 }

10. What is the output of the following section of code?

i=1;

start=1;

end=5;

step=1;

293

EXAMPLE
C++ By

for (; start>=end;)

 { cout << i << “\n”;

 start+=step;

 end--;}

Review Exercises
1. Write a program that prints the numerals 1 to 15 on-screen.

Use a for loop to control the printing.

2. Write a program to print the numerals 15 to 1 on-screen. Use

a for loop to control the printing.

3. Write a program that uses a for loop to print every odd

number from 1 to 100.

4. Write a program that asks the user for her or his age. Use a

for loop to print “Happy Birthday!” for every year of the

user’s age.

5. Write a program that uses a for loop to print the ASCII

characters from 32 to 255 on-screen. (Hint: Use the %c conver-

sion character to print integer variables.)

6. Using the ASCII table numbers, write a program to print the

following output, using a nested for loop. (Hint: The outside

loop should loop from 1 to 5, and the inside loop’s start

variable should be 65, the value of ASCII A.)

A

AB

ABC

ABCD

ABCDE

Summary
This chapter taught you how to control loops. Instead of

writing extra code around a while loop, you can use the for loop to

control the number of iterations at the time you define the loop. All

Chapter 13 ♦ The for Loop

294

for loops contain three parts: a start expression, a test expression,
and a count expression.

You have now seen C++’s three loop constructs: the while loop,

the do-while loop, and the for loop. They are similar, but behave

differently in how they test and initialize variables. No loop is better

than the others. The programming problem should dictate which

loop to use. The next chapter (Chapter 14, “Other Loop Options”)

shows you more methods for controlling your loops.

295

EXAMPLE
C++ By

14

Other Loop
Options

Now that you have mastered the looping constructs, you should

learn some loop-related statements. This chapter teaches the con-

cepts of timing loops, which enable you to slow down your programs.

Slowing program execution can be helpful if you want to display a

message for a fixed period of time or write computer games with

slower speeds so they are at a practical speed for recreational use.

You can use two additional looping commands, the break and

continue statements, to control the loops. These statements work

with while loops and for loops.

This chapter introduces you to the following:

♦ Timing loops

♦ The break statement with for loops

♦ The continue statement with for loops

When you master these concepts, you will be well on your way

toward writing powerful programs that process large amounts of

data.

Chapter 14 ♦ Other Loop Options

296

Timing Loops
Computers are fast, and at times you would probably like them

to be even faster. Sometimes, however, you want to slow down the

computer. Often, you have to slow the execution of games because

the computer’s speed makes the game unplayable. Messages that

appear on-screen many times clear too fast for the user to read if you

don’t delay them.

A nested loop is a perfect place for a timing loop, which simply

cycles through a for or while loop many times. The larger the end

value of the for loop, the longer the time in which the loop repeats.

A nested loop is appropriate for displaying error messages to

your user. If the user requested a report—but had not entered

enough data for your program to print the report—you might print

a warning message on-screen for a few seconds, telling users that

they cannot request the report yet. After displaying the message for

a few seconds, you can clear the message and give the user another

chance. (The example program in Appendix F, “The Mailing List

Application,” uses timing loops to display error messages.)

There is no way to determine how many iterations a timing

loop takes for one second (or minute or hour) of delay because

computers run at different speeds. You therefore have to adjust your

timing loop’s end value to set the delay to your liking.

Examples

1. Timing loops are easy to write—simply put an empty for

loop inside the program. The following program is a rewrit-

ten version of the countdown program (C13CNTD1.CPP)

you saw in Chapter 13. Each number in the countdown is

delayed so the countdown does not seem to take place

instantly. (Adjust the delay value if this program runs too

slowly or too quickly on your computer.)

Identify the program and include the input/output header file. You
need a counter and a delay, so make cd and delay integer variables.
Start the counter at 10, and start the delay at 1.

1. If the delay is less than or equal to 30,000, add 1 to its value
and repeat step one.

Timing loops make
the computer wait.

297

EXAMPLE
C++ By

2. Print the value of the counter.

3. If the counter is greater than or equal to 0, subtract 1 from its
value and repeat step one.

Print a blast-off message.

// Filename: C14CNTD1.CPP

// Countdown to the liftoff with a delay.

#include <iostream.h>

main()

{

 int cd, delay;

 for (cd=10; cd>=0; cd--)

 { { for (delay=1; delay <=30000; delay++); } // Delay

 // program.

 cout << cd << “\n”; // Print countdown value.

 } // End of outer loop

 cout << “Blast off!!! \n”;

 return 0;

}

2. The following program asks users for their ages. If a user

enters an age less than 0, the program beeps (by printing an

alarm character, \a), then displays an error message for a few

seconds by using a nested timing loop. Because an integer

does not hold a large enough value (on many computers) for

a long timing loop, you must use a nested timing loop.

(Depending on the speed of your computer, adjust the

numbers in the loop to display the message longer or

shorter.)

The program uses a rarely seen printf() conversion charac-

ter, \r, inside the loop. As you might recall from Chapter 7,

“Simple Input and Output,” \r is a carriage-return character.

This conversion character moves the cursor to the beginning

of the current line, enabling the program to print blanks on

that same line. This process overwrites the error message

and it appears as though the error disappears from the

screen after a brief pause.

Chapter 14 ♦ Other Loop Options

298

// Filename: C14TIM.CPP

// Displays an error message for a few seconds.

#include <stdio.h>

main()

{

 int outer, inner, age;

 printf(“What is your age? “);

 scanf(“ %d”, &age);

 while (age <= 0)

 { printf(“*** Your age cannot be that small! ***”);

 // Timing loop here

 for (outer=1; outer<=30000; outer++)

 { for (inner=1; inner<=500; inner++); }

 // Erase the message

 printf(“\r\n\n”);

 printf(“What is your age? “);

 scanf(“ %d”, &age); // Ask again

 }

 printf(“\n\nThanks, I did not think you would actually tell”);

 printf(“me your age!”);

 return 0;

}

NOTE: Notice the inside loop has a semicolon (;) after the for

statement—with no loop body. There is no need for a loop body

here because the computer is only cycling through the loop to

waste some time.

The break and for Statements
The for loop was designed to execute for a specified number of

times. On rare occasions, you might want the for loop to quit before

299

EXAMPLE
C++ By

the counting variable has reached its final value. As with while loops,

you use the break statement to quit a for loop early.

The break statement is nested in the body of the for loop.

Programmers rarely put break on a line by itself, and it almost always

comes after an if test. If the break were on a line by itself, the loop

would always quit early, defeating the purpose of the for loop.

Examples

1. The following program shows what can happen when C++

encounters an unconditional break statement (one not pre-

ceeded by an if statement).

Identify the program and include the input/output header files.
You need a variable to hold the current number, so make num

an integer variable. Print a “Here are the numbers” message.

1. Make num equal to 1. If num is less than or equal to
20, add one to it each time through the loop.

2. Print the value of num.

3. Break out of the loop.

Print a goodbye message.

// Filename: C14BRAK1.CPP

// A for loop defeated by the break statement.

#include <iostream.h>

main()

{

 int num;

 cout << “Here are the numbers from 1 to 20\n”;

 for(num=1; num<=20; num++)

 { cout << num << “\n”;

 break; } // This line exits the for loop immediately.

 cout << “That’s all, folks!”;

 return 0;

}

Chapter 14 ♦ Other Loop Options

300

The following shows you the result of running this program.

Notice the break immediately terminates the for loop. The for

loop might as well not be in this program.

Here are the numbers from 1 to 20

1

That’s all, folks!

2. The following program is an improved version of the pre-

ceding example. It asks users if they want to see another

number. If they do, the for loop continues its next iteration.

If they don’t, the break statement terminates the for loop.

// Filename: C14BRAK2.CPP

// A for loop running at the user’s request.

#include <iostream.h>

main()

{

 int num; // Loop counter variable

 char ans;

 cout << “Here are the numbers from 1 to 20\n”;

 for (num=1; num<=20; num++)

 { cout << num << “\n”;

 cout << “Do you want to see another (Y/N)? “;

 cin >> ans;

 if ((ans == ‘N’) || (ans == ‘n’))

 { break; } // Will exit the for loop

 // if user wants to.

 }

 cout << “\nThat’s all, folks!\n”;

 return 0;

}

The following display shows a sample run of this program.

The for loop prints 20 numbers, as long as the user does not

answer N to the prompt. Otherwise, the break terminates the

for loop early. The statement after the body of the loop

always executes next if the break occurs.

301

EXAMPLE
C++ By

Here are the numbers from 1 to 20

1

Do you want to see another (Y/N)? Y

2

Do you want to see another (Y/N)? Y

3

Do you want to see another (Y/N)? Y

4

Do you want to see another (Y/N)? Y

5

Do you want to see another (Y/N)? Y

6

Do you want to see another (Y/N)? Y

7

Do you want to see another (Y/N)? Y

8

Do you want to see another (Y/N)? Y

9

Do you want to see another (Y/N)? Y

10

Do you want to see another (Y/N)? N

That’s all, folks!

If you nest one loop inside another, the break terminates the

“most active” loop (the innermost loop in which the break

statement resides).

3. Use the conditional break (an if statement followed by a break)

when you are missing data. For example, when you process

data files or large amounts of user data-entry, you might

expect 100 input numbers and receive only 95. You can use a

break to terminate the for loop before it iterates the 96th time.

Suppose the teacher that used the grade-averaging program

in the preceding chapter (C13FOR4.CPP) entered an incor-

rect total number of students. Maybe she typed 16, but there

are only 14 students. The previous for loop looped 16 times,

no matter how many students there are, because it relies on

the teacher’s count.

Chapter 14 ♦ Other Loop Options

302

The following grade averaging program is more sophisti-

cated than the last one. It asks the teacher for the total num-

ber of students, but if the teacher wants, she can enter –99 as

a student’s score. The –99 is not averaged; it is used as a

trigger value to break out of the for loop before its normal

conclusion.

// Filename: C14BRAK3.CPP

// Computes a grade average with a for loop,

// allowing an early exit with a break statement.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float grade, avg;

 float total=0.0;

 int num, count=0; // Total number of grades and counter

 int loopvar; // Used to control for loop

 cout << “\n*** Grade Calculation ***\n\n”; // Title

 cout << “How many students are there? “;

 cin >> num; // Get total number to enter.

 for (loopvar=1; loopvar<=num; loopvar++)

 { cout << “\nWhat is the next student’s “ <<

 “grade? (-99 to quit) “;

 cin >> grade;

 if (grade < 0.0) // A negative number

 // triggers break.

 { break; } // Leave the loop early.

 count++;

 total += grade; } // Keep a running total.

 avg = total / count;

 cout << “\n\nThe average of this class is “<<

 setprecision(1) << avg;

 return 0;

}

Notice that grade is tested for less than 0, not –99.0. You

cannot reliably use floating-point values to compare for

303

EXAMPLE
C++ By

equality (due to their bit-level representations). Because no

grade is negative, any negative number triggers the break

statement. The following shows how this program works.

*** Grade Calculation ***

How many students are there? 10

What is the next student’s grade? (-99 to quit) 87

What is the next student’s grade? (-99 to quit) 97

What is the next student’s grade? (-99 to quit) 67

What is the next student’s grade? (-99 to quit) 89

What is the next student’s grade? (-99 to quit) 94

What is the next student’s grade? (-99 to quit) -99

The average of this class is: 86.8

The continue Statement
The break statement exits a loop early, but the continue state-

ment forces the computer to perform another iteration of the loop.

If you put a continue statement in the body of a for or a while loop, the

computer ignores any statement in the loop that follows continue.

The format of continue is

continue;

You use the continue statement when data in the body of the

loop is bad, out of bounds, or unexpected. Instead of acting on the

bad data, you might want to go back to the top of the loop and try

another data value. The following examples help illustrate the use of

the continue statement.

The continue
statement causes
C++ to skip all
remaining state-
ments in a loop.

Chapter 14 ♦ Other Loop Options

304

TIP: The continue statement forces a new iteration of any of the

three loop constructs: the for loop, the while loop, and the

do-while loop.

Figure 14.1 shows the difference between the break and continue

statements.

Figure 14.1. The difference between break and continue.

Examples

1. Although the following program seems to print the numbers

1 through 10, each followed by “C++ Programming,” it does

not. The continue in the body of the for loop causes an early

finish to the loop. The first cout in the for loop executes, but

the second does not—due to the continue.

break terminates
loop immediately

continue causes loop to perform
another iteration

305

EXAMPLE
C++ By

// Filename: C14CON1.CPP

// Demonstrates the use of the continue statement.

#include <iostream.h>

main()

{

 int ctr;

 for (ctr=1; ctr<=10; ctr++) // Loop 10 times.

 { cout << ctr << “ “;

 continue; // Causes body to end early.

 cout << “C++ Programming\n”;

 }

 return 0;

}

This program produces the following output:

1 2 3 4 5 6 7 8 9 10

On some compilers, you receive a warning message when

you compile this type of program. The compiler recognizes

that the second cout is unreachable code—it never executes

due to the continue statement.

Because of this fact, most programs do not use a continue,

except after an if statement. This makes it a conditional

continue statement, which is more useful. The following two

examples demonstrate the conditional use of continue.

2. This program asks users for five lowercase letters, one at a

time, and prints their uppercase equivalents. It uses the

ASCII table (see Appendix C, “ASCII Table”) to ensure that

users type lowercase letters. (These are the letters whose

ASCII numbers range from 97 to 122.) If users do not type a

lowercase letter, the program ignores the mistake with the

continue statement.

// Filename: C14CON2.CPP

// Prints uppercase equivalents of five lowercase letters.

#include <iostream.h>

main()

Chapter 14 ♦ Other Loop Options

306

{

 char letter;

 int ctr;

 for (ctr=1; ctr<=5; ctr++)

 { cout << “Please enter a lowercase letter “;

 cin >> letter;

 if ((letter < 97) || (letter > 122)) // See if

 // out-of-range.

 { continue; } // Go get another

 letter -= 32; // Subtract 32 from ASCII value.

 // to get uppercase.

 cout << “The uppercase equivalent is “ <<

 letter << “\n”;

 }

 return 0;

}

Due to the continue statement, only lowercase letters are

converted to uppercase.

3. Suppose you want to average the salaries of employees in

your company who make over $10,000 a year, but you have

only their monthly gross pay figures. The following program

might be useful. It prompts for each monthly employee

salary, annualizes it (multiplying by 12), and computes an

average. The continue statement ensures that salaries less

than or equal to $10,000 are ignored in the average calcu-

lation. It enables the other salaries to “fall through.”

If you enter -1 as a monthly salary, the program quits and

prints the result of the average.

// Filename: C14CON3.CPP

// Average salaries over $10,000

#include <iostream.h>

#include <iomanip.h>

main()

{

 float month, year; // Monthly and yearly salaries

 float avg=0.0, total=0.0;

 int count=0;

307

EXAMPLE
C++ By

 do

 { cout << “What is the next monthly salary (-1) “ <<

 “to quit)? “;

 cin >> month;

 if ((year=month*12.00) <= 10000.00) // Do not add

 { continue; } // low salaries.

 if (month < 0.0)

 { break; } // Quit if user entered -1.

 count++; // Add 1 to valid counter.

 total += year; // Add yearly salary to total.

 } while (month > 0.0);

 avg = total / (float)count; // Compute average.

 cout << “\n\nThe average of high salaries “ <<

 “is $” << setprecision(2) << avg;

 return 0;

}

Notice this program uses both a continue and a break state-

ment. The program does one of three things, depending on

each user’s input. It adds to the total, continues another

iteration if the salary is too low, or exits the while loop (and

the average calculation) if the user types a -1.

The following display is the output from this program:

What is the next monthly salary (-1 to quit)? 500.00

What is the next monthly salary (-1 to quit)? 2000.00

What is the next monthly salary (-1 to quit)? 750.00

What is the next monthly salary (-1 to quit)? 4000.00

What is the next monthly salary (-1 to quit)? 5000.00

What is the next monthly salary (-1 to quit)? 1200.00

What is the next monthly salary (-1 to quit)? -1

The average of high salaries is $36600.00

Chapter 14 ♦ Other Loop Options

308

Review Questions
The answers to the review questions are in Appendix B.

1. For what do you use timing loops?

2. Why do timing loop ranges have to be adjusted for different

types of computers?

3. Why do continue and break statements rarely appear without

an if statement controlling them?

4. What is the output from the following section of code?

for (i=1; i<=10; i++)

 { continue;

 cout << “***** \n”;

 }

5. What is the output from the following section of code?

for (i=1; i<=10; i++)

 { cout << “***** \n”;

 break;

 }

6. To perform a long timing loop, why do you generally have

to use a nested loop?

Review Exercises
1. Write a program that prints C++ is fun on-screen for ten

seconds. (Hint: You might have to adjust the timing loop.)

2. Make the program in Exercise 1 flash the message C++ is fun

for ten seconds. (Hint: You might have to use several timing

loops.)

3. Write a grade averaging program for a class of 20 students.

Ignore any grade less than 0 and continue until all 20 student

grades are entered, or until the user types –99 to end the

program early.

309

EXAMPLE
C++ By

4. Write a program that prints the numerals from 1 to 14 in one

column. To the right of the even numbers, print each

number’s square. To the right of the odd numbers, print each

number’s cube (the number raised to its third power).

Summary
In this chapter, you learned several additional ways to use and

modify your program’s loops. By adding timing loops, continue

statements, and break statements, you can better control how each

loop behaves. Being able to exit early (with the break statement) or

continue the next loop iteration early (with the continue statement)

gives you more freedom when processing different types of data.

The next chapter (Chapter 15, “The switch and goto State-

ments”) shows you a construct of C++ that does not loop, but relies

on the break statement to work properly. This is the switch statement,

and it makes your program choices much easier to write.

Chapter 14 ♦ Other Loop Options

310

311

EXAMPLE
C++ By

15

The switch and
goto Statements

This chapter focuses on the switch statement. It also improves the if

and else-if constructs by streamlining the multiple-choice deci-

sions your programs make. The switch statement does not replace

the if statement, but it is better to use switch when your programs

must perform one of many different actions.

The switch and break statements work together. Almost every

switch statement you use includes at least one break statement in the

body of the switch. To conclude this chapter—and this section of the

book on C++ constructs—you learn the goto statement, although it

is rarely used.

This chapter introduces the following:

♦ The switch statement used for selection

♦ The goto statement used for branching from one part of your

program to another

If you have mastered the if statement, you should have little

trouble with the concepts presented here. By learning the switch

statement, you should be able to write menus and multiple-choice

data-entry programs with ease.

Chapter 15 ♦ The switch and goto Statements

312

The switch Statement
The switch statement is sometimes called the multiple-choice

statement. The switch statement enables your program to choose

from several alternatives. The format of the switch statement is a little

longer than the format of other statements you have seen. Here is the

switch statement:

switch (expression)

 { case (expression1): { one or more C++ statements; }

 case (expression2): { one or more C++ statements; }

 case (expression3): { one or more C++ statements; }

 .

 .

 .

 default: { one or more C++ statements; }

 }

The expression can be an integer expression, a character, a

literal, or a variable. The subexpressions (expression1, expression2,
and so on) can be any other integer expression, character, literal, or

variable. The number of case expressions following the switch line is

determined by your application. The one or more C++ statements is any

block of C++ code. If the block is only one statement long, you do not

need the braces, but they are recommended.

The default line is optional; most (but not all) switch statements

include the default. The default line does not have to be the last line

of the switch body.

If expression matches expression1, the statements to the right of

expression1 execute. If expression matches expression2, the statements

to the right of expression2 execute. If none of the expressions match

the switch expression, the default case block executes. The case

expression does not need parentheses, but the parentheses some-

times make the value easier to find.

TIP: Use a break statement after each case block to keep execu-

tion from “falling through” to the remaining case statements.

Use the switch
statement when your
program makes a
multiple-choice
selection.

313

EXAMPLE
C++ By

Using the switch statement is easier than its format might lead

you to believe. Anywhere an if-else-if combination of statements

can go, you can usually put a clearer switch statement. The switch

statement is much easier to follow than an if-in-an-if-in-an-if

statement, as you have had to write previously.

However, the if and else-if combinations of statements are not

difficult to follow. When the relational test that determines the

choice is complex and contains many && and || operators, the if

statement might be a better candidate. The switch statement is

preferred whenever multiple-choice possibilities are based on a

single literal, variable, or expression.

TIP: Arrange case statements in the most-often to least-often

executed order to improve your program’s speed.

The following examples clarify the switch statement. They

compare the switch statement to if statements to help you see the

difference.

Examples

1. Suppose you are writing a program to teach your child how

to count. Your program will ask the child for a number. It

then beeps (rings the computer’s alarm bell) as many times

as necessary to match that number.

The following program assumes the child presses a number

key from 1 to 5. This program uses the if-else-if combina-

tion to accomplish this counting-and-beeping teaching

method.

Identify the program and include the necessary header file. You
want to sound a beep and move the cursor to the next line, so
define a global variable called BEEP that does this. You need a
variable to hold the user’s answer, so make num an integer variable.

Ask the user for a number. Assign the user’s number to num. If num
is 1, call BEEP once. If num is 2, call BEEP twice. If num is 3, call BEEP
three times. If num is 4, call BEEP four times. If num is 5, call BEEP five
times.

Chapter 15 ♦ The switch and goto Statements

314

// Filename: C15BEEP1.CPP

// Beeps a designated number of times.

#include <iostream.h>

// Define a beep cout to save repeating printf()s

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request a number from the child

 // (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 // Use multiple if statements to beep.

 if (num == 1)

 { BEEP; }

 else if (num == 2)

 { BEEP; BEEP; }

 else if (num == 3)

 { BEEP; BEEP; BEEP; }

 else if (num == 4)

 { BEEP; BEEP; BEEP; BEEP; }

 else if (num == 5)

 { BEEP; BEEP; BEEP; BEEP; BEEP; }

 return 0;

}

No beeps are sounded if the child enters something other

than 1 through 5. This program takes advantage of the

#define preprocessor directive to define a shortcut to an

alarm cout function. In this case, the BEEP is a little clearer to

read, as long as you remember that BEEP is not a command,

but is replaced with the cout everywhere it appears.

One drawback to this type of if-in-an-if program is its

readability. By the time you indent the body of each if and

else, the program is too far to the right. There is no room for

more than five or six possibilities. More importantly, this

315

EXAMPLE
C++ By

type of logic is difficult to follow. Because it involves a

multiple-choice selection, a switch statement is much better

to use, as you can see with the following, improved version.

// Filename: C15BEEP2.CPP

// Beeps a certain number of times using a switch.

#include <iostream.h>

// Define a beep cout to save repeating couts

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request from the child (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 switch (num)

 { case (1): { BEEP;

 break; }

 case (2): { BEEP; BEEP;

 break; }

 case (3): { BEEP; BEEP; BEEP;

 break; }

 case (4): { BEEP; BEEP; BEEP; BEEP;

 break; }

 case (5): { BEEP; BEEP; BEEP; BEEP; BEEP;

 break; }

 }

 return 0;

}

This example is much clearer than the previous one. The

value of num controls the execution—only the case that

matches num executes. The indention helps separate each

case.

If the child enters a number other than 1 through 5, no beeps

are sounded because there is no case expression to match

any other value and there is no default case.

Chapter 15 ♦ The switch and goto Statements

316

Because the BEEP preprocessor directive is so short, you can

put more than one on a single line. This is not a requirement,

however. The block of statements following a case can also

be more than one statement long.

If more than one case expression is the same, only the first

expression executes.

2. If the child does not enter a 1, 2, 3, 4, or 5, nothing happens

in the previous program. What follows is the same program

modified to take advantage of the default option. The default

block of statements executes if none of the previous cases

match.

// Filename: C15BEEP3.CPP

// Beeps a designated number of times using a switch.

#include <iostream.h>

// Define a beep cout to save repeating couts

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request a number from the child (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 switch (num)

 { case (1): { BEEP;

 break; }

 case (2): { BEEP; BEEP;

 break; }

 case (3): { BEEP; BEEP; BEEP;

 break; }

 case (4): { BEEP; BEEP; BEEP; BEEP;

 break; }

 case (5): { BEEP; BEEP; BEEP; BEEP; BEEP;

 break; }

 default: { cout << “You must enter a number from “ <<

 “1 to 5\n”;

317

EXAMPLE
C++ By

 cout << “Please run this program again\n”;

 break; }

 }

 return 0;

}

The break at the end of the default case might seem redun-

dant. After all, no other case statements execute by “falling

through” from the default case. It is a good habit to put a

break after the default case anyway. If you move the default

higher in the switch (it doesn’t have to be the last switch

option), you are more inclined to move the break with it

(where it is then needed).

3. To show the importance of using break statements in each

case expression, here is the same beeping program without

any break statements.

// Filename: C15BEEP4.CPP

// Incorrectly beeps using a switch.

#include <iostream.h>

// Define a beep printf() to save repeating couts

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request a number from the child

 // (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 switch (num) // Warning!

 { case (1): { BEEP; } // Without a break, this code

 case (2): { BEEP; BEEP; } // falls through to the

 case (3): { BEEP; BEEP; BEEP; } // rest of the beeps!

 case (4): { BEEP; BEEP; BEEP; BEEP; }

 case (5): { BEEP; BEEP; BEEP; BEEP; BEEP; }

 default: { cout << “You must enter a number “ <<

 “from 1 to 5\n”;

Chapter 15 ♦ The switch and goto Statements

318

 cout << “Please run this program again\n”; }

 }

 return 0;

}

If the user enters a 1, the program beeps 15 times! The break

is not there to stop the execution from falling through to the

other cases. Unlike other programming languages such as

Pascal, C++’s switch statement requires that you insert break

statements between each case if you want only one case

executed. This is not necessarily a drawback. The trade-off of

having to specify break statements gives you more control in

how you handle specific cases, as shown in the next example.

4. This program controls the printing of end-of-day sales totals.

It first asks for the day of the week. If the day is Monday

through Thursday, a daily total is printed. If the day is a

Friday, a weekly total and a daily total are printed. If the day

happens to be the end of the month, a monthly sales total is

printed as well.

In a real application, these totals would come from the disk

drive rather than be assigned at the top of the program.

Also, rather than individual sales figures being printed, a

full daily, weekly, and monthly report of many sales totals

would probably be printed. You are on your way to learning

more about expanding the power of your C++ programs. For

now, concentrate on the switch statement and its possibilities.

Each type of report for sales figures is handled through a

hierarchy of case statements. Because the daily amount is the

last case, it is the only report printed if the day of the week is

Monday through Thursday. If the day of the week is Friday,

the second case prints the weekly sales total and then falls

through to the daily total (because Friday’s daily total must

be printed as well). If it is the end of the month, the first case

executes, falling through to the weekly total, then to the

daily sales total as well. Other languages that do not offer

this “fall through” flexibility are more limiting.

319

EXAMPLE
C++ By

// Filename: C15SALE.CPP

// Prints daily, weekly, and monthly sales totals.

#include <iostream.h>

#include <stdio.h>

main()

{

 float daily=2343.34; // Later, these figures

 float weekly=13432.65; // come from a disk file

 float monthly=43468.97; // instead of being assigned

 // as they are here.

 char ans;

 int day; // Day value to trigger correct case.

 // Month is assigned 1 through 5 (for Monday through

 // Friday) or 6 if it is the end of the month. Assume

 // a weekly and a daily prints if it is the end of the

 // month, no matter what the day is.

 cout << “Is this the end of the month? (Y/N) “;

 cin >> ans;

 if ((ans==’Y’) || (ans==’y’))

 { day=6; } // Month value

 else

 { cout << “What day number, 1 through 5 (for Mon-Fri)” <<

 “ is it? “;

 cin >> day; }

 switch (day)

 { case (6): printf(“The monthly total is %.2f \n”,

 monthly);

 case (5): printf(“The weekly total is %.2f \n”,

 weekly);

 default: printf(“The daily total is %.2f \n”, daily);

 }

 return 0;

}

5. The order of the case statements is not fixed. You can rear-

range the statements to make them more efficient. If only

one or two cases are being selected most of the time, put

those cases near the top of the switch statement.

Chapter 15 ♦ The switch and goto Statements

320

For example, in the previous program, most of the company’s

reports are daily, but the daily option is third in the case

statements. By rearranging the case statements so the daily

report is at the top, you can speed up this program because

C++ does not have to scan two case expressions that it rarely

executes.

// Filename: C15DEPT1.CPP

// Prints message depending on the department entered.

#include <iostream.h>

main()

{

 char choice;

 do // Display menu and ensure that user enters a

 // correct option.

 { cout << “\nChoose your department: \n”;

 cout << “S - Sales \n”;

 cout << “A - Accounting \n”;

 cout << “E - Engineering \n”;

 cout << “P - Payroll \n”;

 cout << “What is your choice? “;

 cin >> choice;

 // Convert choice to uppercase (if they

 // entered lowercase) with the ASCII table.

 if ((choice>=97) && (choice<=122))

 { choice -= 32; } // Subtract enough to make

 // uppercase.

 } while ((choice!=’S’)&&(choice!=’A’)&&

 (choice!=’E’)&&(choice!=’P’));

 // Put Engineering first because it occurs most often.

 switch (choice)

 { case (‘E’) : { cout << “\n Your meeting is at 2:30”;

 break; }

 case (‘S’) : { cout << “\n Your meeting is at 8:30”;

 break; }

 case (‘A’) : { cout << “\n Your meeting is at 10:00”;

 break; }

 case (‘P’) : { cout << “\n Your meeting has been “ <<

 “canceled”;

321

EXAMPLE
C++ By

 break; }

 }

 return 0;

}

The goto Statement
Early programming languages did not offer the flexible con-

structs that C++ gives you, such as for loops, while loops, and switch

statements. Their only means of looping and comparing was with

the goto statement. C++ still includes a goto, but the other constructs

are more powerful, flexible, and easier to follow in a program.

The goto statement causes your program to jump to a different

location, rather than execute the next statement in sequence. The

format of the goto statement is

goto statement label

A statement label is named just as variables are (see Chapter 4,

“Variables and Literals”). A statement label cannot have the same

name as a C++ command, a C++ function, or another variable in the

program. If you use a goto statement, there must be a statement label

elsewhere in the program to which the goto branches. Execution then

continues at the statement with the statement label.
The statement label precedes a line of code. Follow all statement

labels with a colon (:) so C++ recognizes them as labels, not

variables. You have not seen statement labels in the C++ programs

so far in this book because none of the programs needed them. A

statement label is optional unless you have a goto statement.

The following four lines of code each has a different statement

label. This is not a program, but individual lines that might be

included in a program. Notice that the statement labels are on the left.

pay: cout << “Place checks in the printer \n”;

Again: cin >> name;

EndIt: cout << “That is all the processing. \n”;

CALC: amount = (total / .5) * 1.15;

The goto causes
execution to jump to
some statement
other than the
next one.

Chapter 15 ♦ The switch and goto Statements

322

The statement labels are not intended to replace comments,

although their names reflect the code that follows. Statement labels

give goto statements a tag to go to. When your program finds the goto,

it branches to the statement labeled by the statement label. The

program then continues to execute sequentially until the next goto

changes the order again (or until the program ends).

TIP: Use identifying line labels. A repetitive calculation de-

serves a label such as CalcIt and not x15z. Even though both are

allowed, the first one is a better indication of the code’s pur-

pose.

Use goto Judiciously

The goto is not considered a good programming statement

when overused. There is a tendency, especially for beginning

programmers, to include too many goto statements in a pro-

gram. When a program branches all over the place, it becomes

difficult to follow. Some people call programs with many goto

statements “spaghetti code.”

To eliminate goto statements and write better structured pro-

grams, use the other looping and switch constructs seen in the

previous few chapters.

The goto is not necessarily a bad statement—if used judiciously.

Starting with the next chapter, you begin to break your pro-

grams into smaller modules called functions, and the goto

becomes less and less important as you write more and more

functions.

For now, become familiar with goto so you can understand

programs that use it. Some day, you might have to correct the

code of someone who used the goto.

323

EXAMPLE
C++ By

Examples

1. The following program has a problem that is a direct result

of the goto, but it is still one of the best illustrations of the

goto statement. The program consists of an endless loop (or an

infinite loop). The first three lines (after the opening brace)

execute, then the goto in the fourth line causes execution to

loop back to the beginning and repeat the first three lines.

The goto continues to do this until you press Ctrl-Break or

ask your system administrator to cancel the program.

Identify the program and include the input/output header file. You
want to print a message, but split it over three lines. You want the
message to keep repeating, so label the first line, then use a goto to
jump back to that line.

// Filename: C15GOTO1.CPP

// Program to show use of goto. This program ends

// only when the user presses Ctrl-Break.

#include <iostream.h>

main()

{

 Again: cout << “This message \n”;

 cout << “\t keeps repeating \n”;

 cout << “\t\t over and over \n”;

 goto Again; // Repeat continuously.

 return 0;

}

Notice the statement label (Again in the previous example)

has a colon to separate it from the rest of the line, but there is

not a colon with the label at the goto statement. Here is the

result of running this program.

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

Chapter 15 ♦ The switch and goto Statements

324

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

2. It is sometimes easier to read your program’s code when you

write the statement labels on separate lines. Remember that

writing maintainable programs is the goal of every good

programmer. Making your programs easier to read is a

prime consideration when you write them. The following

program is the same repeating program shown in the previ-

ous example, except the statement label is placed on a

separate line.

// Filename: C15GOTO2.CPP

// Program to show use of goto. This program ends

// only when the user presses Ctrl-Break.

#include <iostream.h>

main()

{

Again:

 cout << “This message \n”;

 cout << “\t keeps repeating \n”;

 cout << “\t\t over and over \n”;

 goto Again; // Repeat continuously

 return 0;

}

325

EXAMPLE
C++ By

The line following the statement label is the one that ex-

ecutes next, after control is passed (by the goto) to the label.

Of course, these are silly examples. You probably don’t want

to write programs with infinite loops. The goto is a statement

best preceded with an if; this way the goto eventually stops

branching without intervention from the user.

3. The following program is one of the worst-written programs

ever! It is the epitome of spaghetti code! However, do your

best to follow it and understand its output. By understand-

ing the flow of this output, you can hone your understand-

ing of the goto. You might also appreciate the fact that the

rest of this book uses the goto only when needed to make the

program clearer.

// Filename: C15GOTO3.CPP

// This program demonstrates the overuse of goto.

#include <iostream.h>

main()

{

 goto Here;

 First:

 cout << “A \n”;

 goto Final;

 There:

 cout << “B \n”;

 goto First;

 Here:

 cout << “C \n”;

 goto There;

 Final:

 return 0;

}

At first glance, this program appears to print the first three

letters of the alphabet, but the goto statements make them

print in the reverse order, C, B, A. Although the program is

Chapter 15 ♦ The switch and goto Statements

326

not a well-designed program, some indention of the lines

without statement labels make it a little more readable. This

enables you to quickly separate the statement labels from the

remaining code, as you can see from the following program.

// Filename: C15GOTO4.CPP

// This program demonstrates the overuse of goto.

#include <iostream.h>

main()

{

 goto Here;

First:

 cout << “A \n”;

 goto Final;

There:

 cout << “B \n”;

 goto First;

Here:

 cout << “C \n”;

 goto There;

Final:

 return 0;

}

This program’s listing is slightly easier to follow than the

previous one, even though both do the same thing. The

remaining programs in this book with statement labels also

use such indention.

You certainly realize that this output is better produced by

the following three lines.

cout << “C \n”;

cout << “B \n”;

cout << “A \n”;

The goto warning is worth repeating: Use goto sparingly and

only when its use makes your program more readable and

maintainable. Usually, you can use much better commands.

327

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. How does goto change the order in which a program nor-

mally executes?

2. What statement can substitute for an if-else-if construct?

3. Which statement almost always ends each case statement in

a switch?

4. True or false: The order of your case statements has no

bearing on the efficiency of your program.

5. Rewrite the following section of code using a switch

statement.

if (num == 1)

 { cout << “Alpha”; }

else if (num == 2)

 { cout << “Beta”; }

 else if (num == 3)

 { cout << “Gamma”; }

 else

 { cout << “Other”; }

6. Rewrite the following program using a do-while loop.

Ask:

 cout << “What is your first name? “;

 cin >> name;

 if ((name[0] < ‘A’) || (name[0] > ‘Z’))

 { goto Ask; } // Keep asking until the user

 // enters a valid letter.

Chapter 15 ♦ The switch and goto Statements

328

Review Exercises
1. Write a program using the switch statement that asks users

for their age, then prints a message saying “You can vote!” if

they are 18, “You can adopt!” if they are 21, or “Are you

really that young?” for any other age.

2. Write a menu-driven program for your local TV cable com-

pany. Here is how to assess charges: If you are within 20

miles outside the city limits, you pay $12.00 per month; 21 to

30 miles outside the city limits, you pay $23.00 per month; 31

to 50 miles outside the city limits, you pay $34.00. No one

outside 50 miles receives the service. Prompt the users with

a menu for their residence’s distance from the city limits.

3. Write a program that calculates parking fees for a multilevel

parking garage. Ask whether the driver is in a car or a truck.

Charge the driver $2.00 for the first hour, $3.00 for the

second, and $5.00 for more than 2 hours. If it is a truck, add

$1.00 to the total fee. (Hint: Use one switch and one if state-

ment.)

4. Modify the previous parking problem so the charge depends

on the time of day the vehicle is parked. If the vehicle is

parked before 8 a.m., charge the fees in Exercise 3. If the

vehicle is parked after 8 a.m. and before 5 p.m., charge an

extra usage fee of 50 cents. If the vehicle is parked after 5

p.m., deduct 50 cents from the computed price. You must

prompt users for the starting time in a menu, as follows.

1. Before 8 a.m.

2. Before 5 p.m.

3. After 5 p.m.

Summary
You now have seen the switch statement and its options. With

it, you can improve the readability of a complicated if-else-if

selection. The switch is especially good when several outcomes are

possible, based on the user’s choice.

329

EXAMPLE
C++ By

The goto statement causes an unconditional branch, and can be

difficult to follow at times. The goto statement is not used much now,

and you can almost always use a better construct. However, you

should be acquainted with as much C++ as possible in case you have

to work on programs others have written.

This ends the section on program control. The next section

introduces user-written functions. So far, you have been using

C++’s built-in functions, such as strcpy() and printf(). Now it’s time

to write your own.

Chapter 15 ♦ The switch and goto Statements

330

331

EXAMPLE
C++ By

16

Writing C++
Functions

Computers never become bored. They perform the same input,

output, and computations your program requires—for as long as

you want them to do it. You can take advantage of their repetitive

natures by looking at your programs in a new way: as a series of

small routines that execute whenever you need them, however

many times you require.

This chapter approaches its subject a little differently than the

previous chapters do. It concentrates on teaching you to write your

own functions, which are modules of code that you execute and

control from the main() function. So far, the programs in this book

have consisted of a single long function called main(). As you learn

here, the main() function’s primary purpose is to control the execu-

tion of other functions that follow it.

This chapter introduces the following:

♦ The need for functions

♦ How to trace functions

♦ How to write functions

♦ How to call and return from functions

Chapter 16 ♦ Writing C++ Functions

332

This chapter stresses the use of structured programming, some-

times called modular programming. C++ was designed in a way that

the programmer can write programs in several modules rather than

in one long block. By breaking the program into several smaller

routines (functions), you can isolate problems, write correct pro-

grams faster, and produce programs that are easier to maintain.

Function Basics
When you approach an application that has to be programmed,

it is best not to sit down at the keyboard and start typing. Rather, first

think about the program and what it is supposed to do. One of the

best ways to attack a program is to start with the overall goal, then

divide this goal into several smaller tasks. You should never lose

sight of the overall goal, but think also of how individual pieces can

fit together to accomplish such a goal.

When you finally do sit down to begin coding the problem,

continue to think in terms of those pieces fitting together. Don’t

approach a program as if it were one giant problem; rather, continue

to write those small pieces individually.

This does not mean you must write separate programs to do

everything. You can keep individual pieces of the overall program

together—if you know how to write functions. Then you can use the

same functions in many different programs.

C++ programs are not like BASIC or FORTRAN programs.

C++ was designed to force you to think in a modular, or subroutine-

like, functional style. Good C++ programmers write programs that

consist of many small functions, even if their programs execute one

or more of these functions only once. Those functions work together

to produce a program quicker and easier than if the program had to

be written from scratch.

TIP: Rather than code one long program, write several smaller

routines, called functions. One of those functions must be

called main(). The main() function is always the first to execute.

It doesn’t have to be first in a program, but it usually is.

C++ programs
should consist of
many small
functions.

333

EXAMPLE
C++ By

Breaking Down Problems
If your program does very much, break it into several func-

tions. Each function should do only one primary task. For example,

if you were writing a C++ program to retrieve a list of characters

from the keyboard, alphabetize them, then print them to the screen,

you could—but shouldn’t—write all these instructions in one big

main() function, as the following C++ skeleton (program outline)

shows:

main()

{

 // :

 // C++ code to retrieve a list of characters.

 // :

 // C++ code to alphabetize the characters.

 // :

 // C++ code to print the alphabetized list on-screen.

 // :

 return 0;

}

This skeleton is not a good way to write this program. Even

though you can type this program in only a few lines of code, it is

much better to begin breaking every program into distinct tasks so

this process becomes a habit to you. You should not use main() to do

everything—in fact, use main() to do very little except call each of the

functions that does the actual work.

A better way to organize this program is to write a separate

function for each task the program is supposed to do. This doesn’t

mean that each function has to be only one line long. Rather, it means

you make every function a building block that performs only one

distinct task in the program.

The following program outline shows you a better way to write

the program just described:

main()

{

 getletters(); // Calls a function to retrieve the numbers.

 alphabetize(); // Calls a function to alphabetize

 // letters.

Chapter 16 ♦ Writing C++ Functions

334

 printletters(); // Calls a function to print letters

 // on-screen.

 return 0; // Returns to the operating system.

}

getletters()

{

 // :

 // C++ code to get a list of characters.

 // :

 return 0; // Returns to main().

}

alphabetize()

{

 // :

 // C++ code to alphabetize the characters

 // :

 return 0; // Returns to main().

}

printletters()

{

 // :

 // C++ code to print the alphabetized list on-screen

 // :

 return 0; // Returns to main().

}

The program outline shows you a much better way of writing

this program. It takes longer to type, but it’s much more organized.

The only action the main() function takes is to control the other

functions by calling them in a certain order. Each separate function

executes its instructions, then returns to main(), whereupon main()

calls the next function until no more functions remain. The main()

function then returns control of the computer to the operating

system.

Do not be too concerned about the 0 that follows the return

statement. C++ functions return values. So far, the functions you’ve

seen have returned zero, and that return value has been ignored.

335

EXAMPLE
C++ By

Chapter 19, “Function Return Values and Prototypes,” describes

how you can use the return value for programming power.

TIP: A good rule of thumb is that a function should not be

 more than one screen in length. If it is longer, you are probably

doing too much in one function and should therefore break it

into two or more functions.

The first function called main() is what you previously used to

hold the entire program. From this point, in all but the smallest of

programs, main() simply controls other functions that do the work.

These listings are not examples of real C++ programs; instead,

they are skeletons, or outlines, of programs. From these outlines, it

is easier to develop the actual full program. Before going to the

keyboard to write a program such as this, know that there are four

distinct sections: a primary function-calling main() function, a key-

board data-entry function, an alphabetizing function, and a print-

ing function.

Never lose sight of the original programming problem. (Using

the approach just described, you never will!) Look again at the main()

calling routine in the preceding program. Notice that you can glance

at main() and get a feel for the overall program, without the remain-

ing statements getting in the way. This is a good example of

structured, modular programming. A large programming problem

is broken into distinct, separate modules called functions, and each

function performs one primary job in a few C++ statements.

More Function Basics
Little has been said about naming and writing functions, but

you probably understand much of the goals of the previous listing

already. C++ functions generally adhere to the following rules:

1. Every function must have a name.

2. Function names are made up and assigned by the program-

mer (you!) following the same rules that apply to naming

The main()
function is usually
a calling function
that controls the
remainder of the
program.

Chapter 16 ♦ Writing C++ Functions

336

variables: They can contain up to 32 characters, they must

begin with a letter, and they can consist of letters, numbers,

and the underscore (_) character.

3. All function names have one set of parentheses immediately

following them. This helps you (and C++) differentiate them

from variables. The parentheses may or may not contain

something. So far, all such parentheses in this book have

been empty (you learn more about functions in Chapter 18,

“Passing Values”).

4. The body of each function, starting immediately after the

closing parenthesis of the function name, must be enclosed

by braces. This means a block containing one or more state-

ments makes up the body of each function.

TIP: Use meaningful function names. Calc_balance() is more

descriptive than xy3().

Although the outline shown in the previous listing is a good

example of structured code, it can be improved by using the under-

score character (_) in the function names. Do you see how get_letters()

and print_letters() are much easier to read than are getletters() and

printletters()?

CAUTION: Be sure to use the underscore character (_) and not

the hyphen (-) when naming functions and variables. If you use

a hyphen, C++ produces misleading error messages.

The following listing shows you an example of a C++ function.

You can already tell quite a bit about this function. You know, for

instance, that it isn’t a complete program because it has no main()

function. (All programs must have a main() function.) You know also

that the function name is calc_it because parentheses follow this

name. These parentheses happen to have something in them (you

learn more about this in Chapter 18). You know also that the body

of the function is enclosed in a block of braces. Inside that block is a

All programs must
have a main()
function.

337

EXAMPLE
C++ By

smaller block, the body of a while loop. Finally, you recognize that the

return statement is the last line of the function.

calc_it(int n)

{

 // Function to print the square of a number.

 int square;

 while (square <= 250)

 { square = n * n;

 cout << “The square of “ << n <<

 “ is “ << square << “\n”;

 n++; } // A block in the function.

 return 0;

}

TIP: Not all functions require a return statement for their last

line, but it is recommended that you always include one

because it helps to show your intention to return to the calling

function at that point. Later in the book, you learn that the

return is required in certain instances. For now, develop the

habit of including a return statement.

Calling and Returning
Functions

You have been reading much about “function calling” and

“returning control.” Although you might already understand these

phrases from their context, you can probably learn them better

through an illustration of what is meant by a function call.

A function call in C++ is like a detour on a highway. Imagine

you are traveling along the “road” of the primary function called

main() and then run into a function-calling statement. You must

temporarily leave the main() function and execute the function that

was called. After that function finishes (its return statement is

A function call is like
a temporary program
detour.

Chapter 16 ♦ Writing C++ Functions

338

reached), program control reverts to main(). In other words, when

you finish a detour, you return to the “main” route and continue the

trip. Control continues as main() calls other functions.

NOTE: Generally, the primary function that controls function

calls and their order is called a calling function. Functions

controlled by the calling function are called the called functions.

A complete C++ program, with functions, will make this

concept clear. The following program prints several messages to the

screen. Each message printed is determined by the order of the

functions. Before worrying too much about what this program does,

take a little time to study its structure. Notice that there are three

functions defined in the program: main(), next_fun(), and third_fun().

A fourth function is used also, but it is the built-in C++ printf()

function. The three defined functions appear sequentially. The body

of each is enclosed in braces, and each has a return statement at its

end.

As you will see from the program, there is something new

following the #include directive. The first line of every function that

main() calls is listed here and also appears above the actual function.

C++ requires these prototypes. For now, just ignore them and study

the overall format of multiple-function programs. Chapter 19, “Func-

tion Return Values and Prototypes, ” explains prototypes.

// C16FUN1.CPP

// The following program illustrates function calls.

#include <stdio.h>

next_fun(); // Prototypes.

third_fun();

main() // main() is always the first C++ function executed.

{

 printf(“First function called main() \n”);

 next_fun(); // Second function is called here.

 third_fun(); // This function is called here.

 printf(“main() is completed \n”); // All control

 // returns here.

339

EXAMPLE
C++ By

 return 0; // Control is returned to

 //the operating system.

} // This brace concludes main().

next_fun() // Second function.

 // Parentheses always required.

{

 printf(“Inside next_fun() \n”); // No variables are

 // defined in the program.

 return 0; // Control is now returned to main().

}

third_fun() // Last function in the program.

{

 printf(“Inside third_fun() \n”);

 return 0; // Always return from all functions.

}

The output of this program follows:

First function called main()

Inside next_fun()

Inside third_fun()

main() is completed

Figure 16.1 shows a tracing of this program’s execution. Notice

that main() controls which of the other functions is called, as well as

the order of the calling. Control always returns to the calling function

after the called function finishes.

To call a function, simply type its name—including the paren-

theses—and follow it with a semicolon. Remember that semicolons

follow all executable statements in C++, and a function call (some-

times called a function invocation) is an executable statement. The

execution is the function’s code being called. Any function can call

any other function. In the previous program, main() is the only

function that calls other functions.

Now you can tell that the following statement is a function call:

print_total();

Chapter 16 ♦ Writing C++ Functions

340

Figure 16.1. Tracing function calls.

Because print_total is not a C++ command or built-in function

name, it must be a variable or a written function’s name. Only

function names end with the parentheses, so it must be a function

call or the start of a function’s code. Of the last two possibilities, it

must be a call to a function because it ends with a semicolon. If it

didn’t have a semicolon, it would have to be the start of a function

definition.

When you define a function (by typing the function name and

its subsequent code inside braces), you never follow the name with

a semicolon. Notice in the previous program that main(), next_fun(),

and third_fun() have no semicolons when they appear in the body

of the program. A semicolon follows their names only in main(),

where these functions are called.

341

EXAMPLE
C++ By

CAUTION: Never define a function in another function. All

function code must be listed sequentially, throughout the

program. A function’s closing brace must appear before an-

other function’s code can be listed.

Examples

1. Suppose you are writing a program that does the following.

First, it asks users for their departments. Then, if they are in

accounting, they receive the accounting department’s report.

If they are in engineering, they receive the engineering

department’s report. Finally, if they are in marketing, they

receive the marketing department’s report.

The skeleton of such a program follows. The code for main()

is shown in its entirety, but only a skeleton of the other

functions is shown. The switch statement is a perfect

function-calling statement for such multiple-choice

selections.

// Skeleton of a departmental report program.

#include <iostream.h>

main()

{

 int choice;

 do

 { cout << “Choose your department from the “ <<

 “following list\n”;

 cout << “\t1. Accounting \n”;

 cout << “\t2. Engineering \n”;

 cout << “\t3. Marketing \n”;

 cout << “What is your choice? “;

 cin >> choice;

 } while ((choice<1) || (choice>3)); // Ensure 1, 2,

 // or 3 is chosen.

 switch choice

 { case(1): { acct_report(); // Call accounting function.

Chapter 16 ♦ Writing C++ Functions

342

 break; } // Don’t fall through.

 case(2): { eng_report(); // Call engineering function.

 break; }

 case(3): { mtg_report(); // Call marketing function.

 break; }

 }

 return 0; // Program returns to the operating

 // system when finished.

}

acct_report()

{

 // :

 // Accounting report code goes here.

 // :

 return 0;

}

eng_report()

{

 // :

 // Engineering report code goes here.

 // :

 return 0;

}

mtg_report()

{

 // :

 // Marketing report code goes here.

 // :

 return 0;

}

The bodies of switch statements normally contain function

calls. You can tell that these case statements execute func-

tions. For instance, acct_report(); (which is the first line of

the first case) is not a variable name or a C++ command. It

is the name of a function defined later in the program. If

users enter 1 at the menu, the function called acct_report()

executes. When it finishes, control returns to the first case

343

EXAMPLE
C++ By

body, and its break statement causes the switch statement to

end. The main() function returns to DOS (or to your inte-

grated C++ environment if you are using one) when its

return statement executes.

2. In the previous example, the main() routine is not very

modular. It displays the menu, but not in a separate func-

tion, as it should. Remember that main() does very little

except control the other functions, which do all the work.

Here is a rewrite of this sample program, with a fourth

function to print the menu to the screen. This is truly a

modular example, with each function performing a single

task. Again, the last three functions are shown only as

skeleton code because the goal here is simply to illustrate

function calling and returning.

// Second skeleton of a departmental report program.

#include <iostream.h>

main()

{

 int choice;

 do

 { menu_print(); // Call function to print the menu.

 cin >> choice;

 } while ((choice<1) || (choice>3)); // Ensure 1, 2,

 // or 3 is chosen.

 switch choice

 { case(1): { acct_report(); // Call accounting function.

 break; } // Don’t fall through.

 case(2): { eng_report(); // Call engineering function.

 break; }

 case(3): { mtg_report(); // Call marketing function.

 break; }

 }

 return 0; // Program returns to the operating system

 // when finished.

}

menu_print()

{

Chapter 16 ♦ Writing C++ Functions

344

 cout << “Choose your department from the following"

 "list\n”;

 cout << “\t1. Accounting \n”;

 cout << “\t2. Engineering \n”;

 cout << “\t3. Marketing \n”;

 cout << “What is your choice? “;

 return 0; // Return to main().

}

acct_report()

{

 // :

 // Accounting report code goes here.

 // :

 return 0;

}

eng_report()

{

 // :

 // Engineering report code goes here.

 // :

 return 0;

}

mtg_report()

{

 // :

 // Marketing report code goes here.

 // :

 return 0;

}

The menu-printing function doesn’t have to follow main().

Because it’s the first function called, however, it seems best

to define it there.

3. Readability is the key, so programs broken into separate

functions result in better written code. You can write and

test each function, one at a time. After you write a general

outline of the program, you can list a bunch of function calls

in main(), and define their skeletons after main().

345

EXAMPLE
C++ By

The body of each function initially should consist of a single

return statement, so the program compiles in its skeleton

format. As you complete each function, you can compile and

test the program. This enables you to develop more accurate

programs faster. The separate functions enable others (who

might later modify your program) to find the particular

function easily and without affecting the rest of the program.

Another useful habit, popular with many C++ programmers,

is to separate functions from each other with a comment

consisting of a line of asterisks (*) or dashes (-). This makes it

easy, especially in longer programs, to see where a function

begins and ends. What follows is another listing of the

previous program, but now with its four functions more

clearly separated by this type of comment line.

// Third skeleton of a departmental report program.

#include <iostream.h>

main()

{

 int choice;

 do

 { menu_print(); // Call function to print the menu.

 cin >> choice;

 } while ((choice<1) || (choice>3)); // Ensure 1, 2,

 // or 3 is chosen.

 switch choice

 { case(1): { acct_report(); // Call accounting function.

 break; } // Don’t fall through.

 case(2): { eng_report(); // Call engineering function.

 break; }

 case(3): { mtg_report(); // Call marketing function.

 break; }

 }

 return 0; // Program returns to the operating system

 // when finished.

}

//**

menu_print()

Chapter 16 ♦ Writing C++ Functions

346

{

 cout << “Choose your department from the following"

 "list\n”;

 cout << “\t1. Accounting \n”;

 cout << “\t2. Engineering \n”;

 cout << “\t3. Marketing \n”;

 cout << “What is your choice? “;

 return 0; // Return to main().

}

//***

acct_report()

{

 // :

 // Accounting report code goes here.

 // :

 return 0;

}

//***

eng_report()

{

 // :

 // Engineering report code goes here.

 // :

 return 0;

}

//***

mtg_report()

{

 // :

 // Marketing report code goes here.

 // :

 return 0;

}

Due to space limitations, not all program listings in this book

separate the functions in this manner. You might find,

however, that your listings are easier to follow if you put

these separating comments between your functions. The

application in Appendix F, “The Mailing List Application,”

347

EXAMPLE
C++ By

for example, uses these types of comments to separate its

functions.

4. You can execute a function more than once simply by calling

it from more than one place in a program. If you put a

function call in the body of a loop, the function executes

repeatedly until the loop finishes.

The following program prints the message C++ is Fun!

several times on-screen—forward and backward—using

functions. Notice that main() does not make every function

call. The second function, name_print(), calls the function

named reverse_print(). Trace the execution of this program’s

couts.

// Filename: C16FUN2.CPP

// Prints C++ is Fun! several times on-screen.

#include <iostream.h>

name_print();

reverse_print();

one_per_line();

main()

{

 int ctr; // To control loops

 for (ctr=1; ctr<=5; ctr++)

 { name_print(); } // Calls function five times.

 one_per_line(); // Calls the program’s last

 // function once.

 return 0;

}

//***

name_print()

{

 // Prints C++ is Fun! across a line, separated by tabs.

 cout << “C++ is Fun!\tC++ is Fun!\tC++ is Fun!

 \tC++ is Fun!\n”;

 cout << “C++ i s F u n !\tC++ i s F u n ! “ <<

 “\tC++ i s F u n !\n”;

Chapter 16 ♦ Writing C++ Functions

348

 reverse_print(); // Call next function from here.

 return 0; // Returns to main().

}

//***

reverse_print()

{

 // Prints several C++ is Fun! messages,

 // in reverse, separated by tabs.

 cout << “!nuF si ++C\t!nuF si ++C\t!nuF si ++C\t\n”;

 return 0; // Returns to name_print().

}

//***

one_per_line()

{

 // Prints C++ is Fun! down the screen.

 cout << “C++\n \ni\ns\n \nF\nu\nn\n!\n”;

 return 0; // Returns to main()

}

Here is the output from this program:

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++

349

EXAMPLE
C++ By

i

s

F

u

n

!

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: A function should always include a return

statement as its last command.

2. What is the name of the first function executed in a C++

program?

3. Which is better: one long function or several smaller

functions? Why?

4. How do function names differ from variable names?

5. How can you use comments to help visually separate

functions?

6. What is wrong with the following program section?

calc_it()

{

 cout << “Getting ready to calculate the square of 25 \n”;

 sq_25()

 {

 cout << “The square of 25 is “ << (25*25);

 return 0;

 }

 cout << “That is a big number! \n”;

 return 0;

}

Chapter 16 ♦ Writing C++ Functions

350

7. Is the following a variable name, a function call, a function

definition, or an expression?

scan_names();

8. True or false: The following line in a C++ program is a

function call.

cout << “C++ is Fun! \n”;

Summary
You have now been exposed to truly structured programs.

Instead of typing a long program, you can break it into separate

functions. This method isolates your routines so surrounding code

doesn’t clutter your program and add confusion.

Functions introduce just a little more complexity, involving the

way variable values are recognized by the program’s functions. The

next chapter (Chapter 17, “Variable Scope”) shows you how vari-

ables are handled between functions, and helps strengthen your

structured programming skills.

