
Part IV
Structures and File
Input/Output

583

EXAMPLE
C++ By

28

Structures

Using structures, you have the ability to group data and work with

the grouped data as a whole. Business data processing uses the

concept of structures in almost every program. Being able to ma-

nipulate several variables as a single group makes your programs

easier to manage.

This chapter introduces the following concepts:

♦ Structure definitions

♦ Initializing structures

♦ The dot operator (.)

♦ Structure assignment

♦ Nested structures

This chapter is one of the last in the book to present new

concepts. The remainder of the book builds on the structure con-

cepts you learn in this chapter.

Chapter 28 ♦ Structures

584

Introduction to Structures
A structure is a collection of one or more variable types. As you

know, each element in an array must be the same data type, and you

must refer to the entire array by its name. Each element (called a

member) in a structure can be a different data type.

Suppose you wanted to keep track of your CD music collection.

You might want to track the following pieces of information about

each CD:

Title

Artist

Number of songs

Cost

Date purchased

There would be five members in this CD structure.

TIP: If you have programmed in other computer languages, or

if you have ever used a database program, C++ structures are

analogous to file records, and members are analogous to fields

in those records.

After deciding on the members, you must decide what data

type each member is. The title and artist are character arrays, the

number of songs is an integer, the cost is floating-point, and the date

is another character array. This information is represented like this:

Member Name Data Type

Title Character array of 25 characters

Artist Character array of 20 characters

Number of songs Integer

Cost Floating-point

Date purchased Character array of eight characters

Structures can have
members of different
data types.

585

EXAMPLE
C++ By

Each structure you define can have an associated structure

name called a structure tag. Structure tags are not required in most

cases, but it is generally best to define one for each structure in your

program. The structure tag is not a variable name. Unlike array

names, which reference the array as variables, a structure tag is

simply a label for the structure’s format.

You name structure tags yourself, using the same naming rules

for variables. If you give the CD structure a structure tag named

cd_collection, you are informing C++ that the tag called cd_collection

looks like two character arrays, followed by an integer, a floating-

point value, and a final character array.

A structure tag is actually a newly defined data type that you,

the programmer, define. When you want to store an integer, you do

not have to define to C++ what an integer is. C++ already recognizes

an integer. When you want to store a CD collection’s data, however,

C++ is not capable of recognizing what format your CD collection

takes. You have to tell C++ (using the example being described here)

that you need a new data type. That data type will be your structure

tag, called cd_collection in this example, and it looks like the struc-

ture previously described (two character arrays, integer, floating-

point, and character array).

NOTE: No memory is reserved for structure tags. A structure

tag is your own data type. C++ does not reserve memory for the

integer data type until you declare an integer variable. C++

does not reserve memory for a structure until you declare a

structure variable.

Figure 28.1 shows the CD structure, graphically representing

the data types in the structure. Notice that there are five members

and each member is a different data type. The entire structure is

called cd_collection because that is the structure tag.

A structure tag is
a label for the
structure’s format.

Chapter 28 ♦ Structures

586

Figure 28.1. The layout of the cd_collection structure.

NOTE: The mailing-list application in Appendix F uses a

structure to hold people’s names, addresses, cities, states, and

ZIP codes.

Examples

1. Suppose you were asked to write a program for a company’s

inventory system. The company had been using a card-file

inventory system to track the following items:

Item name

Quantity in stock

Quantity on order

Retail price

Wholesale price

This would be a perfect use for a structure containing five

members. Before defining the structure, you have to deter-

mine the data types of each member. After asking questions

about the range of data (you must know the largest item

name, and the highest possible quantity that would appear

on order to ensure your data types can hold the data), you

decide to use the following structure tag and data types:

587

EXAMPLE
C++ By

Member Data Type

Item name Character array of 20 characters

Quantity in stock long int

Quantity on order long int

Retail price double

Wholesale price double

2. Suppose the same company also wanted you to write a

program to keep track of their monthly and annual salaries

and to print a report at the end of the year that showed each

month’s individual salary and the total salary at the end of

the year.

What would the structure look like? Be careful! This type of

data probably does not need a structure. Because all the

monthly salaries must be the same data type, a floating-

point or a double floating-point array holds the monthly

salaries nicely without the complexity of a structure.

Structures are useful for keeping track of data that must be

grouped, such as inventory data, a customer’s name and

address data, or an employee data file.

Defining Structures
To define a structure, you must use the struct statement. The

struct statement defines a new data type, with more than one

member, for your program. The format of the struct statement is

struct [structure tag]

 {

 member definition;

 member definition;

 :

 member definition;

 } [one or more structure variables];

Chapter 28 ♦ Structures

588

As mentioned earlier, structure tag is optional (hence the

brackets in the format). Each member definition is a normal variable

definition, such as int i; or float sales[20]; or any other valid

variable definition, including variable pointers if the structure re-

quires a pointer as a member. At the end of the structure’s definition,

before the final semicolon, you can specify one or more structure

variables.

If you specify a structure variable, you request C++ to reserve

space for that variable. This enables C++ to recognize that the

variable is not integer, character, or any other internal data type.

C++ also recognizes that the variable must be a type that looks like

the structure. It might seem strange that the members do not reserve

storage, but they don’t. The structure variables do. This becomes

clear in the examples that follow.

Here is the way you declare the CD structure:

struct cd_collection

 {

 char title[25];

 char artist[20];

 int num_songs;

 float price;

 char date_purch[9];

 } cd1, cd2, cd3;

Before going any further, you should be able to answer the

following questions about this structure:

♦ What is the structure tag?

♦ How many members are there?

♦ What are the member data types?

♦ What are the member names?

♦ How many structure variables are there?

♦ What are their names?

The structure tag is called cd_collection. There are five mem-

bers, two character arrays, an integer, a floating-point, and a charac-

ter array. The member names are title, artist, num_songs, price, and

date_purch. There are three structure variables—cd1, cd2, and cd3.

589

EXAMPLE
C++ By

TIP: Often, you can visualize structure variables as a card-file

inventory system. Figure 28.2 shows how you might keep your

CD collection in a 3-by-5 card file. Each CD takes one card

(represented by its structure variable), which contains the

information about that CD (the structure members).

Figure 28.2. Using a card-file CD inventory system.

If you had 1000 CDs, you would have to declare 1000 structure

variables. Obviously, you would not want to list that many structure

variables at the end of a structure definition. To help define struc-

tures for a large number of occurrences, you must define an array of
structures. Chapter 29, “Arrays of Structures,” shows you how to do

that. For now, concentrate on familiarizing yourself with structure

definitions.

Examples

1. Here is a structure definition of the inventory application

described earlier in this chapter.

Chapter 28 ♦ Structures

590

struct inventory

{

 char item_name[20];

 long int in_stock;

 long int order_qty;

 float retail;

 float wholesale;

} item1, item2, item3, item4;

Four inventory structure variables are defined. Each struc-

ture variable—item1, item2, item3, and item4—looks like the

structure.

2. Suppose a company wanted to track its customers and

personnel. The following two structure definitions would

create five structure variables for each structure. This ex-

ample, having five employees and five customers, is very

limited, but it shows how structures can be defined.

struct employees

{

 char emp_name[25]; // Employee’s full name.

 char address[30]; // Employee’s address.

 char city[10];

 char state[2];

 long int zip;

 double salary; // Annual salary.

} emp1, emp2, emp3, emp4, emp5;

struct customers

{

 char cust_name[25]; // Customer’s full name.

 char address[30]; // Customer’s address.

 char city[10];

 char state[2];

 long int zip;

 double balance; // Balance owed to company.

} cust1, cust2, cust3, cust4, cust5;

Each structure has similar data. Later in this chapter, you

learn how to consolidate similar member definitions by

creating nested structures.

591

EXAMPLE
C++ By

TIP: Put comments to the right of members in order to docu-

ment the purpose of the members.

Initializing Structure Data
There are two ways to initialize members of a structure. You

can initialize members when you declare a structure, and you can

initialize a structure in the body of the program. Most programs lend

themselves to the latter method, because you do not always know

structure data when you write your program.

Here is an example of a structure declared and initialized at the

same time:

struct cd_collection

 {

 char title[25];

 char artist[20];

 int num_songs;

 float price;

 char date_purch[9];

 } cd1 = {“Red Moon Men”, “Sam and the Sneeds”,

 12, 11.95, “02/13/92”};

When first learning about structures, you might be tempted to

initialize members individually inside the structure, such as

char artist[20]=”Sam and the Sneeds”; // Invalid

You cannot initialize individual members because they are not

variables. You can assign only values to variables. The only struc-

ture variable in this structure is cd1. The braces must enclose the data

you initialize in the structure variables, just as they enclose data

when you initialize arrays.

This method of initializing structure variables becomes tedious

when there are several structure variables (as there usually are).

Putting the data in several variables, each set of data enclosed in

braces, becomes messy and takes too much space in your code.

You can define a
structure’s data when
you declare the
structure.

Chapter 28 ♦ Structures

592

More importantly, you usually do not even know the contents

of the structure variables. Generally, the user enters data to be stored

in structures, or you read them from a disk file.

A better approach to initializing structures is to use the dot
operator (.). The dot operator is one way to initialize individual

members of a structure variable in the body of your program. With

the dot operator, you can treat each structure member almost as if it

were a regular nonstructure variable.

The format of the dot operator is

structure_variable_name.member_name

A structure variable name must always precede the dot opera-

tor, and a member name must always appear after the dot operator.

Using the dot operator is easy, as the following examples show.

Examples

1. Here is a simple program using the CD collection structure

and the dot operator to initialize the structure. Notice the

program treats members as if they were regular variables

when combined with the dot operator.

Identify the program and include the necessary header file. Define
a CD structure variable with five members. Fill the CD structure
variable with data, then print it.

// Filename: C28ST1.CPP

// Structure initialization with the CD collection.

#include <iostream.h>

#include <string.h>

void main()

{

 struct cd_collection

 {

 char title[25];

 char artist[20];

 int num_songs;

 float price;

 char date_purch[9];

 } cd1;

Use the dot operator
to initialize members
of structures.

593

EXAMPLE
C++ By

 // Initialize members here.

 strcpy(cd1.title, “Red Moon Men”);

 strcpy(cd1.artist, “Sam and the Sneeds”);

 cd1.num_songs=12;

 cd1.price=11.95;

 strcpy(cd1.date_purch, “02/13/92”);

 // Print the data to the screen.

 cout << “Here is the CD information:\n\n”;

 cout << “Title: “ << cd1.title << “\n”;

 cout << “Artist: “ << cd1.artist << “\n”;

 cout << “Songs: “ << cd1.num_songs << “\n”;

 cout << “Price: “ << cd1.price << “\n”;

 cout << “Date purchased: “ << cd1.date_purch << “\n”;

 return;

}

Here is the output from this program:

Here is the CD information:

Title: Red Moon Men

Artist: Sam and the Sneeds

Songs: 12

Price: 11.95

Date purchased: 02/13/92

2. By using the dot operator, you can receive structure data

from the keyboard with any of the data-input functions you

know, such as cin, gets(), and get.

The following program asks the user for student informa-

tion. To keep the example reasonably short, only two stu-

dents are defined in the program.

// Filename: C28ST2.CPP

// Structure input with student data.

#include <iostream.h>

#include <string.h>

#include <iomanip.h>

#include <stdio.h>

Chapter 28 ♦ Structures

594

void main()

{

 struct students

 {

 char name[25];

 int age;

 float average;

 } student1, student2;

 // Get data for two students.

 cout << “What is first student’s name? “;

 gets(student1.name);

 cout << “What is the first student’s age? “;

 cin >> student1.age;

 cout << “What is the first student’s average? “;

 cin >> student1.average;

 fflush(stdin); // Clear input buffer for next input.

 cout << “\nWhat is second student’s name? “;

 gets(student2.name);

 cout << “What is the second student’s age? “;

 cin >> student2.age;

 cout << “What is the second student’s average? “;

 cin >> student2.average;

 // Print the data.

 cout << “\n\nHere is the student information you “ <<

 “entered:\n\n”;

 cout << “Student #1:\n”;

 cout << “Name: “ << student1.name << “\n”;

 cout << “Age: “ << student1.age << “\n”;

 cout << “Average: “ << setprecision(2) << student1.average

 << “\n”;

 cout << “\nStudent #2:\n”;

 cout << “Name: “ << student2.name << “\n”;

 cout << “Age: “ << student2.age << “\n”;

 cout << “Average: “ << student2.average << “\n”;

 return;

}

595

EXAMPLE
C++ By

Here is the output from this program:

What is first student’s name? Larry

What is the first student’s age? 14

What is the first student’s average? 87.67

What is second student’s name? Judy

What is the second student’s age? 15

What is the second student’s average? 95.38

Here is the student information you entered:

Student #1:

Name: Larry

Age: 14

Average: 87.67

Student #2:

Name: Judy

Age: 15

Average: 95.38

3. Structure variables are passed by copy, not by address as

arrays are. Therefore, if you fill a structure in a function, you

must return it to the calling function in order for the calling

function to recognize the structure, or use global structure

variables, which is generally not recommended.

TIP: A good solution to the local/global structure problem

is this: Define your structures globally without any structure

variables. Define all your structure variables locally to the

functions that need them. As long as your structure definition

is global, you can declare local structure variables from that

structure. All subsequent examples in this book use this method.

The structure tag plays an important role in the local/global

problem. Use the structure tag to define local structure

variables. The following program is similar to the previous

one. Notice the student structure is defined globally with no

Define structures
globally and
structure variables
locally.

Chapter 28 ♦ Structures

596

structure variables. In each function, local structure variables

are declared by referring to the structure tag. The structure

tag keeps you from having to redefine the structure mem-

bers every time you define a new structure variable.

// Filename: C28ST3.CPP

// Structure input with student data passed to functions.

#include <iostream.h>

#include <string.h>

#include <stdio.h>

#include <iomanip.h>

struct students fill_structs(struct students student_var);

void pr_students(struct students student_var);

struct students // A global structure.

 {

 char name[25];

 int age;

 float average;

 }; // No memory reserved.

void main()

{

 students student1, student2; // Defines two

 // local variables.

 // Call function to fill structure variables.

 student1 = fill_structs(student1); // student1

 // is passed by copy, so it must be

 // returned for main() to recognize it.

 student2 = fill_structs(student2);

 // Print the data.

 cout << “\n\nHere is the student information you”;

 cout << “ entered:\n\n”;

 pr_students(student1); // Prints first student’s data.

 pr_students(student2); // Prints second student’s data.

 return;

}

597

EXAMPLE
C++ By

struct students fill_structs(struct students student_var)

{

 // Get student’s data

 fflush(stdin); // Clears input buffer for next input.

 cout << “What is student’s name? “;

 gets(student_var.name);

 cout << “What is the student’s age? “;

 cin >> student_var.age;

 cout << “What is the student’s average? “;

 cin >> student_var.average;

 return (student_var);

}

void pr_students(struct students student_var)

{

 cout << “Name: “ << student_var.name << “\n”;

 cout << “Age: “ << student_var.age << “\n”;

 cout << “Average: “ << setprecision(2) <<

 student_var.average << “\n”;

 return;

}

The prototype and definition of the fill_structs() function

might seem complicated, but it follows the same pattern you

have seen throughout this book. Before a function name, you

must declare void or put the return data type if the function

returns a value. fill_structs() does return a value, and the

type of value it returns is struct students.

4. Because structure data is nothing more than regular vari-

ables grouped together, feel free to calculate using structure

members. As long as you use the dot operator, you can treat

structure members just as you would other variables.

The following example asks for a customer’s balance and

uses a discount rate, included in the customer’s structure, to

calculate a new balance. To keep the example short, the

structure’s data is initialized at variable declaration time.

This program does not actually require structures because

only one customer is used. Individual variables could have

Chapter 28 ♦ Structures

598

been used, but they don’t illustrate the concept of calculating

with structures.

// Filename: C28CUST.CPP

// Updates a customer balance in a structure.

#include <iostream.h>

#include <iomanip.h>

struct customer_rec

 {

 char cust_name[25];

 double balance;

 float dis_rate;

 } ;

void main()

{

 struct customer_rec customer = {“Steve Thompson”,

 431.23, .25};

 cout << “Before the update, “ << customer.cust_name;

 cout << “ has a balance of $” << setprecision(2) <<

 customer.balance << “\n”;

 // Update the balance

 customer.balance *= (1.0-customer.dis_rate);

 cout << “After the update, “ << customer.cust_name;

 cout << “ has a balance of $” << customer.balance << “\n”;

 return;

}

5. You can copy the members of one structure variable to the

members of another as long as both structures have the same

format. Some older versions of C++ require you to copy each

member individually when you want to copy one structure

variable to another, but AT&T C++ makes duplicating

structure variables easy.

599

EXAMPLE
C++ By

Being able to copy one structure variable to another will

seem more meaningful when you read Chapter 29, “Arrays

of Structures.”

The following program declares three structure variables,

but initializes only the first one with data. The other two are

then initialized by assigning the first structure variable to

them.

// Filename: C28STCPY.CPP

// Demonstrates assigning one structure to another.

#include <iostream.h>

#include <iomanip.h>

struct student

{

 char st_name[25];

 char grade;

 int age;

 float average;

};

void main()

{

 student std1 = {“Joe Brown”, ‘A’, 13, 91.4};

 struct student std2, std3; // Not initialized

 std2 = std1; // Copies each member of std1

 std3 = std1; // to std2 and std3.

 cout << “The contents of std2:\n”;

 cout << std2.st_name << “ “ << std2.grade << “ “;

 cout << std2.age << “ “ << setprecision(1) << std2.average

 << “\n\n”;

 cout << “The contents of std3:\n”;

 cout << std3.st_name << “ “ << std3.grade << “ “;

 cout << std3.age << “ “ << std3.average << “\n”;

 return;

}

Chapter 28 ♦ Structures

600

Here is the output from the program:

The contents of std2

Joe Brown, A, 13, 91.4

The contents of std3

Joe Brown, A, 13, 91.4

Notice each member of std1 was assigned to std2 and std3

with two single assignments.

Nested Structures
C++ gives you the ability to nest one structure definition in

another. This saves time when you are writing programs that use

similar structures. You have to define the common members only

once in their own structure and then use that structure as a member

in another structure.

The following two structure definitions illustrate this point:

struct employees

{

 char emp_name[25]; // Employee’s full name.

 char address[30]; // Employee’s address.

 char city[10];

 char state[2];

 long int zip;

 double salary; // Annual salary.

};

struct customers

{

 char cust_name[25]; // Customer’s full name.

 char address[30]; // Customer’s address.

 char city[10];

 char state[2];

 long int zip;

 double balance; // Balance owed to company.

};

601

EXAMPLE
C++ By

These structures hold different data. One structure is for em-

ployee data and the other holds customer data. Even though the data

should be kept separate (you don’t want to send a customer a

paycheck!), the structure definitions have much overlap and can be

consolidated by creating a third structure.

Suppose you created the following structure:

struct address_info

{

 char address[30]; // Common address information.

 char city[10];

 char state[2];

 long int zip;

};

This structure could then be used as a member in the other

structures like this:

struct employees

{

 char emp_name[25]; // Employee’s full name.

 address_info e_address; // Employee’s address.

 double salary; // Annual salary.

};

struct customers

{

 char cust_name[25]; // Customer’s full name.

 address_info c_address; // Customer’s address.

 double balance; // Balance owed to company.

};

It is important to realize there are a total of three structures, and

that they have the tags address_info, employees, and customers. How

many members does the employees structure have? If you answered

three, you are correct. There are three members in both employees and

customers. The employees structure has the structure of a character

array, followed by the address_info structure, followed by the double

floating-point member, salary.

Figure 28.3 shows how these structures look.

Chapter 28 ♦ Structures

602

Figure 28.3. Defining a nested structure.

When you define a structure, that structure becomes a new data

type in the program and can be used anywhere a data type (such as

int, float, and so on) can appear.

You can assign members values using the dot operator. To

assign the customer balance a number, type something like this:

customer.balance = 5643.24;

The nested structure might seem to pose a problem. How can

you assign a value to one of the nested members? By using the dot

operator, you must nest the dot operator just as you nest the

structure definitions. You would assign a value to the customer’s

ZIP code like this:

customer.c_address.zip = 34312;

603

EXAMPLE
C++ By

To assign a value to the employee’s ZIP code, you would do

this:

employee.e_address.zip = 59823;

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between structures and arrays?

2. What are the individual elements of a structure called?

3. What are the two ways to initialize members of a structure?

4. Do you pass structures by copy or by address?

5. True or false: The following structure definition reserves

storage in memory:

struct crec

 { char name[25];

 int age;

 float sales[5];

 long int num;

 }

6. Should you declare a structure globally or locally?

7. Should you declare a structure variable globally or locally?

8. How many members does the following structure declara-

tion contain?

struct item

 {

 int quantity;

 part_rec item_desc;

 float price;

 char date_purch[8];

 };

Chapter 28 ♦ Structures

604

Review Exercises
1. Write a structure in a program that tracks a video store’s

tape inventory. Be sure the structure includes the tape title,

the length of the tape (in minutes), the initial purchase price

of the tape, the rental price of the tape, and the date of the

movie’s release.

2. Write a program using the structure you declared in Exer-

cise 1. Define three structure variables and initialize them

when you declare the variables with data. Print the data to

the screen.

3. Write a teacher’s program to keep track of 10 students’

names, ages, letter grades, and IQs. Use 10 different struc-

ture variable names and retrieve the data for the students in

a for loop from the keyboard. Print the data on the printer

when the teacher finishes entering the information for all the

students.

Summary
With structures, you have the ability to group data in more

flexible ways than with arrays. Your structures can contain mem-

bers of different data types. You can initialize the structures either

at declaration time or during the program with the dot operator.

Structures become even more powerful when you declare

arrays of structure variables. Chapter 29, “Arrays of Structures,”

shows you how to declare several structure variables without giving

them each a different name. This enables you to step through

structures much quicker with loop constructs.

353

EXAMPLE
C++ By

17

Variable Scope

The concept of variable scope is most important when you write

functions. Variable scope determines which functions recognize

certain variables. If a function recognizes a variable, the variable is

visible to that function. Variable scope protects variables in one

function from other functions that might overwrite them. If a

function doesn’t need access to a variable, that function shouldn’t be

able to see or change the variable. In other words, the variable

should not be “visible” to that particular function.

This chapter introduces you to

♦ Global and local variables

♦ Passing arguments

♦ Automatic and static variables

♦ Passing parameters

The previous chapter introduced the concept of using a differ-

ent function for each task. This concept is much more useful when

you learn about local and global variable scope.

Chapter 17 ♦ Variable Scope

354

Global Versus Local
Variables

If you have programmed only in BASIC, the concept of local

and global variables might be new to you. In many interpreted

versions of BASIC, all variables are global, meaning the entire

program knows each variable and has the capability to change any

of them. If you use a variable called SALES at the top of the program,

even the last line in the program can use SALES. (If you don’t know

BASIC, don’t despair—there will be one less habit you have to

break!)

Global variables can be dangerous. Parts of a program can

inadvertently change a variable that shouldn’t be changed. For

example, suppose you are writing a program that keeps track of a

grocery store’s inventory. You might keep track of sales percent-

ages, discounts, retail prices, wholesale prices, produce prices,

dairy prices, delivered prices, price changes, sales tax percentages,

holiday markups, post-holiday markdowns, and so on.

The huge number of prices in such a system is confusing. When

writing a program to keep track of every price, it would be easy to

mistakenly call both the dairy prices d_prices and the delivered

prices d_prices. Either C++ will not enable you to do this (you can’t

define the same variable twice) or you will overwrite a value used

for something else. Whatever happens, keeping track of all these

different—but similarly named—prices makes this program con-

fusing to write.

Global variables can be dangerous because code can inadvert-

ently overwrite a variable initialized elsewhere in the program. It is

better to make every variable local in your programs. Then, only

functions that should be able to change the variables can do so.

Local variables can be seen (and changed) only from the

function in which they are defined. Therefore, if a function defines

a variable as local, that variable’s scope is protected. The variable

cannot be used, changed, or erased by any other function without

special programming that you learn about shortly.

If you use only one function, main(), the concept of local and

global is academic. You know from Chapter 16, “Writing C++

Functions,” however, that single-function programs are not recom-

mended. It is best to write modular, structured programs made up

Global variables are
visible across many
program functions.

Local variables are
visible only in the
block where they are
defined.

355

EXAMPLE
C++ By

of many smaller functions. Therefore, you should know how to

define variables as local to only those functions that use them.

Defining Variable Scope

When you first learned about variables in Chapter 4, “Variables

and Literals,” you learned you can define variables in two places:

♦ Before they are used inside a function

♦ Before a function name, such as main()

All examples in this book have declared variables with the first

method. You have yet to see an example of the second method.

Because most these programs have consisted entirely of a single

main() function, there has been no reason to differentiate the two

methods. It is only after you start using several functions in one

program that these two variable definition methods become critical.

The following rules, specific to local and global variables, are

important:

♦ A variable is local if and only if you define it after the opening

brace of a block, usually at the top of a function.

♦ A variable is global if and only if you define it outside a

function.

All variables you have seen so far have been local. They have all

been defined immediately after the opening braces of main(). There-

fore, they have been local to main(), and only main() can use them.

Other functions have no idea these variables even exist because they

belong to main() only. When the function (or block) ends, all its local

variables are destroyed.

TIP: All local variables disappear (lose their definition) when

their block ends.

Global variables are visible (“known”) from their point of

definition to the end of the program. If you define a global variable,

any line throughout the rest of the program—no matter how many

functions and code lines follow it—is able to use that global variable.

Global variables are
visible from their
definition through
the remainder of the
program.

Chapter 17 ♦ Variable Scope

356

Examples

1. The following section of code defines two local variables,

i and j.

main()

{

 int i, j; // Local because they’re

 // defined after the brace.

 // Rest of main() goes here.

}

These variables are visible to main() and not to any other

function that might follow or be called by main().

2. The following section of code defines two global variables, g

and h.

#include <iostream.h>

int g, h; // Global because they’re

 // defined before a function.

main()

{

 // main()’s code goes here.

}

It doesn’t matter whether your #include lines go before or

after global variable declarations.

3. Global variables can appear before any function. In the

following program, main() uses no variables. However, both

of the two functions after main() can use sales and profit

because these variables are global.

// Filename: C17GLO.CPP

// Program that contains two global variables.

#include <iostream.h>

do_fun();

third_fun(); // Prototype discussed later.

main()

{

 cout << “No variables defined in main() \n\n”;

 do_fun(); // Call the first function.

357

EXAMPLE
C++ By

 return 0;

}

float sales, profit; // Two global variables.

do_fun()

{

 sales = 20000.00; // This variable is visible

 // from this point down.

 profit = 5000.00; // As is this one. They are

 // both global.

 cout << “The sales in the second function are “ <<

 sales << “\n”;

 cout << “The profit in the second function is “ <<

 profit << “\n\n”;

 third_fun(); // Call the third function to

 // show that globals are visible.

 return 0;

}

third_fun()

{

 cout << “In the third function: \n”;

 cout << “The sales in the third function are “ <<

 sales << “\n”;

 cout << “The profit in the third function is “ <<

 profit << “\n”;

 // If sales and profit were local, they would not be

 // visible by more than one function.

 return 0;

}

Notice that the main() function can never use sales and profit

because they are not visible to main()—even though they are

global. Remember, global variables are visible only from

their point of definition downward in the program. State-

ments that appear before global variable definitions can-

not use those variables. Here is the result of running this

program.

Chapter 17 ♦ Variable Scope

358

No variables defined in main()

The sales in the second function are 20000

The profit in the second function is 5000

In the third function:

The sales in the third function are 20000

The profit in the third function is 5000

TIP: Declare all global variables at the top of your pro-

grams. Even though you can define them later (between any

two functions), you can find them faster if you declare them at

the top.

4. The following program uses both local and global variables.

It should now be obvious to you that j and p are local and i

and z are global.

// Filename: C17GLLO.CPP

// Program with both local and global variables.

// Local Variables Global Variables

// j, p i, z

#include <iostream.h>

pr_again(); // Prototype

int i = 0; // Global variable because it’s

 // defined outside main().

main()

{

 float p ; // Local to main() only.

 p = 9.0; // Puts value in global variable.

 cout << i << “, “ << p << “\n”; // Prints global i

 // and local p.

 pr_again(); // Calls next function.

 return 0; // Returns to DOS.

 }

359

EXAMPLE
C++ By

float z = 9.0; // Global variable because it’s

 // defined before a function.

pr_again()

{

 int j = 5; // Local to only pr_again().

 cout << j << “, “ << z; // This can’t print p!.

 cout << “, “ << i << “\n”;

 return 0; // Return to main().

 }

Even though j is defined in a function that main() calls, main()

cannot use j because j is local to pr_again(). When pr_again()

finishes, j is no longer defined. The variable z is global from

its point of definition down. This is why main() cannot print

z. Also, the function pr_again() cannot print p because p is

local to main() only.

Make sure you can recognize local and global variables

before you continue. A little study here makes the rest of this

chapter easy to understand.

5. Two variables can have the same name, as long as they are

local to two different functions. They are distinct variables,

even though they are named identically.

The following short program uses two variables, both

named age. They have two different values, and they are

considered to be two different variables. The first age is local

to main(), and the second age is local to get_age().

// Filename: C17LOC1.CPP

// Two different local variables with the same name.

#include <iostream.h>

get_age(); // Prototype

main()

{

 int age;

 cout << “What is your age? “;

 cin >> age;

 get_age(); // Call the second function.

 cout << “main()’s age is still “ << age << “\n”;

Chapter 17 ♦ Variable Scope

360

 return 0;

}

get_age()

{

 int age; // A different age. This one

 // is local to get_age().

 cout << “What is your age again? “;

 cin >> age;

 return 0;

}

The output of this program follows. Study this output

carefully. Notice that main()’s last cout does not print the

newly changed age. Rather, it prints the age known to

main()—the age that is local to main(). Even though they are

named the same, main()’s age has nothing to do with

get_age()’s age. They might as well have two different vari-

able names.

What is your age? 28

What is your age again? 56

main()’s age is still 28

You should be careful when naming variables. Having two

variables with the same name is misleading. It would be

easy to become confused while changing this program later.

If these variables truly have to be separate, name them

differently, such as old_age and new_age, or ag1 and ag2. This

helps you remember that they are different.

6. There are a few times when overlapping local variable

names does not add confusion, but be careful about overdo-

ing it. Programmers often use the same variable name as the

counter variable in a for loop. For example, the two local

variables in the following program have the same name.

// Filename: C17LOC2.CPP

// Using two local variables with the same name

Variables local to
main() cannot be
used in another
function that
main() calls.

361

EXAMPLE
C++ By

// as counting variables.

#include <iostream.h>

do_fun(); // Prototype

main()

{

 int ctr; // Loop counter.

 for (ctr=0; ctr<=10; ctr++)

 { cout << “main()’s ctr is “ << ctr << “\n”; }

 do_fun(); // Call second function.

 return 0;

}

do_fun()

{

 int ctr;

 for (ctr=10; ctr>=0; ctr--)

 { cout << “do_fun()’s ctr is “ << ctr << “\n”; }

 return 0; // Return to main().

}

Although this is a nonsense program that simply prints 0

through 10 and then prints 10 through 0, it shows that using

ctr for both function names is not a problem. These variables

do not hold important data that must be processed; rather,

they are for loop-counting variables. Calling them both ctr

leads to little confusion because their use is limited to con-

trolling for loops. Because a for loop initializes and incre-

ments variables, the one function never relies on the other

function’s ctr to do anything.

7. Be careful about creating local variables with the same name

in the same function. If you define a local variable early in a

function and then define another local variable with the

same name inside a new block, C++ uses only the innermost

variable, until its block ends.

The following example helps clarify this confusing problem.

The program contains one function with three local vari-

ables. See if you can find these three variables.

Chapter 17 ♦ Variable Scope

362

// Filename: C17MULI.CPP

// Program with multiple local variables called i.

#include <iostream.h>

main()

{

 int i; // Outer i

 i = 10;

 { int i; // New block’s i

 i = 20; // Outer i still holds a 10.

 cout << i << “ “ << i << “\n”; // Prints 20 20.

 { int i; // Another new block and local variable.

 i = 30; // Innermost i only.

 cout << i << “ “ << i <<

 “ “ << i << “\n”; // Prints 30 30 30.

 } // Innermost i is now gone forever.

 } // Second i is gone forever (its block ended).

 cout << i << “ “ << i << “ “ <<

 i << “\n”; // Prints 10 10 10.

 return 0;

} // main() ends and so do its variables.

All local variables are local to the block in which they are

defined. This program has three blocks, each one nested

within another. Because you can define local variables

immediately after an opening brace of a block, there are

three distinct i variables in this program.

The local i disappears completely when its block ends (when

the closing brace is reached). C++ always prints the variable

that it interprets as the most local—the one that resides

within the innermost block.

Use Global Variables Sparingly

You might be asking yourself, “Why do I have to understand

global and local variables?” At this point, that is an understandable

363

EXAMPLE
C++ By

question, especially if you have been programming mostly in

BASIC. Here is the bottom line: Global variables can be dangerous.
Code can inadvertently overwrite a variable that was initialized in

another place in the program. It is better to have every variable in

your program be local to the function that has to access it.
Read the last sentence again. Even though you now know how

to make variables global, you should avoid doing so! Try to never

use another global variable. It might seem easier to use global

variables when you write programs having more than one function:

If you make every variable used by every function global, you never

have to worry whether one is visible or not to any given function. On

the other hand, a function can accidentally change a global variable

when that was not your intention. If you keep variables local only to

functions that need them, you protect their values, and you also keep

your programs fully modular.

The Need for Passing Variables

You just learned the difference between local and global vari-

ables. You saw that by making your variables local, you protect their

values because the function that sees the variable is the only one that

can modify it.

What do you do, however, if you have a local variable you want

to use in two or more functions? In other words, you might need a

variable to be both added from the keyboard in one function and

printed in another function. If the variable is local only to the first

function, how can the second one access it?

You have two solutions if more than one function has to share

a variable. One, you can declare the variable globally. This is not a

good idea because you want only those two functions to have access

to the variable, but all functions have access to it when it’s global. The

other alternative—and the better one by far—is to pass the local

variable from one function to another. This has a big advantage: The

variable is only known to those two functions. The rest of the

program still has no access to it.

Chapter 17 ♦ Variable Scope

364

CAUTION: Never pass a global variable to a function. There

is no reason to pass global variables anyway because they are

already visible to all functions.

When you pass a local variable from one function to another,

you pass an argument from the first function to the next. You can pass

more than one argument (variable) at a time, if you want several

local variables to be sent from one function to another. The receiving

function receives a parameter (variable) from the function that sends

it. You shouldn’t worry too much about what you call them—either

arguments or parameters. The important thing to remember is that

you are sending local variables from one function to another.

NOTE: You have already passed arguments to parameters

when you passed data to the cout operator. The literals, vari-

ables, and expressions in the cout parentheses are arguments.

The built-in cout function receives these values (called param-

eters on the receiving end) and displays them.

A little more terminology is needed before you see some

examples. When a function passes an argument, it is called the

calling function. The function that receives the argument (called a

parameter when it is received) is called the receiving function. Figure

17.1 explains these terms.

You pass an
argument when you
pass one local
variable to another
function.

Figure 17.1. The calling and receiving functions.

To pass a local variable from one function to another, you must

place the local variable in parentheses in both the calling func-

tion and the receiving function. For example, the local and global

If a function name
has empty
parentheses, nothing
is being passed to it.

365

EXAMPLE
C++ By

examples presented earlier did not pass local variables from main()

to do_fun(). If a function name has empty parentheses, nothing is

being passed to it. Given this, the following line passes two vari-

ables, total and discount, to a function called do_fun().

do_fun(total, discount);

It is sometimes said that a variable or function is defined. This

has nothing to do with the #define preprocessor directive, which

defines literals. You define variables with statements such as the

following:

int i, j;

int m=9;

float x;

char ara[] = “Tulsa”;

These statements tell the program that you need these variables

to be reserved. A function is defined when the C++ compiler reads

the first statement in the function that describes the name and when

it reads any variables that might have been passed to that function

as well. Never follow a function definition with a semicolon, but

always follow the statement that calls a function with a semicolon.

NOTE: To some C++ purists, a variable is only declared when

you write int i; and only truly defined when you assign it a

value, such as i=7;. They say that the variable is both declared

and defined when you declare the variable and assign it a value

at the same time, such as int i=7;.

The following program contains two function definitions,

main() and pr_it().

To practice passing a variable to a function, declare i as an integer variable
and make it equal to five. The passing (or calling) function is main(), and
the receiving function is pr_it(). Pass the i variable to the pr_it()
function, then go back to main().

Chapter 17 ♦ Variable Scope

366

main() // The main() function definition.

{

 int i=5; // Defines an integer variable.

 pr_it(i); // Calls the pr_it().

 // function and passes it i.

 return 0; // Returns to the operating system.

}

pr_it(int i) // The pr_it() function definition.

{

 cout << i << “\n”; // Calls the cout operator.

 return 0; // Returns to main().

}

Because a passed parameter is treated like a local variable in the

receiving function, the cout in pr_it() prints a 5, even though the

main() function initialized this variable.

When you pass arguments to a function, the receiving function

is not aware of the data types of the incoming variables. Therefore,

you must include each parameter’s data type in front of the

parameter’s name. In the previous example, the definition of pr_it()

(the first line of the function) contains the type, int, of the incoming

variable i. Notice that the main() calling function does not have to

indicate the variable type. In this example, main() already knows the

type of variable i (an integer); only pr_it() has to know that i is an

integer.

TIP: Always declare the parameter types in the receiving

function. Precede each parameter in the function’s parentheses

with int, float, or whatever each passed variable’s data type is.

Examples

1. Here is a main() function that contains three local variables.

main() passes one of these variables to the first function and

two of them to the second function.

367

EXAMPLE
C++ By

// Filename: C17LOC3.CPP

// Pass three local variables to functions.

#include <iostream.h>

#include <iomanip.h>

pr_init(char initial); // Prototypes discussed later.

pr_other(int age, float salary);

main()

{

 char initial; // Three variables local to

 // main().

 int age;

 float salary;

 // Fill these variables in main().

 cout << “What is your initial? “;

 cin >> initial;

 cout << “What is your age? “;

 cin >> age;

 cout << “What is your salary? “;

 cin >> salary;

 pr_init(initial); // Call pr_init() and

 // pass it initial.

 pr_other(age, salary); // Call pr_other() and

 // pass it age and salary.

 return 0;

}

pr_init(char initial) // Never put a semicolon in

 // the function definition.

{

 cout << “Your initial is “ << initial << “\n”;

 return 0; // Return to main().

}

pr_other(int age, float salary) // Must type both parameters.

{

 cout << “You look young for “ << age << “\n”;

 cout << “And “ << setprecision(2) << salary <<

Chapter 17 ♦ Variable Scope

368

 “ is a LOT of money!”;

 return 0; // Return to main().

}

2. A receiving function can contain its own local variables.

As long as the names are not the same, these local variables

do not conflict with the passed ones. In the following pro-

gram, the second function receives a passed variable from

main() and defines its own local variable called price_per.

// Filename: C17LOC4.CPP

// Second function has its own local variable.

#include <iostream.h>

#include <iomanip.h>

compute_sale(int gallons); // Prototypes discussed later.

main()

{

 int gallons;

 cout << “Richard’s Paint Service \n”;

 cout << “How many gallons of paint did you buy? “;

 cin >> gallons; // Get gallons in main().

 compute_sale(gallons); // Compute total in function.

 return 0;

}

compute_sale(int gallons)

{

 float price_per = 12.45; // Local to compute_sale().

 cout << “The total is “ << setprecision(2) <<

 (price_per*(float)gallons) << “\n”;

 // Had to type cast gallons because it was integer.

 return 0; // Return to main().

}

3. The following sample code lines test your skill at recog-

nizing calling functions and receiving functions. Being able

to recognize the difference is half the battle of understanding

them.

369

EXAMPLE
C++ By

do_it()

The preceding fragment must be the first line of a new

function because it does not end with a semicolon.

do_it2(sales);

This line calls a function called do_it2(). The calling function

passes the variable called sales to do_it2().

pr_it(float total)

The preceding line is the first line of a function that receives

a floating-point variable from another function that called it.

All receiving functions must specify the type of each variable

being passed.

pr_them(float total, int number)

This is the first line of a function that receives two vari-

ables—one is a floating-point variable and the other is an

integer. This line cannot be calling the function pr_them

because there is no semicolon at the end of the line.

Automatic Versus Static
Variables

The terms automatic and static describe what happens to local

variables when a function returns to the calling procedure. By

default, all local variables are automatic, meaning that they are

erased when their function ends. You can designate a variable as

automatic by prefixing its definition with the term auto. The auto

keyword is optional with local variables because they are automatic

be default.

The two statements after main()’s opening brace declare auto-

matic local variables:

main()

{

 int i;

 auto float x;

 // Rest of main() goes here.

Chapter 17 ♦ Variable Scope

370

Because auto is the default, you did not have to include the term

auto with x.

NOTE: C++ programmers rarely use the auto keyword with

local variables because they are automatic by default.

The opposite of an automatic variable is a static variable. All

global variables are static and, as mentioned, all static variables

retain their values. Therefore, if a local variable is static, it too retains

its value when its function ends—in case the function is called a

second time. To declare a variable as static, place the static keyword

in front of the variable when you define it. The following code

section defines three variables, i, j, and k. The variable i is automatic,

but j and k are static.

my_fun() // Start of new function definition.

{

 int i;

 static j=25; // Both j and k are static variables.

 static k=30;

Always assign an initial value to a static variable when you

declare it, as shown here in the last two lines. This initial value is

placed in the static variable only the first time my_fun() executes. If

you don’t assign a static variable an initial value, C++ initializes it to

zero.

TIP: Static variables are good to use when you write functions

that keep track of a count or add to a total. If the counting or

totaling variables were local and automatic, their values would

disappear when the function finished—destroying the totals.

Automatic variables
are local and
disappear when their
function ends.

If local variables are
static, their values
remain in case the
function is called
again.

371

EXAMPLE
C++ By

Automatic and Static Rules for Local Variables

Local automatic variables disappear when their block ends. All

local variables are automatic by default. You can prefix a

variable (when you define it) with the auto keyword, or you can

omit it; the variable is still automatic and its value is destroyed

when its local block ends.

Local static variables do not lose their values when their

function ends. They remain local to that function. When the

function is called after the first time, the static variable’s value

is still in place. You declare a static variable by placing the

static keyword before the variable’s definition.

Examples

1. Consider this program:

// Filename: C17STA1.CPP

// Tries to use a static variable

// without a static declaration.

#include <iostream.h>

triple_it(int ctr);

main()

{

 int ctr; // Used in the for loop to

 // call a function 25 times.

 for (ctr=1; ctr<=25; ctr++)

 { triple_it(ctr); } // Pass ctr to a function

 // called triple_it().

 return 0;

}

triple_it(int ctr)

{

 int total=0, ans; // Local automatic variables.

Chapter 17 ♦ Variable Scope

372

 // Triples whatever value is passed to it

 // and adds the total.

 ans = ctr * 3; // Triple number passed.

 total += ans; // Add triple numbers as this is called.

 cout << “The number “ << ctr << “ multiplied by 3 is “

 << ans << “\n”;

 if (total > 300)

 { cout << “The total of triple numbers is over 300 \n”; }

 return 0;

}

This is a nonsense program that doesn’t do much, yet you

might sense something is wrong. The program passes num-

bers from 1 to 25 to the function called triple_it. The function

triples the number and prints it.

The variable called total is initially set to 0. The idea here is to

add each tripled number and print a message when the total

is larger than 300. However, the cout never executes. For each

of the 25 times that this subroutine is called, total is reset to 0.

The total variable is an automatic variable, with its value

erased and initialized every time its procedure is called. The

next example corrects this.

2. If you want total to retain its value after the procedure ends,

you must make it static. Because local variables are automatic

by default, you have to include the static keyword to over-

ride this default. Then the value of the total variable is

retained each time the subroutine is called.

The following corrects the mistake in the previous program.

// Filename: C17STA2.CPP

// Uses a static variable with the static declaration.

#include <iostream.h>

triple_it(int ctr);

main()

373

EXAMPLE
C++ By

{

 int ctr; // Used in the for loop to

 // call a function 25 times.

 for (ctr=1; ctr<=25; ctr++)

 { triple_it(ctr); } // Pass ctr to a function

 // called triple_it().

 return 0;

}

triple_it(int ctr)

{

 static int total=0; // Local and static

 int ans; // Local and automatic

 // total is set to 0 only the first time this

 // function is called.

 // Triples whatever value is passed to it and adds

 // the total.

 ans = ctr * 3; // Triple number passed.

 total += ans; // Add triple numbers as this is called.

 cout << “The number “ << ctr << “ multiplied by 3 is “

 << ans << “\n”;

 if (total > 300)

 { cout << “The total of triple numbers is over 300 \n”; }

 return 0;

}

This program’s output follows. Notice that the function’s

cout is triggered, even though total is a local variable. Be-

cause total is static, its value is not erased when the function

finishes. When main() calls the function a second time, total’s

previous value (at the time you left the routine) is still there.

The number 1 multiplied by 3 is 3

The number 2 multiplied by 3 is 6

The number 3 multiplied by 3 is 9

The number 4 multiplied by 3 is 12

Chapter 17 ♦ Variable Scope

374

The number 5 multiplied by 3 is 15

The number 6 multiplied by 3 is 18

The number 7 multiplied by 3 is 21

The number 8 multiplied by 3 is 24

The number 9 multiplied by 3 is 27

The number 10 multiplied by 3 is 30

The number 11 multiplied by 3 is 33

The number 12 multiplied by 3 is 36

The number 13 multiplied by 3 is 39

The number 14 multiplied by 3 is 42

The number 15 multiplied by 3 is 45

The number 16 multiplied by 3 is 48

The number 17 multiplied by 3 is 51

The number 18 multiplied by 3 is 54

The number 19 multiplied by 3 is 57

The number 20 multiplied by 3 is 60

The number 21 multiplied by 3 is 63

The number 22 multiplied by 3 is 66

The number 23 multiplied by 3 is 69

The number 24 multiplied by 3 is 72

The number 25 multiplied by 3 is 75

This does not mean that local static variables become global.

The main program cannot refer, use, print, or change total

because it is local to the second function. Static simply

means that the local variable’s value is still there if the

program calls the function again.

Three Issues of Parameter
Passing

To have a complete understanding of programs with several

functions, you have to learn three additional concepts:

♦ Passing arguments (variables) by value (also called “by

copy”)

♦ Passing arguments (variables) by address (also called “by

reference”)

♦ Returning values from functions

375

EXAMPLE
C++ By

The first two concepts deal with the way local variables are

passed and received. The third concept describes how receiving

functions send values back to the calling functions. Chapter 18,

“Passing Values,” concludes this discussion by explaining these

three methods for passing parameters and returning values.

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: A function should always include a return

statement as its last command, even though return is not

required.

2. When a local variable is passed, is it called an argument or a

parameter?

3. True or false: A function that is passed variables from an-

other function cannot also have its own local variables.

4. What must appear inside the receiving function’s parenthe-

ses, other than the variables passed to it?

5. If a function keeps track of a total or count every time it is

called, should the counting or totaling variable be automatic

or static?

6. When would you pass a global variable to a function? (Be

careful—this might be a trick question!)

7. How many arguments are there in the following statement?

printf(“The rain has fallen %d inches.”, rainf);

Review Exercises
1. Write a program that asks, in main(), for the age of the user’s

dog. Write a second function called people() that computes

the dog’s age in human years (by multiplying the dog’s age

by seven).

Chapter 17 ♦ Variable Scope

376

2. Write a function that counts the number of times it is called.

Name the function count_it(). Do not pass it anything. In the

body of count_it(), print the following message:

The number of times this function has been called is: ##

where ## is the number. (Hint: Because the variable must be

local, make it static and initialize it to zero when you first

define it.)

3. The following program contains several problems. Some of

these problems produce errors. One problem is not an error,

but a bad location for a variable declaration. (Hint: Find all

the global variables.) See if you can spot some of the prob-

lems, and rewrite the program so it works better.

// Filename: C17BAD.CPP

// Program with bad uses of variable declarations.

#include <iostream.h>

#define NUM 10

do_var_fun(); // Prototypes discussed later.

char city[] = “Miami”;

int count;

main()

{

 int abc;

 count = NUM;

 abc = 5;

 do_var_fun();

 cout << abc << “ “ << count << “ “ << pgm_var << “ “

 << xyz;

 return 0;

}

int pgm_var = 7;

do_var_fun()

377

EXAMPLE
C++ By

{

 char xyz = ‘A’;

 xyz = ‘b’;

 cout << xyz << “ “ << pgm_var << “ “ abc << “ “ << city;

 return 0;

}

Summary
Parameter passing is necessary because local variables are

better than global. Local variables are protected in their own rou-

tines, but sometimes they must be shared with other routines. If

local data are to remain in those variables (in case the function is

called again in the same program), the variables should be static

because otherwise their automatic values disappear.

Most the information in this chapter becomes more obvious as

you use functions in your own programs. Chapter 18, “Passing

Values,” covers the actual passing of parameters in more detail and

shows you two different ways to pass them.

Chapter 17 ♦ Variable Scope

378

379

EXAMPLE
C++ By

18

Passing Values

C++ passes variables between functions using two different meth-

ods. The one you use depends on how you want the passed variables

to be changed. This chapter explores these two methods. The con-

cepts discussed here are not new to the C++ language. Other

programming languages, such as Pascal, FORTRAN, and QBasic,

pass parameters using similar techniques. A computer language

must have the capability to pass information between functions

before it can be called truly structured.

This chapter introduces you to the following:

♦ Passing variables by value

♦ Passing arrays by address

♦ Passing nonarrays by address

Pay close attention because most of the programs in the remain-

der of the book rely on the methods described in this chapter.

Passing by Value (by Copy)
The two wordings “passing by value” and “passing by copy”

mean the same thing in computer terms. Some textbooks and C++

programmers state that arguments are passed by value, and some

state that they are passed by copy. Both of these phrases describe one

Chapter 18 ♦ Passing Values

380

of the two methods by which arguments are passed to receiving

functions. (The other method is called “by address,” or “by refer-

ence.” This method is covered later in the chapter.)

When an argument (local variable) is passed by value, a copy

of the variable’s value is sent to—and is assigned to—the receiving

function’s parameter. If more than one variable is passed by value,

a copy of each of their values is sent to—and is assigned to—the

receiving function’s parameters.

Figure 18.1 shows the passing by copy in action. The value of i—

not the variable—is passed to the called function, which receives it

as a variable i. There are two variables called i, not one. The first is

local to main(), and the second is local to pr_it(). They both have the

same names, but because they are local to their respective functions,

there is no conflict. The variable does not have to be called i in both

functions, and because the value of i is sent to the receiving function,

it does not matter what the receiving function calls the variable that

receives this value.

When you pass by
value, a copy of the
variable’s value is
passed to the
receiving function.

5

Figure 18.1. Passing the variable i by value.

In this case, when passing and receiving variables between

functions, it is wisest to retain the same names. Even though they are

not the same variables, they hold the same value. In this example, the

value 5 is passed from main()’s i to pr_it()’s i.

Because a copy of i’s value (and not the variable itself) is passed

to the receiving function, if pr_it() changed i, it would be changing

only its copy of i and not main()’ s i. This fact truly separates

functions and variables. You now have the technique for passing a

copy of a variable to a receiving function, with the receiving function

being unable to modify the calling function’s variable.

5

381

EXAMPLE
C++ By

All C++’s nonarray variables you have seen so far are passed by

value. You do not have to do anything special to pass variables by

value, except to pass them in the calling function’s argument list and

receive them in the receiving function’s parameter list.

NOTE: The default method for passing parameters is by value,

as just described, unless you pass arrays. Arrays are always

passed by the other method, by address, described later in the

chapter.

Examples

1. The following program asks users for their weight. It then

passes that weight to a function that calculates the equiva-

lent weight on the moon. Notice the second function uses the

passed value, and calculates with it. After weight is passed to

the second function, that function can treat weight as though

it were a local variable.

Identify the program and include the necessary input/output file.

You want to calculate the user’s weight on the moon. Because you
have to hold the user’s weight somewhere, declare the variable
weight as an integer. You also need a function that does the
calculations, so create a function called moon().

Ask the user how much he or she weighs. Put the user’s answer in
weight. Now pass the user’s weight to the moon() function, which
divides the weight by six to determine the equivalent weight on the
moon. Display the user’s weight on the moon.

You have finished, so leave the moon() function, then leave the
main() function.

// Filename: C18PASS1.CPP

// Calculate the user’s weight in a second function.

#include <iostream.h>

moon(int weight); // Prototypes discussed later.

Chapter 18 ♦ Passing Values

382

main()

{

 int weight; // main()’s local weight.

 cout << “How many pounds do you weigh? “;

 cin >> weight;

 moon(weight); // Call the moon() function and

 // pass it the weight.

 return 0; // Return to the operating system.

}

moon(int weight) // Declare the passed parameter.

{

 // Moon weights are 1/6th earth’s weights

 weight /= 6; // Divide the weight by six.

 cout << “You weigh only “ << weight <<

 “ pounds on the moon!”;

 return 0; // Return to main().

}

The output of this program follows:

How many pounds do you weigh? 120

You weigh only 20 pounds on the moon!

2. You can rename passed variables in the receiving function.

They are distinct from the passing function’s variable. The

following is the same program as in Example 1, except the

receiving function calls the passed variable earth_weight. A

new variable, called moon_weight, is local to the called func-

tion and is used for the moon’s equivalent weight.

// Filename: C18PASS2.CPP

// Calculate the user’s weight in a second function.

#include <iostream.h>

moon(int earth_weight);

main()

383

EXAMPLE
C++ By

{

 int weight; // main()’s local weight.

 cout << “How many pounds do you weigh? “;

 cin >> weight;

 moon(weight); // Call the moon() function and

 // pass it the weight.

 return 0; // Return to the operating system.

}

moon(int earth_weight) // Declare the passed parameter.

{

 int moon_weight; // Local to this function.

 // Moon's weights are 1/6th of earth’s weights.

 moon_weight = earth_weight / 6; // Divide weight by six.

 cout << “You only weigh “ << moon_weight <<

 “ pounds on the moon!”;

 return 0; // Return to main().

}

The resulting output is identical to that of the previous

program. Renaming the passed variable changes nothing.

3. The next example passes three variables—of three different

types—to the called function. In the receiving function’s

parameter list, each of these variable types must be declared.

This program prompts users for three values in the main()

function. The main() function then passes these variables to

the receiving function, which calculates and prints values

related to those passed variables. When the called function

modifies a variable passed to the function, notice again that

this does not affect the calling function’s variable. When

variables are passed by value, the value—not the variable—

is passed.

// Filename: C18PASS3.CPP

// Get grade information for a student.

#include <iostream.h>

#include <iomanip.h>

check_grade(char lgrade, float average, int tests);

Chapter 18 ♦ Passing Values

384

main()

{

 char lgrade; // Letter grade.

 int tests; // Number of tests not yet taken.

 float average; // Student’s average based on 4.0 scale.

 cout << “What letter grade do you want? “;

 cin >> lgrade;

 cout << “What is your current test average? “;

 cin >> average;

 cout << “How many tests do you have left? “;

 cin >> tests;

 check_grade(lgrade, average, tests); // Calls function

 // and passes three variables by value.

 return 0;

}

check_grade(char lgrade, float average, int tests)

{

 switch (tests)

 {

 case (0): { cout << “You will get your current grade “

 << “of “ << lgrade;

 break; }

 case (1): { cout << “You still have time to bring “ <<

 “up your average”;

 cout << “of “ << setprecision(1) <<

 average << “up. Study hard!”;

 break; }

 default: { cout << “Relax. You still have plenty of “

 << “time.”;

 break; }

 }

 return 0;

}

385

EXAMPLE
C++ By

Passing by Address
(by Reference)

The two phrases “by address” and “by reference” mean the

same thing. The previous section described passing arguments by

value (or by copy). This section teaches you how to pass arguments

by address.

When you pass an argument (local variable) by address, the

variable’s address is sent to—and is assigned to—the receiving

function’s parameter. (If you pass more than one variable by ad-

dress, each of their addresses is sent to—and is assigned to—the

receiving function’s parameters.)

Variable Addresses

All variables in memory (RAM) are stored at memory ad-

dresses—see Figure 18.2. If you want more information on the

internal representation of memory, refer to Appendix A, “Memory

Addressing, Binary, and Hexadecimal Review.”

Figure 18.2. Memory addresses.

When you tell C++ to define a variable (such as int i;), you are

requesting C++ to find an unused place in memory and assign that

place (or memory address) to i. When your program uses the

variable called i, C++ goes to i’s address and uses whatever is there.

When you pass by
address, the address
of the variable is
passed to the
receiving function.

Chapter 18 ♦ Passing Values

386

If you define five variables as follows,

int i;

float x=9.8;

char ara[2] = {‘A’, ‘B’};

int j=8, k=3;

C++ might arbitrarily place them in memory at the addresses

shown in Figure 18.3.

All C++ arrays are
passed by address.

Figure 18.3. Storing variables in memory.

You don’t know what is contained in the variable called i

because you haven’t put anything in it yet. Before you use i, you

should initialize it with a value. (All variables—except character

variables—usually use more than 1 byte of memory.)

Sample Program

The address of the variable, not its value, is copied to the

receiving function when you pass a variable by address. In C++, all
arrays are automatically passed by address. (Actually, a copy of their

address is passed, but you will understand this better when you

learn more about arrays and pointers.) The following important rule

holds true for programs that pass by address:

387

EXAMPLE
C++ By

Every time you pass a variable by address, if the receiving

function changes the variable, it is changed also in the

calling function.

Therefore, if you pass an array to a function and the function

changes the array, those changes are still with the array when it

returns to the calling function. Unlike passing by value, passing by

address gives you the ability to change a variable in the called
function and to keep those changes in effect in the calling function.

The following sample program helps to illustrate this concept.

// Filename: C18ADD1.CPP

// Passing by address example.

#include <iostream.h>

#include <string.h>

change_it(char c[4]); // Prototype discussed later.

main()

{

 char name[4]=”ABC”;

 change_it(name); // Passes by address because

 // it is an array.

 cout << name << “\n”; // Called function can

 // change array.

 return 0;

}

change_it(char c[4]) // You must tell the function

 // that c is an array.

{

 cout << c << “\n”; // Print as it is passed.

 strcpy(c, “USA”); // Change the array, both

 // here and in main().

 return 0;

}

Here is the output from this program:

ABC

USA

Chapter 18 ♦ Passing Values

388

At this point, you should have no trouble understanding that

the array is passed from main() to the function called change_it().

Even though change_it() calls the array c, it refers to the same array

passed by the main() function (name).

Figure 18.4 shows how the array is passed. Although the

address of the array—and not its value—is passed from name to c,

both arrays are the same.

ara

Figure 18.4. Passing an array by address.

Before going any further, a few additional comments are in

order. Because the address of name is passed to the function—even

though the array is called c in the receiving function—it is still the

same array as name. Figure 18.5 shows how C++ accomplishes this

task at the memory-address level.

Figure 18.5. The array being passed is the same array in both functions.

The variable array is referred to as name in main() and as c in

change_it(). Because the address of name is copied to the receiving

function, the variable is changed no matter what it is called in either

389

EXAMPLE
C++ By

function. Because change_it() changes the array, the array is changed

also in main().

Examples

1. You can now use a function to fill an array with user input.

The following function asks users for their first name in the

function called get_name(). As users type the name in the

array, it is also entered in main()’s array. The main() function

then passes the array to pr_name(), where it is printed. (If

arrays were passed by value, this program would not work.

Only the array value would be passed to the called func-

tions.)

// Filename: C18ADD2.CPP

// Get a name in an array, then print it using

// separate functions.

#include <iostream.h>

get_name(char name[25]); // Prototypes discussed later.

print_name(char name[25]);

main()

{

 char name[25];

 get_name(name); // Get the user’s name.

 print_name(name); // Print the user’s name.

 return 0;

}

get_name(char name[25]) // Pass the array by address.

{

 cout << “What is your first name? “;

 cin >> name;

 return 0;

}

print_name(char name[25])

{

 cout << “\n\n Here you are, “ << name;

 return 0;

}

Chapter 18 ♦ Passing Values

390

When you pass an array, be sure to specify the array’s type

in the receiving function’s parameter list. If the previous

program declared the passed array with

get_name(char name)

the function get_name() would interpret this as a single

character variable, not a character array. You never have to

put the array size in brackets. The following statement also

works as the first line of get_name().

get_name(char name[])

Most C++ programmers put the array size in the brackets to

clarify the array size, even though the size is not needed.

2. Many programmers pass character arrays to functions to

erase them. Here is a function called clear_it(). It expects

two parameters: a character array and the total number of

elements declared for that array. The array is passed by

address (as are all arrays) and the number of elements,

num_els, is passed by value (as are all nonarrays). When the

function finishes, the array is cleared (all its elements are

reset to null zero). Subsequent functions that use it can then

have an empty array.

clear_it(char ara[10], int num_els)

{

 int ctr;

 for (ctr=0; ctr<num_els; ctr++)

 { ara[ctr] = ‘\0’; }

 return 0;

}

The brackets after ara do not have to contain a number, as

described in the previous example. The 10 in this example is

simply a placeholder for the brackets. Any value (or no

value) would work as well.

391

EXAMPLE
C++ By

Passing Nonarrays by Address

You now should see the difference between passing variables

by address and by value. Arrays can be passed by address, and

nonarrays can be passed by value. You can override the by value
default for nonarrays. This is helpful sometimes, but it is not always

recommended because the called function can damage values in the

called function.

If you want a nonarray variable changed in a receiving function

and also want the changes kept in the calling function, you must

override the default and pass the variable by address. (You should

understand this section better after you learn how arrays and

pointers relate.) To pass a nonarray by address, you must precede

the argument in the receiving function with an ampersand (&).

This might sound strange to you (and it is, at this point). Few

C++ programmers override the default of passing by address. When

you learn about pointers later, you should have little need to do so.

Most C++ programmers don’t like to clutter their code with these

extra ampersands, but it’s nice to know you can override the default

if necessary.

The following examples demonstrate how to pass nonarray

variables by address.

Examples

1. The following program passes a variable by address from

main() to a function. The function changes it and returns to

main(). Because the variable is passed by address, main()

recognizes the new value.

// Filename: C18ADD3.CPP

// Demonstrate passing nonarrays by address.

#include <iostream.h>

do_fun(int &amt); // Prototypes discussed later.

main()

{

 int amt;

You can pass
nonarrays by
address as well.

Chapter 18 ♦ Passing Values

392

 amt = 100; // Assign a value in main().

 cout << “In main(), amt is “ << amt << “\n”;

 do_fun(amt); // Pass amt by address

 cout << “After return, amt is “ << amt << “ in main()\n”;

 return 0;

}

do_fun(int &amt) // Inform function of

 // passing by address.

{

 amt = 85; // Assign new value to amt.

 cout << “In do_fun(), amt is “ << amt << “\n”;

 return 0;

}

The output from this program follows:

In main(), amt is 100

In do_fun(), amt is 85

After return, amt is 85 in main()

Notice that amt changed in the called function. Because it was

passed by address, it is changed also in the calling function.

2. You can use a function to get the user’s keyboard values.

The main() function recognizes those values as long as you

pass them by address. The following program calculates the

cubic feet in a swimming pool. In one function, it requests

the width, length, and depth. In another function, it calcu-

lates the cubic feet of water. Finally, in a third function, it

prints the answer. The main() function is clearly a controlling

function, passing variables between these functions by

address.

// Filename: C18POOL.CPP

// Calculates the cubic feet in a swimming pool.

#include <iostream.h>

get_values(int &length, int &width, int &depth);

calc_cubic(int &length, int &width, int &depth, int &cubic);

print_cubic(int &cubic);

393

EXAMPLE
C++ By

main()

{

 int length, width, depth, cubic;

 get_values(length, width, depth);

 calc_cubic(length, width, depth, cubic);

 print_cubic(cubic);

 return 0;

}

get_values(int &length, int &width, int &depth)

{

 cout << “What is the pool’s length? “;

 cin >> length;

 cout << “What is the pool’s width? “;

 cin >> width;

 cout << “What is the pool’s average depth? “;

 cin >> depth;

 return 0;

}

calc_cubic(int &length, int &width, int &depth, int &cubic)

{

 cubic = (length) * (width) * (depth);

 return 0;

}

print_cubic(int &cubic)

{

 cout << “\nThe pool has “ << cubic << “ cubic feet\n”;

 return 0;

}

The output follows:

What is the pool’s length? 16

What is the pool’s width? 32

What is the pool’s average depth? 6

The pool has 3072 cubic feet

Chapter 18 ♦ Passing Values

394

All variables in a function must be preceded with an amper-

sand if they are to be passed by address.

Review Questions
The answers to the review questions are in Appendix B.

1. What type of variable is automatically passed by address?

2. What type of variable is automatically passed by value?

3. True or false: If a variable is passed by value, it is passed also

by copy.

4. If a variable is passed to a function by value and the function

changes the variable, is it changed in the calling function?

5. If a variable is passed to a function by address and the

function changes the variable, is it changed in the calling

function?

6. What is wrong with the following function?

do_fun(x, y, z)

{

 cout << “The variables are “ << x << y << z;

 return 0;

}

7. Suppose you pass a nonarray variable and an array to a

function at the same time. What is the default?

a. Both are passed by address.

b. Both are passed by value.

c. One is passed by address and the other is passed by

value.

395

EXAMPLE
C++ By

Review Exercises
1. Write a main() function and a second function that main()

calls. Ask users for their annual income in main(). Pass the

income to the second function and print a congratulatory

message if the user makes more than $50,000 or an encour-

agement message if the user makes less.

2. Write a three-function program, consisting of the following

functions:

main()

fun1()

fun2()

Declare a 10-element character array in main(), fill it with the

letters A through J in fun1(), then print that array backwards

in fun2().

3. Write a program whose main() function passes a number to a

function called print_aster(). The print_aster() function

prints that many asterisks on a line, across the screen. If

print_aster() is passed a number greater than 80, display an

error because most screens cannot print more than 80 char-

acters on the same line. When execution is finished, return

control to main() and then return to the operating system.

4. Write a function that is passed two integer values by ad-

dress. The function should declare a third local variable. Use

the third variable as an intermediate variable and swap the

values of both passed integers. For example, suppose the

calling function passes your function old_pay and new_pay

as in

swap_it(old_pay, new_pay);

The swap_it() function reverses the two values so, when

control returns to the calling function, the values of old_pay

and new_pay are swapped.

Chapter 18 ♦ Passing Values

396

Summary
You now have a complete understanding of the various meth-

ods for passing data to functions. Because you will be using local

variables as much as possible, you have to know how to pass local

variables between functions but also keep the variables away from

functions that don’t need them.

You can pass data in two ways: by value and by address. When

you pass data by value, which is the default method for nonarrays,

only a copy of the variable’s contents are passed. If the called

function modifies its parameters, those variables are not modified in

the calling function. When you pass data by address, as is done with

arrays and nonarray variables preceded by an ampersand, the

receiving function can change the data in both functions.

Whenever you pass values, you must ensure that they match in

number and type. If you don’t match them, you could have prob-

lems. For example, suppose you pass an array and a floating-point

variable, but in the receiving function, you receive a floating-point

variable followed by an array. The data does not reach the receiving

function properly because the parameter data types do not match

the variables being passed. Chapter 19, “Function Return Values

and Prototypes,” shows you how to protect against such disasters

by prototyping all your functions.

397

EXAMPLE
C++ By

19

Function Return
Values and
Prototypes

So far, you have passed variables to functions in only one direc-

tion—a calling function passed data to a receiving function. You

have yet to see how data are passed back from the receiving function

to the calling function. When you pass variables by address, the data

are changed in both functions—but this is different from passing

data back. This chapter focuses on writing function return values

that improve your programming power.

After you learn to pass and return values, you have to prototype
your own functions as well as C++’s built-in functions, such as cout

and cin. By prototyping your functions, you ensure the accuracy of

passed and returned values.

This chapter introduces you to the following:

♦ Returning values from functions

♦ Prototyping functions

♦ Understanding header files

By returning values from functions, you make your functions

fully modular. They can now stand apart from the other functions.

Chapter 19 ♦ Function Return Values and Prototypes

398

They can receive and return values and act as building blocks that

compose your complete application.

Function Return Values
Until now, all functions in this book have been subroutines or

subfunctions. A C++ subroutine is a function that is called from

another function, but it does not return any values. The difference

between subroutines and functions is not as critical in C++ as it is

in other languages. All functions, whether they are subroutines or

functions that return values, are defined in the same way. You can

pass variables to each of them, as you have seen throughout this

section of the book.

Functions that return values offer you a new approach to

programming. In addition to passing data one-way, from calling to

receiving function, you can pass data back from a receiving function

to its calling function. When you want to return a value from a

function to its calling function, put the return value after the return

statement. To clarify the return value even more, many program-

mers put parentheses around the return value, as shown in the

following syntax:

return (return value);

CAUTION: Do not return global variables. There is no need

to do so because their values are already known throughout

the code.

The calling function must have a use for the return value. For

example, suppose you wrote a function that calculated the average

of any three integer variables passed to it. If you return the average,

the calling function has to receive that return value. The following

sample program helps to illustrate this principle.

// Filename: C19AVG.CPP

// Calculates the average of three input values.

#include <iostream.h>

int calc_av(int num1, int num2, int num3); //Prototype

Put the return value
at the end of the
return statement.

399

EXAMPLE
C++ By

main()

{

 int num1, num2, num3;

 int avg; // Holds the return value.

 cout << “Please type three numbers (such as 23 54 85) “;

 cin >> num1 >> num2 >> num3;

 // Call the function, pass the numbers,

 // and accept the return value amount.

 avg = calc_av(num1, num2, num3);

 cout << “\n\nThe average is “ << avg; // Print the

 // return value.

 return 0;

}

int calc_av(int num1, int num2, int num3)

{

 int local_avg; // Holds the average for these numbers.

 local_avg = (num1+num2+num3) / 3;

 return (local_avg);

}

Here is a sample output from the program:

Please type three numbers (such as 23 54 85) 30 40 50

The average is 40

Study this program carefully. It is similar to many you have

seen, but a few additional points have to be considered now that the

function returns a value. It might help to walk through this program

a few lines at a time.

The first part of main() is similar to other programs you have

seen. It declares its local variables: three for user input and one for

the calculated average. The cout and cin are familiar to you. The

function call to calc_av() is also familiar; it passes three variables

Chapter 19 ♦ Function Return Values and Prototypes

400

(num1, num2, and num3) by value to calc_av(). (If it passed them by

address, an ampersand (&) would have to precede each argument, as

discussed in Chapter 18.)

The receiving function, calc_av(), seems similar to others you

have seen. The only difference is that the first line, the function’s

definition line, has one addition—the int before its name. This is the

type of the return value. You must always precede a function name

with its return data type. If you do not specify a type, C++ assumes

a type of int. Therefore, if this example had no return type, it would

work just as well because an int return type would be assumed.

Because the variable being returned from calc_av() is an inte-

ger, the int return type is placed before calc_av()’s name.

You can see also that the return statement of calc_av() includes

the return value, local_avg. This is the variable being sent back to the

calling function, main(). You can return only a single variable to a

calling function.

Even though a function can receive more than one parameter,

it can return only a single value to the calling function. If a receiving

function is modifying more than one value from the calling function,

you must pass the parameters by address; you cannot return mul-

tiple values using a return statement.

After the receiving function, calc_av(), returns the value, main()

must do something with that returned value. So far, you have seen

function calls on lines by themselves. Notice in main() that the

function call appears on the right side of the following assignment

statement:

avg = calc_av(num1, num2, num3);

When the calc_av() function returns its value—the average of

the three numbers—that value replaces the function call. If the

average computed in calc_av() is 40, the C++ compiler interprets the

following statement in place of the function call:

avg = 40;

You typed a function call to the right of the equal sign, but the

program replaces a function call with its return value when the

return takes place. In other words, a function that returns a value

Put the function’s
return type before its
name. If you don’t
specify a return type,
int is the default.

401

EXAMPLE
C++ By

becomes that value. You must put such a function anywhere you put

any variable or literal (usually to the right of an equal sign, in an

expression, or in cout). The following is an incorrect way of calling

calc_av():

calc_av(num1, num2, num3);

If you did this, C++ would have nowhere to put the return

value.

CAUTION: Function calls that return values usually don’t

appear on lines by themselves. Because the function call is

replaced by the return value, you should do something with

that return value (such as assign it to a variable or use it in an

expression). Return values can be ignored, but doing so usually

defeats the purpose of creating them.

Examples

1. The following program passes a number to a function called

doub(). The function doubles the number and returns the

result.

// Filename: C19DOUB.CPP

// Doubles the user’s number.

#include <iostream.h>

int doub (int num);

main()

{

 int number; // Holds user’s input.

 int d_number; // Holds double the user’s input.

 cout << “What number do you want doubled? “;

 cin >> number;

 d_number = doub(number); // Assigns return value.

 cout << number << “ doubled is “ << d_number;

 return 0;

}

Chapter 19 ♦ Function Return Values and Prototypes

402

int doub(int num)

{

 int d_num;

 d_num = num * 2; // Doubles the number.

 return (d_num); // Returns the result.

}

The program produces output such as this:

What number do you want doubled? 5

5 doubled is 10

2. Function return values can be used anywhere literals, vari-

ables, and expressions are used. The following program is

similar to the previous one. The difference is in main().

The function call is performed not on a line by itself, but

from a cout. This is a nested function call. You call the built-

in function cout using the return value from one of the

program’s functions named doub(). Because the call to doub()

is replaced by its return value, the cout has enough informa-

tion to proceed as soon as doub() returns. This gives main()

less overhead because it no longer needs a variable called

d_number, although you must use your own judgment as to

whether this program is easier to maintain. Sometimes it is

wise to include function calls in other expressions; other

times it is clearer to call the function and assign its return

value to a variable before using it.

// Filename: C19DOUB2.CPP

// Doubles the user’s number.

#include <iostream.h>

int doub(int num); // Prototype

main()

{

 int number; // Holds user’s input.

 cout << “What number do you want doubled? “;

 cin >> number;

403

EXAMPLE
C++ By

 // The third cout parameter is

 // replaced with a return value.

 cout << number << “ doubled is “ << doub(number);

 return 0;

}

int doub(int num)

{

 int d_num;

 d_num = num * 2; // Double the number.

 return (d_num); // Return the result.

}

3. The following program asks the user for a number. That

number is then passed to a function called sum(), which adds

the numbers from 1 to that number. In other words, if the

user types a 6, the function returns the result of the following

calculation:

1 + 2 + 3 + 4 + 5 + 6

This is known as the sum of the digits calculation, and it is

sometimes used for depreciation in accounting.

// Filename: C19SUMD.CPP

// Compute the sum of the digits.

#include <iostream.h>

int sum(int num); // Prototype

main()

{

 int num, sumd;

 cout << “Please type a number: “;

 cin >> num;

 sumd = sum(num);

 cout << “The sum of the digits is “ << sumd;

 return 0;

}

Chapter 19 ♦ Function Return Values and Prototypes

404

int sum(int num)

{

 int ctr; // Local loop counter.

 int sumd=0; // Local to this function.

 if (num <= 0) // Check whether parameter is too small.

 { sumd = num; } // Returns parameter if too small.

 else

 { for (ctr=1; ctr<=num; ctr++)

 { sumd += ctr; }

 }

 return(sumd);

}

The following is a sample output from this program:

Please type a number: 6

The sum of the digits is 21

4. The following program contains two functions that return

values. The first function, maximum(), returns the larger of two

numbers entered by the user. The second one, minimum(),

returns the smaller.

// Filename: C19MINMX.CPP

// Finds minimum and maximum values in functions.

#include <iostream.h>

int maximum(int num1, int num2); // Prototypes

int minimum(int num1, int num2);

main()

{

 int num1, num2; // User’s two numbers.

 int min, max;

 cout << “Please type two numbers (such as 46 75) “;

 cin >> num1 >> num2;

 max = maximum(num1, num2); // Assign the return

 min = minimum(num1, num2); // value of each

 // function to variables.

405

EXAMPLE
C++ By

 cout << “The minimum number is “ << min << “\n”;

 cout << “The maximum number is “ << max << “\n”;

 return 0;

}

int maximum(int num1, int num2)

{

 int max; // Local to this function only.

 max = (num1 > num2) ? (num1) : (num2);

 return (max);

}

int minimum(int num1, int num2)

{

 int min; // Local to this function only.

 min = (num1 < num2) ? (num1) : (num2);

 return (min);

}

Here is a sample output from this program:

Please type two numbers (such as 46 75) 72 55

The minimum number is 55

The maximum number is 72

If the user types the same number, minimum and maximum are

the same.

These two functions can be passed any two integer values. In

such a simple example as this one, the user certainly already

knows which number is lower or higher. The point of such

an example is to show how to code return values. You might

want to use similar functions in a more useful application,

such as finding the highest paid employee from a payroll

disk file.

Function Prototypes
The word prototype is sometimes defined as a model. In C++, a

function prototype models the actual function. Before completing

Chapter 19 ♦ Function Return Values and Prototypes

406

your study of functions, parameters, and return values, you must

understand how to prototype each function in your program.

C++ requires that you prototype all functions in your program.

When prototyping, you inform C++ of the function’s parameter

types and its return value, if any.

To prototype a function, copy the function’s definition line to

the top of your program (immediately before or after the #include

<iostream.h> line). Place a semicolon at the end of the function

definition line, and you have the prototype. The definition line (the

function’s first line) contains the return type, the function name, and

the type of each argument, so the function prototype serves as a

model of the function that follows.

If a function does not return a value, or if that function has no

arguments passed to it, you should still prototype it. Place the

keyword void in place of the return type or the parameters. main() is

the only function that you do not have to prototype because it is self-
prototyping; meaning main() is not called by another function. The

first time main() appears in your program (assuming you follow the

standard approach and make main() your program’s first function),

it is executed.

If a function returns nothing, void must be its return type. Put

void in the argument parentheses of function prototypes with no

arguments. All functions must match their prototypes.

All main() functions in this book have returned a 0. Why? You

now know enough to answer that question. Because main() is self-

prototyping, and because the void keyword never appeared before

main() in these programs, C++ assumed an int return type. All C++

functions prototyped as returning int or those without any return

data type prototype assume int. If you wanted to not put return 0;

at the end of main()’s functions, you must insert void before main()

as in:

void main() // main() self-prototypes to return nothing.

You can look at a statement and tell whether it is a prototype or

a function definition (the function’s first line) by the semicolon on

the end. All prototypes, unless you make main() self-prototype, end

with a semicolon.

C++ assumes
functions return int
unless you put a
different data return
type, or use the
void keyword.

407

EXAMPLE
C++ By

Prototype for Safety

Prototyping protects you from programming mistakes. Sup-

pose you write a function that expects two arguments: an integer

followed by a floating-point value. Here is the first line of such a

function:

my_fun(int num, float amount)

What if you passed incorrect data types to my_fun()? If you were

to call this function by passing it two literals, a floating-point

followed by an integer, as in

my_fun(23.43, 5); // Call the my_fun() function.

the function would not receive correct parameters. It is expecting an

integer followed by a floating-point, but you did the opposite and

sent it a floating-point followed by an integer.

In regular C programs, mismatched arguments such as these

generate no error message even though the data are not passed

correctly. C++ requires prototypes so you cannot send the wrong

data types to a function (or expect the wrong data type to be

returned). Prototyping the previous function results in this:

void my_fun(int num, float amount); // Prototype

In doing so, you tell the compiler to check this function for

accuracy. You inform the compiler to expect nothing after the return

statement, not even 0, (due to the void keyword) and to expect an

integer followed by a floating-point in the parentheses.

If you break any of the prototype’s rules, the compiler informs

you of the problem and you can correct it.

Prototype All Functions

You should prototype every function in your program. As just

described, the prototype defines (for the rest of the program) which

functions follow, their return types, and their parameter types. You

should prototype C++’s built-in functions also, such as printf() and

scanf() if you use them.

Prototyping protects
your programs from
function program-
ming errors.

Chapter 19 ♦ Function Return Values and Prototypes

408

Think about how you prototype printf(). You don’t always

pass it the same types of parameters because you print different data

with each printf(). Prototyping functions you write is easy: The

prototype is basically the first line in the function. Prototyping

functions you do not write might seem difficult, but it isn’t—you

have already done it with every program in this book!

The designers of C++ realized that all functions have to be

prototyped. They realized also that you cannot prototype built-in

functions, so they did it for you and placed the prototypes in header

files on your disk. You have been including the printf() and scanf()

prototypes in each program that used them in this book with the

following statement:

#include <stdio.h>

Inside the stdio.h file is a prototype of many of C++’s input and

output functions. By having prototypes of these functions, you

ensure that they cannot be passed bad values. If someone attempts

to pass incorrect values, C++ catches the problem.

Because printf() and scanf() are not used very often in C++, the

cout and cin operators have their own header file called iostream.h

that you have seen included in this book’s programs as well. The

iostream.h file does not actually include prototypes for cout and cin

because they are operators and not functions, but iostream.h does

include some needed definitions to make cout and cin work.

Remember too that iomanip.h has to be included if you use a

setw or setprecision modifier in cout. Any time you use a new built-

in C++ function or a manipulating operator, check your compiler’s

manual to find the name of the prototype file to include.

Prototyping is the primary reason why you should always

include the matching header file when you use C++’s built-in

functions. The strcpy() function you saw in previous chapters

requires the following line:

#include <string.h>

This is the header file for the strcpy() function. Without it, the

program does not work.

Header files contain
built-in function
prototypes.

409

EXAMPLE
C++ By

Examples

1. Prototype all functions in all programs except main(). Even

main() must be prototyped if it returns nothing (not even 0).

The following program includes two prototypes: one for

main() because it returns nothing, and one for the built-in

printf() and scanf() functions.

// Filename: C19PRO1.CPP

// Calculates sales tax on a sale

#include <stdio.h> // Prototype built-in functions.

void main(void);

void main(void)

{

 float total_sale;

 float tax_rate = .07; // Assume seven percent

 // tax rate.

 printf(“What is the sale amount? “);

 scanf(“ %f”, &total_sale);

 total_sale += (tax_rate * total_sale);

 printf(“The total sale is %.2f”, total_sale);

 return; // No 0 required!

}

Notice that main()’s return statement needed only a semi-

colon after it. As long as you prototype main() with a void

return type, the last line in main() can be return; instead of

having to type return 0; each time.

2. The following program asks the user for a number in main(),

and passes that number to ascii(). The ascii() function

returns the ASCII character that matches the user’s number.

This example illustrates a character return type. Functions

can return any data type.

Chapter 19 ♦ Function Return Values and Prototypes

410

// Filename: C19ASC.CPP

// Prints the ASCII character of the user’s number.

// Prototypes follow.

#include <iostream.h>

char ascii(int num);

void main()

{

 int num;

 char asc_char;

 cout << “Enter an ASCII number? “;

 cin >> num;

 asc_char = ascii(num);

 cout << “The ASCII character for “ << num

 << “ is “ << asc_char;

 return;

}

char ascii(int num)

{

 char asc_char;

 asc_char = char(num); // Type cast to a character.

 return (asc_char);

}

The output from this program follows:

Enter an ASCII number? 67

The ASCII character for 67 is C

3. Suppose you have to calculate net pay for a company. You

find yourself multiplying the hours worked by the hourly

pay, then deducting taxes to compute the net pay. The

following program includes a function that does this for you.

It requires three arguments: the hours worked, the hourly

pay, and the tax rate (as a floating-point decimal, such as .30

for 30 percent). The function returns the net pay. The main()

calling program tests the function by sending three different

payroll values to the function and printing the three return

values.

411

EXAMPLE
C++ By

// Filename: C19NPAY.CPP

// Defines a function that computes net pay.

#include <iostream.h> // Needed for cout and cin.

void main(void);

float netpayfun(float hours, float rate, float taxrate);

void main(void)

{

 float net_pay;

 net_pay = netpayfun(40.0, 3.50, .20);

 cout << “The pay for 40 hours at $3.50/hr., and a 20% “

 << “tax rate is $”;

 cout << net_pay << “\n”;

 net_pay = netpayfun(50.0, 10.00, .30);

 cout << “The pay for 50 hours at $10.00/hr., and a 30% “

 << “tax rate is $”;

 cout << net_pay << “\n”;

 net_pay = netpayfun(10.0, 5.00, .10);

 cout << “The pay for 10 hours at $5.00/hr., and a 10% “

 << “ tax rate is $”;

 cout << net_pay << “\n”;

 return;

}

float netpayfun(float hours, float rate, float taxrate)

{

 float gross_pay, taxes, net_pay;

 gross_pay = (hours * rate);

 taxes = (taxrate * gross_pay);

 net_pay = (gross_pay - taxes);

 return (net_pay);

}

Chapter 19 ♦ Function Return Values and Prototypes

412

Review Questions
The answers to the review questions are in Appendix B.

1. How do you declare function return types?

2. What is the maximum number of return values a function

can return?

3. What are header files for?

4. What is the default function return type?

5. True or false: a function that returns a value can be passed

only a single parameter.

6. How do prototypes protect the programmer from bugs?

7. Why don’t you have to return global variables?

8. What is the return type, given the following function

prototype?

float my_fun(char a, int b, float c);

How many parameters are passed to my_fun()? What are

their types?

Review Exercises
1. Write a program that contains two functions. The first

function returns the square of the integer passed to it, and

the second function returns the cube. Prototype main() so

you do not have to return a value.

2. Write a function that returns the double-precision area of a

circle, given that a double-precision radius is passed to it.

The formula for calculating the area of a circle is

area = 3.14159 * (radius * radius)

3. Write a function that returns the value of a polynomial given

this formula:

9x4 + 15x2 + x1

413

EXAMPLE
C++ By

Assume x is passed from main() and it is supplied by the

user.

Summary
You learned how to build your own collection of functions.

When you write a function, you might want to use it in more than

one program—there is no need to reinvent the wheel. Many pro-

grammers write useful functions and use them in more than one

program.

You now understand the importance of prototyping functions.

You should prototype all your own functions, and include the

appropriate header file when you use one of C++’s built-in func-

tions. Furthermore, when a function returns a value other than an

integer, you must prototype so C++ recognizes the noninteger

return value.

Chapter 19 ♦ Function Return Values and Prototypes

414

415

EXAMPLE
C++ By

20

Default Arguments
and Function
Overloading

All functions that receive arguments do not have to be sent values.

C++ enables you to specify default argument lists. You can write

functions that assume argument values even if you do not pass them

any arguments.

C++ also enables you to write more than one function with the

same function name. This is called overloading functions. As long as

their argument lists differ, the functions are differentiated by C++.

This chapter introduces you to the following:

♦ Default argument lists

♦ Overloaded functions

♦ Name-mangling

Default argument lists and overloaded functions are not avail-

able in regular C. C++ extends the power of your programs by

providing these time-saving procedures.

Chapter 20 ♦ Default Arguments and Function Overloading

416

Default Argument Lists
Suppose you were writing a program that has to print a

message on-screen for a short period of time. For instance, you pass

a function an error message stored in a character array and the

function prints the error message for a certain period of time.

The prototype for such a function can be this:

void pr_msg(char note[]);

Therefore, to request that pr_msg() print the line “Turn printer

on”, you call it this way:

pr_msg(“Turn printer on”); // Passes a message to be printed.

This command prints the message “Turn printer on” for a period

of five seconds or so. To request that pr_msg() print the line “Press

any key to continue...”, you call it this way:

pr_msg(“Press a key to continue...”); // Passes a message.

As you write more of the program, you begin to realize that you

are printing one message, for instance the “Turn printer on” message,

more often than any other message. It seems as if the pr_msg()

function is receiving that message much more often than any

other. This might be the case if you were writing a program that

printed many reports to the printer. You still will use pr_msg() for

other delayed messages, but the “Turn printer on” message is most

frequently used.

Instead of calling the function over and over, typing the same

message each time, you can set up the prototype for pr_msg() so it

defaults to the “Turn printer on” in this way:

void pr_msg(char note[]=”Turn printer on”);// Prototype

After prototyping pr_msg() with the default argument list, C++

assumes you want to pass “Turn printer on” to the function unless

you override the default by passing something else to it. For in-

stance, in main(), you call pr_msg() this way:

pr_msg(); // C++ assumes you mean “Turn printer on”.

This makes your programming job easier. Because most of the

time you want pr_msg() to print “Turn printer on” the default

List default argument
values in the
prototype.

417

EXAMPLE
C++ By

argument list takes care of the message and you do not have to pass

the message when you call the function. However, those few times

when you want to pass something else, simply pass a different

message. For example, to make pr_msg() print “Incorrect value” you

type:

pr_msg(“Incorrect value”); // Pass a new message.

TIP: Any time you call a function several times and find

yourself passing that function the same parameters most of the

time, consider using a default argument list.

Multiple Default Arguments
You can specify more than one default argument in the proto-

type list. Here is a prototype for a function with three default

arguments:

float funct1(int i=10, float x=7.5, char c=’A’);

There are several ways you can call this function. Here are some

samples:

funct1();

All default values are assumed.

funct1(25);

A 25 is sent to the integer argument, and the default values are

assumed for the rest.

funct1(25, 31.25);

A 25 is sent to the integer argument, 31.25 to the floating-point

argument, and the default value of ‘A’ is assumed for the character

argument.

Chapter 20 ♦ Default Arguments and Function Overloading

418

NOTE: If only some of a function’s arguments are default

arguments, those default arguments must appear on the far left
of the argument list. No default arguments can appear to the

left of those not specified as default. This is an invalid default

argument prototype:

float func2(int i=10, float x, char c, long n=10.232);

This is invalid because a default argument appears on the left

of a nondefault argument. To fix this, you have to move the two

default arguments to the far left (the start) of the argument list.

Therefore, by rearranging the prototype (and the resulting

function calls) as follows, C++ enables you to accomplish the

same objective as you attempted with the previous line:

float func2(float x, char c, int i=10, long n=10.232);

Examples

1. Here is a complete program that illustrates the message-

printing function described earlier in this chapter. The main()

function simply calls the delayed message-printing function

three times, each time passing it a different set of argument

lists.

// Filename: C20DEF1.CPP

// Illustrates default argument list.

#include <iostream.h>

void pr_msg(char note[]=”Turn printer on”); // Prototype.

void main()

{

 pr_msg(); // Prints default message.

 pr_msg(“A new message”); // Prints another message.

 pr_msg(); // Prints default message again.

 return;

}

void pr_msg(char note[]) // Only prototype contains defaults.

419

EXAMPLE
C++ By

{

 long int delay;

 cout << note << “\n”;

 for (delay=0; delay<500000; delay++)

 { ; /* Do nothing while waiting */ }

 return;

}

The program produces the following output:

Turn printer on

A new message

Turn printer on

The delay loop causes each line to display for a couple of

seconds or more, depending on the speed of your computer,

until all three lines print.

2. The following program illustrates the use of defaulting

several arguments. main() calls the function de_fun() five

times, sending de_fun() five sets of arguments. The de_fun()

function prints five different things depending on main()’s

argument list.

// Filename: C20DEF2.CPP

// Demonstrates default argument list with several parameters.

#include <iostream.h>

#include <iomanip.h>

void de_fun(int i=5, long j=40034, float x=10.25,

 char ch=’Z’, double d=4.3234); // Prototype

void main()

{

 de_fun(); // All defaults used.

 de_fun(2); // First default overridden.

 de_fun(2, 75037); // First and second default overridden.

 de_fun(2, 75037, 35.88); // First, second, and third

 de_fun(2, 75037, 35.88, ‘G’); // First, second, third,

 // and fourth

 de_fun(2, 75037, 35.88, ‘G’, .0023); // No defaulting.

Chapter 20 ♦ Default Arguments and Function Overloading

420

 return;

}

void de_fun(int i, long j, float x, char ch, double d)

{

 cout << setprecision(4) << “i: “ << i << “ “ << “j: “ << j;

 cout << “ x: “ << x << “ “ << “ch: “ << ch;

 cout << “ d: “ << d << “\n”;

 return;

}

Here is the output from this program:

i: 5 j: 40034 x: 10.25 ch: Z d: 4.3234

i: 2 j: 40034 x: 10.25 ch: Z d: 4.3234

i: 2 j: 75037 x: 10.25 ch: Z d: 4.3234

i: 2 j: 75037 x: 35.88 ch: Z d: 4.3234

i: 2 j: 75037 x: 35.88 ch: G d: 4.3234

i: 2 j: 75037 x: 35.88 ch: G d: 0.0023

Notice that each call to de_fun() produces a different output

because main() sends a different set of parameters each time

main() calls de_fun().

Overloaded Functions
Unlike regular C, C++ enables you to have more than one

function with the same name. In other words, you can have three

functions called abs() in the same program. Functions with the same

names are called overloaded functions. C++ requires that each

overloaded function differ in its argument list. Overloaded func-

tions enable you to have similar functions that work on different

types of data.

For example, suppose you wrote a function that returned the

absolute value of whatever number you passed to it. The absolute

value of a number is its positive equivalent. For instance, the

absolute value of 10.25 is 10.25 and the absolute value of –10.25

is 10.25.

Absolute values are used in distance, temperature, and weight

calculations. The difference in the weights of two children is always

421

EXAMPLE
C++ By

positive. If Joe weighs 65 pounds and Mary weighs 55 pounds, their

difference is a positive 10 pounds. You can subtract the 65 from 55

(–10) or 55 from 65 (+10) and the weight difference is always the

absolute value of the result.

Suppose you had to write an absolute-value function for inte-

gers, and an absolute-value function for floating-point numbers.

Without function overloading, you need these two functions:

int iabs(int i) // Returns absolute value of an integer.

{

 if (i < 0)

 { return (i * -1); } // Makes positive.

 else

 { return (i); } // Already positive.

}

float fabs(float x) // Returns absolute value of a float.

{

 if (x < 0.0)

 { return (x * -1.0); } // Makes positive.

 else

 { return (x); } // Already positive.

}

Without overloading, if you had a floating-point variable for

which you needed the absolute value, you pass it to the fabs()

function as in:

ans = fabs(weight);

If you needed the absolute value of an integer variable, you

pass it to the iabs() function as in:

ians = iabs(age);

Because the code for these two functions differ only in their

parameter lists, they are perfect candidates for overloaded func-

tions. Call both functions abs(), prototype both of them, and code

each of them separately in your program. After overloading the two

functions (each of which works on two different types of parameters

with the same name), you pass your floating-point or integer value

to abs(). The C++ compiler determines which function you wanted

to call.

Chapter 20 ♦ Default Arguments and Function Overloading

422

CAUTION: If two or more functions differ only in their return

types, C++ cannot overload them. Two or more functions that

differ only in their return types must have different names and

cannot be overloaded.

This process simplifies your programming considerably. In-

stead of having to remember several different function names, you

only have to remember one function name. C++ passes the argu-

ments to the proper function.

NOTE: C++ uses name-mangling to accomplish overloaded

functions. Understanding name-mangling helps you as you

become an advanced C++ programmer.

When C++ realizes that you are overloading two or more

functions with the same name, each function differing only in

its parameter list, C++ changes the name of the function and

adds letters to the end of the function name that match the

parameters. Different C++ compilers do this differently.

To understand what the compiler does, take the absolute value

function described earlier. C++ might change the integer abso-

lute value function to absi() and the floating-point absolute

value function to absf(). When you call the function with this

function call:

ians = abs(age);

C++ determines that you want the absi() function called. As far

as you know, C++ is not mangling the names; you never see the

name differences in your program’s source code. However, the

compiler performs the name-mangling so it can keep track of

different functions that have the same name.

423

EXAMPLE
C++ By

Examples

1. Here is the complete absolute value program described in

the previous text. Notice that both functions are prototyped.

(The two prototypes signal C++ that it must perform name-

mangling to determine the correct function names to call.)

// Filename: C20OVF1.CPP

// Overloads two absolute value functions.

#include <iostream.h> // Prototype cout and cin.

#include <iomanip.h> // Prototype setprecision(2).

int abs(int i); // abs() is overloaded twice

float abs(float x); // as shown by these prototypes.

void main()

{

 int ians; // To hold return values.

 float fans;

 int i = -15; // To pass to the two overloaded functions.

 float x = -64.53;

 ians = abs(i); // C++ calls the integer abs().

 cout << “Integer absolute value of -15 is “ << ians << “\n”;

 fans = abs(x); // C++ calls the floating-point abs().

 cout << “Float absolute value of -64.53 is “ <<

 setprecision(2) << fans << “\n”;

 // Notice that you no longer have to keep track of two

 // different names. C++ calls the appropriate

 // function that matches the parameters.

 return;

}

int abs(int i) // Integer absolute value function

{

 if (i < 0)

 { return (i * -1); } // Makes positive.

 else

 { return (i); } // Already positive.

}

Chapter 20 ♦ Default Arguments and Function Overloading

424

float abs(float x) // Floating-point absolute value function

{

 if (x < 0.0)

 { return (x * -1.0); } // Makes positive.

 else

 { return (x); } // Already positive.

}

The output from this program follows:

Integer absolute value of -15 is 15

Float absolute value of -64.53 is 64.53

2. As you write more and more C++ programs, you will see

many uses for overloaded functions. The following program

is a demonstration program showing how you can build

your own output functions to suit your needs. main() calls

three functions named output(). Each time it’s called, main()

passes a different value to the function.

When main() passes output() a string, output() prints the

string, formatted to a width (using the setw() manipulator

described in Chapter 7, “Simple Input/Output”) of 30

characters. When main() passes output() an integer, output()

prints the integer with a width of five. When main() passes

output() a floating-point value, output() prints the value to

two decimal places and generalizes the output of different

types of data. You do not have to format your own data.

output() properly formats the data and you only have to

remember one function name that outputs all three types of

data.

// Filename: C20OVF2.CPP

// Outputs three different types of

// data with same function name.

#include <iostream.h>

#include <iomanip.h>

void output(char []); // Prototypes for overloaded functions.

void output(int i);

void output(float x);

425

EXAMPLE
C++ By

void main()

{

 char name[] = “C++ By Example makes C++ easy!”;

 int ivalue = 2543;

 float fvalue = 39.4321;

 output(name); // C++ chooses the appropriate function.

 output(ivalue);

 output(fvalue);

return;

}

void output(char name[])

{

 cout << setw(30) << name << “\n”;

 // The width truncates string if it is longer than 30.

 return;

}

void output(int ivalue)

{

 cout << setw(5) << ivalue << “\n”;

 // Just printed integer within a width of five spaces.

 return;

}

void output(float fvalue)

{

 cout << setprecision(2) << fvalue << “\n”;

 // Limited the floating-point value to two decimal places.

 return;

}

Here is the output from this program:

C++ By Example makes C++ easy!

2543

39.43

Each of the three lines, containing three different lines of

information, was printed with the same function call.

Chapter 20 ♦ Default Arguments and Function Overloading

426

Review Questions
The answers to the review questions are in Appendix B.

1. Where in the program do you specify the defaults for default

argument lists?

2. What is the term for C++ functions that have the same

name?

3. Does name-mangling help support default argument lists or

overloaded functions?

4. True or false: You can specify only a single default

argument.

5. Fix the following prototype for a default argument list.

void my_fun(int i=7, float x, char ch=’A’);

6. True or false: The following prototypes specify overloaded

functions:

int sq_rt(int n);

float sq_rt(int n);

Review Exercises
1. Write a program that contains two functions. The first

function returns the square of the integer passed to it, and

the second function returns the square of the float passed

to it.

2. Write a program that computes net pay based on the values

the user types. Ask the user for the hours worked, the rate

per hour, and the tax rate. Because the majority of employees

work 40 hours per week and earn $5.00 per hour, use these

values as default values in the function that computes the

net pay. If the user presses Enter in response to your ques-

tions, use the default values.

427

EXAMPLE
C++ By

Summary
Default argument lists and overloaded functions speed up

your programming time. You no longer have to specify values for

common arguments. You do not have to remember several different

names for those functions that perform similar routines and differ

only in their data types.

The remainder of this book elaborates on earlier concepts so

you can take advantage of separate, modular functions and local

data. You are ready to learn more about how C++ performs input

and output. Chapter 21, “Device and Character Input/Output,”

teaches you the theory behind I/O in C++, and introduces more

built-in functions.

Chapter 20 ♦ Default Arguments and Function Overloading

428

Part V
Character Input/Output and
String Functions

431

EXAMPLE
C++ By

21

Device and
Character
Input/Output

Unlike many programming languages, C++ contains no input or

output commands. C++ is an extremely portable language; a C++

program that compiles and runs on one computer is able also to

compile and run on another type of computer. Most incompatibili-

ties between computers reside in their input/output mechanics.

Each different device requires a different method of performing

I/O (Input/Output).

By putting all I/O capabilities in common functions supplied

with each computer’s compiler, not in C++ statements, the design-

ers of C++ ensured that programs were not tied to specific hardware

for input and output. A compiler has to be modified for every

computer for which it is written. This ensures the compiler works

with the specific computer and its devices. The compiler writers

write I/O functions for each machine; when your C++ program

writes a character to the screen, it works the same whether you have

a color PC screen or a UNIX X/Windows terminal.

This chapter shows you additional ways to perform input and

output of data besides the cin and cout functions you have seen

Chapter 21 ♦ Device and Character Input/Output

432

C++ views input and
output from all
devices as streams
of characters.

throughout the book. By providing character-based I/O functions,

C++ gives you the basic I/O functions you need to write powerful

data entry and printing routines.

This chapter introduces you to

♦ Stream input and output

♦ Redirecting I/O

♦ Printing to the printer

♦ Character I/O functions

♦ Buffered and nonbuffered I/O

By the time you finish this chapter, you will understand the

fundamental built-in I/O functions available in C++. Performing

character input and output, one character at a time, might sound like

a slow method of I/O. You will soon realize that character I/O

actually enables you to create more powerful I/O functions than cin

and cout.

Stream and Character I/O
C++ views all input and output as streams of characters.

Whether your program receives input from the keyboard, a disk file,

a modem, or a mouse, C++ only views a stream of characters. C++

does not have to know what type of device is supplying the input;

the operating system handles the device specifics. The designers of

C++ want your programs to operate on characters of data without

regard to the physical method taking place.

This stream I/O means you can use the same functions to

receive input from the keyboard as from the modem. You can use the

same functions to write to a disk file, printer, or screen. Of course,

you have to have some way of routing that stream input or output

to the proper device, but each program’s I/O functions works in a

similar manner. Figure 21.1 illustrates this concept.

433

EXAMPLE
C++ By

Figure 21.1. All I/O consists of streams of characters.

The Newline Special Character: /n

Portability is the key to C++’s success. Few companies have the

resources to rewrite every program they use when they change

computer equipment. They need a programming language

that works on many platforms (hardware combinations). C++

achieves true portability better than almost any other program-

ming language.

It is because of portability that C++ uses the generic newline

character, \n, rather than the specific carriage return and line

feed sequences other languages use. This is why C++ uses the

\t for tab, as well as the other control characters used in I/O

functions.

If C++ used ASCII code to represent these special characters,

your programs would not be portable. You would write a C++

program on one computer and use a carriage return value such

as 12, but 12 might not be the carriage return value on another

type of computer.

By using newline and the other control characters available in

C++, you ensure your program is compatible with any com-

puter on which it is compiled. The specific compilers substitute

their computer’s actual codes for the control codes in your

programs.

Chapter 21 ♦ Device and Character Input/Output

434

Standard Devices

Table 21.1 shows a listing of standard I/O devices. C++ always

assumes input comes from stdin, meaning the standard input device.
This is usually the keyboard, although you can reroute this default.

C++ assumes all output goes to stdout, or the standard output device.
There is nothing magic in the words stdin and stdout; however,

many people learn their meanings for the first time in C++.

Table 21.1. Standard Devices in C++.

Description C++ Name MS-DOS Name

Screen stdout CON:

Keyboard stdin CON:

Printer stdprn PRN: or LPT1:

Serial Port stdaux AUX: or COM1:

Error Messages stderr CON:

Disk Files none Filename

Take a moment to study Table 21.1. You might think it is

confusing that three devices are named CON:. MS-DOS differenti-

ates between the screen device called CON: (which stands for

console), and the keyboard device called CON: from the context of

the data stream. If you send an output stream (a stream of characters)

to CON:, MS-DOS routes it to the screen automatically. If you

request input from CON:, MS-DOS retrieves the input from the

keyboard. (These defaults hold true as long as you have not redi-

rected these devices, as shown below.) MS-DOS sends all error

messages to the screen (CON:) as well.

NOTE: If you want to route I/O to a second printer or serial

port, see how to do so in Chapter 30, “Sequential Files.”

435

EXAMPLE
C++ By

Redirecting Devices from MS-DOS

The reason cout goes to the screen is simply because stdout is

routed to the screen, by default, on most computers. The reason cin

inputs from the keyboard is because most computers consider the

keyboard to be the standard input device, stdin. After compiling

your program, C++ does not send data to the screen or retrieve it

from the keyboard. Instead, the program sends output to stdout and

receives input from stdin. The operating system routes the data to

the appropriate device.

MS-DOS enables you to reroute I/O from their default loca-

tions to other devices through the use of the output redirection symbol,
>, and the input redirection symbol, <. The goal of this book is not to

delve deeply in operating-system redirection. To learn more about

the handling of I/O, read a good book on MS-DOS, such as Using
MS-DOS 5.

Basically, the output redirection symbol informs the operating

system that you want standard output to go to a device other than

the default (the screen). The input redirection symbol routes input

away from the keyboard to another input device. The following

example illustrates how this is done in MS-DOS.

Examples

1. Suppose you write a program that uses only cin and cout for

input and output. Instead of receiving input from the key-

board, you want the program to get the input from a file

called MYDATA. Because cin receives input from stdin, you

must redirect stdin. After compiling the program in a file

called MYPGM.EXE, you can redirect its input away from

the keyboard with the following DOS command:

C:>MYPGM < MYDATA

Of course, you can include a full pathname either before the

program name or filename. There is a danger in redirecting

all output such as this, however. All output, including screen

prompts for keyboard input, goes to MYDATA. This is

probably not acceptable to you in most cases; you still want

The operating
system gives you
control over devices.

Chapter 21 ♦ Device and Character Input/Output

436

prompts and some messages to go to the screen. In the next

section, you learn how to separate I/O, and send some

output to one device such as the screen and the rest to

another device, such as a file or printer.

2. You can also route the program’s output to the printer by

typing this:

C:>MYPGM > PRN:

Route MYPGM output to the printer.

3. If the program required much input, and that input were

stored in a file called ANSWERS, you could override the

keyboard default device that cin uses, as in:

C:>MYPGM < ANSWERS

The program reads from the file called ANSWERS every time cin
required input.

4. You can combine redirection symbols. If you want input

from the ANSWERS disk file, and want to send the output to

the printer, do the following:

C:>MYPGM < ANSWERS > PRN:

TIP: You can route the output to a serial printer or a second

parallel printer port by substituting COM1: or LPT2: for PRN:.

Printing Formatted Output to
the Printer

It’s easy to send program output to the printer using the

ofstream function. The format of ofstream is

ofstream device(device_name);

ofstream allows
your program to
write to the printer.

437

EXAMPLE
C++ By

The following examples show how you can combine cout and

ofstream to write to both the screen and printer.

Example

The following program asks the user for his or her first and last

name. It then prints the name, last name first, to the printer.

// Filename: C21FPR1.CPP

// Prints a name on the printer.

#include <fstream.h>

void main()

{

 char first[20];

 char last[20];

 cout << “What is your first name? “;

 cin >> first;

 cout << “What is your last name? “;

 cin >> last;

 // Send names to the printer.

 ofstream prn(“PRN”);

 prn << “In a phone book, your name looks like this: \n”;

 prn << last << “, “ << first << “\n”;

 return;

}

Character I/O Functions
Because all I/O is actually character I/O, C++ provides many

functions you can use that perform character input and output. The

cout and cin functions are called formatted I/O functions because they

give you formatting control over your input and output. The cout

and cin functions are not character I/O functions.

ofstream uses
the fstream.h header
file.

Chapter 21 ♦ Device and Character Input/Output

438

There’s nothing wrong with using cout for formatted output,

but cin has many problems, as you have seen. You will now see how

to write your own character input routines to replace cin, as well as

use character output functions to prepare you for the upcoming

section in this book on disk files.

The get() and put() Functions

The most fundamental character I/O functions are get() and

put(). The put() function writes a single character to the standard

output device (the screen if you don’t redirect it from your operating

system). The get() function inputs a single character from the

standard input device (the keyboard by default).

The format for get() is

device.get(char_var);

The get() device can be any standard input device. If you were

receiving character input from the keyboard, you use cin as the

device. If you initialize your modem and want to receive characters

from it, use ofstream to open the modem device and read from the

device.

The format of put() is

device.put(char_val);

The char_val can be a character variable, expression, or con-

stant. You output character data with put(). The device can be any

standard output device. To write a character to your printer, you

open PRN with ofstream.

Examples

1. The following program asks the user for her or his initials a

character at a time. Notice the program uses both cout and

put(). The cout is still useful for formatted output such as

messages to the user. Writing individual characters is best

achieved with put().

The program has to call two get() functions for each char-

acter typed. When you answer a get() prompt by typing a

get() and put()
input and output
characters from and
to any standard
devices.

439

EXAMPLE
C++ By

character followed by an Enter keypress, C++ interprets the

input as a stream of two characters. The get() first receives

the letter you typed, then it has to receive the \n (newline,

supplied to C++ when you press Enter). There are examples

that follow that fix this double get() problem.

// Filename: C21CH1.CPP

// Introduces get() and put().

#include <fstream.h>

void main()

{

 char in_char; // Holds incoming initial.

 char first, last; // Holds converted first and last initial.

 cout << “What is your first name initial? “;

 cin.get(in_char); // Waits for first initial.

 first = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “What is your last name initial? “;

 cin.get(in_char); // Waits for last initial.

 last = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “\nHere they are: \n”;

 cout.put(first);

 cout.put(last);

return;

}

Here is the output from this program:

What is your first name initial? G

What is your last name initial? P

Here they are:

GP

2. You can add carriage returns to space the output better. To

print the two initials on two separate lines, use put() to put a

newline character to cout, as the following program does:

Chapter 21 ♦ Device and Character Input/Output

440

// Filename: C21CH2.CPP

// Introduces get() and put() and uses put() to output

newline.

#include <fstream.h>

void main()

{

 char in_char; // Holds incoming initial.

 char first, last; // Holds converted first and last

 // initial.

 cout << “What is your first name initial? “;

 cin.get(in_char); // Waits for first initial.

 first = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “What is your last name initial? “;

 cin.get(in_char); // Waits for last initial.

 last = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “\nHere they are: \n”;

 cout.put(first);

 cout.put(‘\n’);

 cout.put(last);

return;

}

3. It might have been clearer to define the newline character as

a constant. At the top of the program, you have:

const char NEWLINE=’\n’

The put() then reads:

cout.put(NEWLINE);

Some programmers prefer to define their character formatting

constants and refer to them by name. It’s up to you to decide whether

you want to use this method, or whether you want to continue using

the \n character constant in put().

The get() function is a buffered input function. As you type

characters, the data does not immediately go to your program,

441

EXAMPLE
C++ By

rather, it goes to a buffer. The buffer is a section of memory (and has

nothing to do with your PC’s type-ahead buffers) managed by C++.

Figure 21.2 shows how this buffered function works. When

your program approaches a get(), the program temporarily waits as

you type the input. The program doesn’t view the characters, as

they’re going to the buffer of memory. There is practically no limit

to the size of the buffer; it fills with input until you press Enter. Your

Enter keypress signals the computer to release the buffer to your

program.

Figure 21.2. get() input goes to a buffer. The buffer is released when
you press Enter.

Most PCs accept either buffered or nonbuffered input. The

getch() function shown later in this chapter is nonbuffered. With

get(), all input is buffered. Buffered text affects the timing of your

program’s input. Your program receives no characters from a get()

until you press Enter. Therefore, if you ask a question such as

Do you want to see the report again (Y/N)?

and use get() for input, the user can press a Y, but the program does

not receive the input until the user also presses Enter. The Y and

Enter then are sent, one character at a time, to the program where it

processes the input. If you want immediate response to a user’s

typing (such as the INKEY$ in BASIC allows), you have to use getch().

Buffer

Chapter 21 ♦ Device and Character Input/Output

442

TIP: By using buffered input, the user can type a string of

characters in response to a loop with get(), receive characters,

and correct the input with Backspace before pressing Enter. If

the input were nonbuffered, the Backspace would be another

character of data.

Example

C21CH2.CPP must discard the newline character. It did so by

assigning the input character—from get()—to an extra variable.

Obviously, the get() returns a value (the character typed). In this

case, it’s acceptable to ignore the return value by not using the

character returned by get(). You know the user has to press Enter (to

end the input) so it’s acceptable to discard it with an unused get()

function call.

When inputting strings such as names and sentences, cin only

allows one word to be entered at a time. The following string asks the

user for his or her full name with these two lines:

cout << “What are your first and last names? “;

cin >> names; // Receive name in character array names.

The array names only receives the first name; cin ignores all data

to the right of the first space.

You can build your own input function using get() that doesn’t

have a single-word limitation. When you want to receive a string of

characters from the user, such as his or her first and last name, you

can call the get_in_str() function shown in the next program.

The main() function defines an array and prompts the user for

a name. After the prompt, the program calls the get_in_str() func-

tion and builds the input array a character at a time using get(). The

function keeps looping, using the while loop, until the user presses

Enter (signaled by the newline character, \n, to C++) or until the

maximum number of characters are typed. You might want to use

When receiving
characters, you
might have to
discard the newline
keypress.

443

EXAMPLE
C++ By

this function in your own programs. Be sure to pass it a character

array and an integer that holds the maximum array size (you don’t

want the input string to be longer than the character array that holds

it). When control returns to main() (or whatever function called

get_in_str()), the array has the user’s full input, including the

spaces.

// Filename: C21IN.CPP

// Program that builds an input string array using get().

#include <fstream.h>

void get_in_str(char str[], int len);

const int MAX=25; // Size of character array to be typed.

void main()

{

 char input_str[MAX]; // Keyboard input fills this.

 cout << “What is your full name? “;

 get_in_str(input_str, MAX); // String from keyboard

 cout << “After return, your name is “ << input_str << “\n”;

 return;

}

//**

// The following function requires a string and the maximum

// length of the string be passed to it. It accepts input

// from the keyboard, and sends keyboard input in the string.

// On return, the calling routine has access to the string.

//**

void get_in_str(char str[], int len)

{

 int i = 0; // index

 char input_char; // character typed

 cin.get(input_char); // Get next character in string.

 while (i < (len - 1) && (input_char != ‘\n’))

 {

 str[i] = input_char; // Build string a character

Chapter 21 ♦ Device and Character Input/Output

444

 i++; // at a time.

 cin.get(input_char); // Receive next character in string.

 }

 str[i] = ‘\0’; // Make the char array a string.

 return;

}

NOTE: The loop checks for len - 1 to save room for the null-

terminating zero at the end of the input string.

The getch() and putch() Functions

The functions getch() and putch() are slightly different from the

previous character I/O functions. Their format is similar to get()

and put(); they read from the keyboard and write to the screen and

cannot be redirected, even from the operating system. The formats

of getch() and putch() are

int_var = getch();

and

putch(int_var);

getch() and putch() are not AT&T C++ standard functions, but

they are usually available with most C++ compilers. getch() and

putch() are nonbuffered functions. The putch() character output

function is a mirror-image function to getch(); it is a nonbuffered

output function. Because almost every output device made, except

for the screen and modem, are inherently buffered, putch() effec-

tively does the same thing as put().

Another difference in getch() from the other character input

functions is that getch() does not echo the input characters on the

screen as it receives them. When you type characters in response to

get(), you see the characters as you type them (as they are sent to the

buffer). If you want to see characters received by getch(), you must

follow getch() with a putch(). It is handy to echo the characters on the

screen so the user can verify that she or he has typed correctly.

getch() and
putch() offer
nonbuffered input
and output that grab
the user’s characters
immediately after the
user types them.

445

EXAMPLE
C++ By

Some programmers want to make the user press Enter after

answering a prompt or selecting from a menu. They feel the extra

time given with buffered input gives the user more time to decide if

she or he wants to give that answer; the user can press Backspace and

correct the input before pressing Enter.

Other programmers like to grab the user’s response to a single-

character answer, such as a menu response, and act on it immedi-

ately. They feel that pressing Enter is an added and unneeded

burden for the user so they use getch(). The choice is yours. You

should understand both buffered and nonbuffered input so you can

use both.

TIP: You can also use getche(). getche() is a nonbuffered input

identical to getch(), except the input characters are echoed

(displayed) to the screen as the user types them. Using getche()

rather than getch() keeps you from having to call a putch() to

echo the user’s input to the screen.

Example

The following program shows the getch() and putch() func-

tions. The user is asked to enter five letters. These five letters are

added (by way of a for loop) to the character array named letters.

As you run this program, notice that the characters are not echoed

to the screen as you type them. Because getch() is unbuffered, the

program actually receives each character, adds it to the array, and

loops again, as you type them. (If this were buffered input, the

program would not loop through the five iterations until you

pressed Enter.)

A second loop prints the five letters using putch(). A third loop

prints the five letters to the printer using put().

// Filename: C21GCH1.CPP

// Uses getch() and putch() for input and output.

#include <fstream.h>

Characters input
with getch() are
not echoed to the
screen as the user
types them.

getch() and
putch() use the
conio.h header file.

Chapter 21 ♦ Device and Character Input/Output

446

#include <conio.h>

void main()

{

 int ctr; // for loop counter

 char letters[5]; // Holds five input characters. No

 // room is needed for the null zero

 // because this array never will be

 // treated as a string.

 cout << “Please type five letters... \n”;

 for (ctr = 0; ctr < 5; ctr++)

 {

 letters[ctr] = getch(); // Add input to array.

 }

 for (ctr = 0; ctr < 5; ctr++) // Print them to screen.

 {

 putch(letters[ctr]);

 }

 ofstream prn(“PRN”);

 for (ctr = 0; ctr < 5; ctr++) // Print them to printer.

 {

 prn.put(letters[ctr]);

 }

return;

}

When you run this program, do not press Enter after the five

letters. The getch() function does not use the Enter. The loop auto-

matically ends after the fifth letter because of the unbuffered input

and the for loop.

Review Questions
The answers to the review questions are found in Appendix B.

1. Why are there no input or output commands in C++?

2. True or false: If you use the character I/O functions to send

output to stdout, it always goes to the screen.

447

EXAMPLE
C++ By

3. What is the difference between getch() and get()?

4. What function sends formatted output to devices other than

the screen?

5. What are the MS-DOS redirection symbols?

6. What nonstandard function, most similar to getch(), echoes

the input character to the screen as the user types it?

7. True or false: When using get(), the program receives your

input as you type it.

8. Which keypress releases the buffered input to the program?

9. True or false: Using devices and functions described in this

chapter, it is possible to write one program that sends some

output to the screen, some to the printer, and some to the

modem.

Review Exercises
1. Write a program that asks the user for five letters and prints

them in reverse order to the screen, and then to the printer.

2. Write a miniature typewriter program, using get() and put().

In a loop, get characters until the user presses Enter while he

or she is getting a line of user input. Write the line of user

input to the printer. Because get() is buffered, nothing goes

to the printer until the user presses Enter at the end of each

line of text. (Use the string-building input function shown in

C21IN.CPP.)

3. Add a putch() inside the first loop of C21CH1.CPP (this

chapter’s first get() example program) so the characters are

echoed to the screen as the user types them.

4. A palindrome is a word or phrase spelled the same forwards

and backwards. Two example palindromes are

Madam, I’m Adam

Golf? No sir, prefer prison flog!

Chapter 21 ♦ Device and Character Input/Output

448

Write a C++ program that asks the user for a phrase. Build

the input, a character at a time, using a character input

function such as get(). Once you have the full string (store it

in a character array), determine whether the phrase is a

palindrome. You have to filter special characters (nonalpha-

betic), storing only alphabetic characters to a second charac-

ter array. You also must convert the characters to uppercase

as you store them. The first palindrome becomes:

MADAMIMADAM

Using one or more for or while loops, you can now test the

phrase to determine whether it is a palindrome. Print the

result of the test on the printer. Sample output should look

like:

“Madam, I’m Adam” is a palindrome.

Summary
You now should understand the generic methods C++ pro-

grams use for input and output. By writing to standard I/O devices,

C++ achieves portability. If you write a program for one computer,

it works on another. If C++ were to write directly to specific

hardware, programs would not work on every computer.

If you still want to use the formatted I/O functions, such as cout,

you can do so. The ofstream() function enables you to write format-

ted output to any device, including the printer.

The methods of character I/O might seem primitive, and they

are, but they give you the flexibility to build and create your own

input functions. One of the most often-used C++ functions, a string-

building character I/O function, was demonstrated in this chapter

(the C21IN.CPP program).

The next two chapters (Chapter 22, “Character, String, and

Numeric Functions,” and Chapter 23, “Introducing Arrays”) intro-

duce many character and string functions, including string I/O

functions. The string I/O functions build on the principles pre-

sented here. You will be surprised at the extensive character and

string manipulation functions available in the language as well.

449

EXAMPLE
C++ By

22

Character, String,
and Numeric
Functions

C++ provides many built-in functions in addition to the cout, getch(),

and strcpy() functions you have seen so far. These built-in functions

increase your productivity and save you programming time. You

don’t have to write as much code because the built-in functions

perform many useful tasks for you.

This chapter introduces you to

♦ Character conversion functions

♦ Character and string testing functions

♦ String manipulation functions

♦ String I/O functions

♦ Mathematical, trigonometric, and logarithmic functions

♦ Random-number processing

Chapter 22 ♦ Character, String, and Numeric Functions

450

Character Functions
This section explores many of the character functions available

in AT&T C++. Generally, you pass character arguments to the

functions, and the functions return values that you can store or print.

By using these functions, you off-load much of your work to C++

and allow it to perform the more tedious manipulations of character

and string data.

Character Testing Functions

Several functions test for certain characteristics of your charac-

ter data. You can determine whether your character data is alpha-

betic, digital, uppercase, lowercase, and much more. You must pass

a character variable or literal argument to the function (by placing

the argument in the function parentheses) when you call it. These

functions return a True or False result, so you can test their return

values inside an if statement or a while loop.

NOTE: All character functions presented in this section are

prototyped in the ctype.h header file. Be sure to include ctype.h

at the beginning of any programs that use them.

Alphabetic and Digital Testing

The following functions test for alphabetic conditions:

♦ isalpha(c): Returns True (nonzero) if c is an uppercase or

lowercase letter. Returns False (zero) if c is not a letter.

♦ islower(c): Returns True (nonzero) if c is a lowercase letter.

Returns False (zero) if c is not a lowercase letter.

♦ isupper(c): Returns True (nonzero) if c is an uppercase letter.

Returns False (zero) if c is not an uppercase letter.

The character
functions return True
or False results
based on the
characters you pass
to them.

451

EXAMPLE
C++ By

Remember that any nonzero value is True in C++, and zero is

always False. If you use the return values of these functions in a

relational test, the True return value is not always 1 (it can be any

nonzero value), but it is always considered True for the test.

The following functions test for digits:

♦ isdigit(c): Returns True (nonzero) if c is a digit 0 through 9.

Returns False (zero) if c is not a digit.

♦ isxdigit(c): Returns True (nonzero) if c is any of the hexa-

decimal digits 0 through 9 or A, B, C, D, E, F, a, b, c, d, e, or f.

Returns False (zero) if c is anything else. (See Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review,”

for more information on the hexadecimal numbering

system.)

NOTE: Although some character functions test for digits, the

arguments are still character data and cannot be used in math-

ematical calculations, unless you calculate using the ASCII

values of characters.

The following function tests for numeric or alphabetical argu-

ments:

isalnum(c): Returns True (nonzero) if c is a digit 0 through 9

or an alphabetic character (either uppercase or lowercase).

Returns False (zero) if c is not a digit or a letter.

CAUTION: You can pass to these functions only a character

value or an integer value holding the ASCII value of a charac-

ter. You cannot pass an entire character array to character

functions. If you want to test the elements of a character array,

you must pass the array one element at a time.

Chapter 22 ♦ Character, String, and Numeric Functions

452

Example

The following program asks users for their initials. If a user

types anything but alphabetic characters, the program displays an

error and asks again.

Identify the program and include the input/output header files. The
program asks the user for his or her first initial, so declare the character
variable initial to hold the user’s answer.

1. Ask the user for her or his first initial, and retrieve the user’s answer.

2. If the answer was not an alphabetic character, tell the user this and
repeat step one.

Print a thank-you message on-screen.

// Filename: C22INI.CPP

// Asks for first initial and tests

// to ensure that response is correct.

#include <iostream.h>

#include <ctype.h>

void main()

{

 char initial;

 cout << “What is your first initial? “;

 cin >> initial;

 while (!isalpha(initial))

 {

 cout << “\nThat was not a valid initial! \n”;

 cout << “\nWhat is your first initial? “;

 cin >> initial;

 }

 cout << “\nThanks!”;

 return;

}

This use of the not operator (!) is quite clear. The program

continues to loop as long as the entered character is not alphabetic.

453

EXAMPLE
C++ By

Special Character-Testing
Functions

A few character functions become useful when you have to

read from a disk file, a modem, or another operating system device

that you route input from. These functions are not used as much as

the character functions you saw in the previous section, but they are

useful for testing specific characters for readability.

The remaining character-testing functions follow:

♦ iscntrl(c): Returns True (nonzero) if c is a control character
(any character from the ASCII table numbered 0 through 31).

Returns False (zero) if c is not a control character.

♦ isgraph(c): Returns True (nonzero) if c is any printable

character (a noncontrol character) except a space. Returns

False (zero) if c is a space or anything other than a printable

character.

♦ isprint(c): Returns True (nonzero) if c is a printable charac-

ter (a noncontrol character) from ASCII 32 to ASCII 127,

including a space. Returns False (zero) if c is not a printable

character.

♦ ispunct(c): Returns True (nonzero) if c is any punctuation

character (any printable character other than a space, a letter,

or a digit). Returns False (zero) if c is not a punctuation

character.

♦ isspace(c): Returns True (nonzero) if c is a space, newline

(\n), carriage return (\r), tab (\t), or vertical tab (\v) charac-

ter. Returns False (zero) if c is anything else.

Character Conversion Functions

The two remaining character functions are handy. Rather than

test characters, these functions change characters to their lower- or

uppercase equivalents.

The character-testing
functions do not
change characters.

Both tolower()
and toupper()
return lowercase
or uppercase
arguments.

Chapter 22 ♦ Character, String, and Numeric Functions

454

♦ tolower(c): Converts c to lowercase. Nothing changes if you

pass tolower() a lowercase letter or a nonalphabetic character.

♦ toupper(c): Converts c to uppercase. Nothing changes if you

pass toupper() an uppercase letter or a nonalphabetic character.

These functions return their changed character values. These

functions are useful for user input. Suppose you are asking users a

yes or no question, such as the following:

Do you want to print the checks (Y/N)?

Before toupper() and tolower() were developed, you had to

check for both a Y and a y to print the checks. Instead of testing for

both conditions, you can convert the character to uppercase, and test

for a Y.

Example

Here is a program that prints an appropriate message if the user

is a girl or a boy. The program tests for G and B after converting the

user’s input to uppercase. No check for lowercase has to be done.

Identify the program and include the input/output header files. The
program asks the user a question requiring an alphabetic answer, so declare
the character variable ans to hold the user’s response.

Ask whether the user is a girl or a boy, and store the user’s answer in ans.
The user must press Enter, so incorporate and then discard the Enter
keypress. Change the value of ans to uppercase. If the answer is G, print a
message. If the answer is B, print a different message. If the answer is
something else, print another message.

// Filename: C22GB.CPP

// Determines whether the user typed a G or a B.

#include <iostream.h>

#include <conio.h>

#include <ctype.h>

void main()

{

455

EXAMPLE
C++ By

 char ans; // Holds user’s response.

 cout << “Are you a girl or a boy (G/B)? “;

 ans=getch(); // Get answer.

 getch(); // Discard newline.

cout <<ans<<“\n”;

 ans = toupper(ans); // Convert answer to uppercase.

 switch (ans)

 { case (‘G’): { cout << “You look pretty today!\n”;

 break; }

 case (‘B’): { cout << “You look handsome today!\n”;

 break; }

 default : { cout << “Your answer makes no sense!\n”;

 break; }

 }

 return;

}

Here is the output from the program:

Are you a girl or a boy (G/B)? B

You look handsome today!

String Functions
Some of the most powerful built-in C++ functions are the string

functions. They perform much of the tedious work for which you

have been writing code so far, such as inputting strings from the

keyboard and comparing strings.

As with the character functions, there is no need to “reinvent

the wheel” by writing code when built-in functions do the same task.

Use these functions as much as possible.

Now that you have a good grasp of the foundations of C++, you

can master the string functions. They enable you to concentrate on

your program’s primary purpose, rather than spend time coding

your own string functions.

Chapter 22 ♦ Character, String, and Numeric Functions

456

Useful String Functions

You can use a handful of useful string functions for string

testing and conversion. You have already seen (in earlier chapters)

the strcpy() string function, which copies a string of characters to a

character array.

NOTE: All string functions in this section are prototyped in

the string.h header file. Be sure to include string.h at the

beginning of any program that uses the string functions.

String functions that test or manipulate strings follow:

♦ strcat(s1, s2): Concatenates (merges) the s2 string to the end

of the s1 character array. The s1 array must have enough

reserved elements to hold both strings.

♦ strcmp(s1, s2): Compares the s1 string with the s2 string on

an alphabetical, element-by-element basis. If s1 alphabetizes

before s2, strcmp() returns a negative value. If s1 and s2 are

the same strings, strcmp() returns 0. If s1 alphabetizes after

s2, strcmp() returns a positive value.

♦ strlen(s1): Returns the length of s1. Remember, the length of

a string is the number of characters, not including the null

zero. The number of characters defined for the character

array has nothing to do with the length of the string.

TIP: Before using strcat() to concatenate strings, use strlen()

to ensure that the target string (the string being concatenated

to) is large enough to hold both strings.

String I/O Functions

In the previous few chapters, you have used a character input

function, cin.get(), to build input strings. Now you can begin to use

the string input and output functions. Although the goal of the

The string functions
work on string
literals or on
character arrays that
contain strings.

457

EXAMPLE
C++ By

string-building functions has been to teach you the specifics of the

language, these string I/O functions are much easier to use than

writing a character input function.

The string input and output functions are listed as follows:

♦ gets(s): Stores input from stdin (usually directed to the

keyboard) to the string named s.

♦ puts(s): Outputs the s string to stdout (usually directed to the

screen by the operating system).

♦ fgets(s, len, dev): Stores input from the standard device

specified by dev (such as stdin or stdaux) in the s string. If

more than len characters are input, fgets() discards them.

♦ fputs(s, dev): Outputs the s string to the standard device

specified by dev.

These four functions make the input and output of strings easy.

They work in pairs. That is, strings input with gets() are usually

output with puts(). Strings input with fgets() are usually output

with fputs().

TIP: gets() replaces the string-building input function you

saw in earlier chapters.

Terminate gets() or fgets() input by pressing Enter. Each of

these functions handles string-terminating characters in a slightly

different manner, as follows:

gets() A newline input becomes a null zero (\0).

puts() A null at the end of the string becomes a newline

character (\n).

fgets() A newline input stays, and a null zero is added

after it.

fputs() The null zero is dropped, and a newline character

is not added.

Therefore, when you enter strings with gets(), C++ places a

string-terminating character in the string at the point where you

press Enter. This creates the input string. (Without the null zero, the

Both gets() and
puts() input and
output strings.

Chapter 22 ♦ Character, String, and Numeric Functions

458

input would not be a string.) When you output a string, the null

zero at the end of the string becomes a newline character. This is

preferred because a newline is at the end of a line of output and the

cursor begins automatically on the next line.

Because fgets() and fputs() can input and output strings from

devices such as disk files and telephone modems, it can be critical

that the incoming newline characters are retained for the data’s

integrity. When outputting strings to these devices, you do not want

C++ inserting extra newline characters.

CAUTION: Neither gets() nor fgets() ensures that its input

strings are large enough to hold the incoming data. It is up to

you to make sure enough space is reserved in the character

array to hold the complete input.

One final function is worth noting, although it is not a string

function. It is the fflush() function, which flushes (empties) what-

ever standard device is listed in its parentheses. To flush the key-

board of all its input, you would code as follows:

fflush(stdin);

When you are doing string input and output, sometimes an

extra newline character appears in the keyboard buffer. A previous

answer to gets() or getc() might have an extra newline you forgot to

discard. When a program seems to ignore gets(), you might have to

insert fflush(stdin) before gets().

Flushing the standard input device causes no harm, and using

it can clear the input stream so your next gets() works properly. You

can also flush standard output devices with fflush() to clear the

output stream of any characters you sent to it.

NOTE: The header file for fflush() is in stdio.h.

459

EXAMPLE
C++ By

Example

The following program shows you how easy it is to use gets()

and puts(). The program requests the name of a book from the user

using a single gets() function call, then prints the book title with

puts().

Identify the program and include the input/output header files. The
program asks the user for the name of a book. Declare the character array
book with 30 elements to hold the user’s answer.

Ask the user for the book’s title, and store the user’s response in the book
array. Display the string stored in book to an output device, probably your
screen. Print a thank-you message.

// C22GPS1.CPP

// Inputs and outputs strings.

#include <iostream.h>

#include <stdio.h>

#include <string.h>

void main()

{

 char book[30];

 cout << “What is the book title? “;

 gets(book); // Get an input string.

 puts(book); // Display the string.

 cout << “Thanks for the book!\n”;

 return;

}

The output of the program follows:

What is the book title? Mary and Her Lambs

Mary and Her Lambs

Thanks for the book!

Chapter 22 ♦ Character, String, and Numeric Functions

460

Converting Strings to Numbers

Sometimes you have to convert numbers stored in character

strings to a numeric data type. AT&T C++ provides three functions

that enable you to do this:

♦ atoi(s): Converts s to an integer. The name stands for alpha-

betic to integer.

♦ atol(s): Converts s to a long integer. The name stands for

alphabetic to long integer.

♦ atof(s): Converts s to a floating-point number. The name

stands for alphabetic to floating-point.

NOTE: These three ato() functions are prototyped in the

stdlib.h header file. Be sure to include stdlib.h at the beginning of

any program that uses the ato() functions.

The string must contain a valid number. Here is a string that can

be converted to an integer:

“1232”

The string must hold a string of digits short enough to fit in the

target numeric data type. The following string could not be con-

verted to an integer with the atoi() function:

“-1232495.654”

However, it could be converted to a floating-point number with the

atof() function.

C++ cannot perform any mathematical calculation with such

strings, even if the strings contain digits that represent numbers.

Therefore, you must convert any string to its numeric equivalent

before performing arithmetic with it.

NOTE: If you pass a string to an ato() function and the string

does not contain a valid representation of a number, the ato()

function returns 0.

461

EXAMPLE
C++ By

These functions become more useful to you after you learn

about disk files and pointers.

Numeric Functions
This section presents many of the built-in C++ numeric func-

tions. As with the string functions, these functions save you time by

converting and calculating numbers instead of your having to write

functions that do the same thing. Many of these are trigonometric

and advanced mathematical functions. You might use some of these

numeric functions only rarely, but they are there if you need them.

This section concludes the discussion of C++’s standard built-

in functions. After mastering the concepts in this chapter, you are

ready to learn more about arrays and pointers. As you develop more

skills in C++, you might find yourself relying on these numeric,

string, and character functions when you write more powerful

programs.

Useful Mathematical Functions

Several built-in numeric functions return results based on

numeric variables and literals passed to them. Even if you write only

a few science and engineering programs, some of these functions are

useful.

NOTE: All mathematical and trigonometric functions are

prototyped in the math.h header file. Be sure to include math.h

at the beginning of any program that uses the numeric func-

tions.

Here are the functions listed with their descriptions:

♦ ceil(x): The ceil(), or ceiling, function rounds numbers up to

the nearest integer.

♦ fabs(x): Returns the absolute value of x. The absolute value

of a number is its positive equivalent.

These numeric
functions return
double-precision
values.

Chapter 22 ♦ Character, String, and Numeric Functions

462

TIP: Absolute value is used for distances (which are always

positive), accuracy measurements, age differences, and other

calculations that require a positive result.

♦ floor(x): The floor() function rounds numbers down to the

nearest integer.

♦ fmod(x, y): The fmod() function returns the floating-point

remainder of (x/y) with the same sign as x, and y cannot be

zero. Because the modulus operator (%) works only with

integers, this function is used to find the remainder of

floating-point number divisions.

♦ pow(x, y): Returns x raised to the y power, or xy. If x is less

than or equal to zero, y must be an integer. If x equals zero,

y cannot be negative.

♦ sqrt(x): Returns the square root of x; x must be greater than

or equal to zero.

The nth Root

No function returns the nth root of a number, only the square

root. In other words, you cannot call a function that gives you

the 4th root of 65,536. (By the way, 16 is the 4th root of 65,536,

because 16 times 16 times 16 times 16 = 65,536.)

You can use a mathematical trick to simulate the nth root,

however. Because C++ enables you to raise a number to a

fractional power—with the pow() function—you can raise a

number to the nth root by raising it to the (1/n) power. For

example, to find the 4th root of 65,536, you could type this:

root = pow(65536.0, (1.0/4.0));

Note that the decimal point keeps the numbers in floating-

point format. If you leave them as integers, such as

root = pow(65536, (1/4));

463

EXAMPLE
C++ By

C++ produces incorrect results. The pow() function and most

other mathematical functions require floating-point values as

arguments.

To store the 7th root of 78,125 in a variable called root, for

example, you would type

root = pow(78125.0, (1.0/7.0));

This stores 5.0 in root because 5 7 equals 78,125.

Knowing how to compute the nth root is handy in scientific

programs and also in financial applications, such as time-

value-of-money problems.

Example

The following program uses the fabs() function to compute the

difference between two ages.

// Filename: C22ABS.CPP

// Computes the difference between two ages.

#include <iostream.h>

#include <math.h>

void main()

{

 float age1, age2, diff;

 cout << “\nWhat is the first child’s age? “;

 cin >> age1;

 cout << “What is the second child’s age? “;

 cin >> age2;

 // Calculates the positive difference.

 diff = age1 - age2;

 diff = fabs(diff); // Determines the absolute value.

 cout << “\nThey are “ << diff << “ years apart.”;

 return;

}

Chapter 22 ♦ Character, String, and Numeric Functions

464

The output from this program follows. Due to fabs(), the order

of the ages doesn’t matter. Without absolute value, this program

would produce a negative age difference if the first age was less than

the second. Because the ages are relatively small, floating-point

variables are used in this example. C++ automatically converts

floating-point arguments to double precision when passing them to

fabs().

What is the first child’s age? 10

What is the second child’s age? 12

They are 2 years apart.

Trigonometric Functions

The following functions are available for trigonometric appli-

cations:

♦ cos(x): Returns the cosine of the angle x, expressed in radians.

♦ sin(x): Returns the sine of the angle x, expressed in radians.

♦ tan(x): Returns the tangent of the angle x, expressed in radians.

These are probably the least-used functions. This is not to

belittle the work of scientific and mathematical programmers who

need them, however. Certainly, they are grateful that C++ supplies

these functions! Otherwise, programmers would have to write their

own functions to perform these three basic trigonometric calcula-

tions.

Most C++ compilers supply additional trigonometric func-

tions, including hyperbolic equivalents of these three functions.

TIP: If you have to pass an angle that is expressed in degrees

to these functions, convert the angle’s degrees to radians by

multiplying the degrees by π/180.0 (π equals approximately

3.14159).

465

EXAMPLE
C++ By

Logarithmic Functions

Three highly mathematical functions are sometimes used in

business and mathematics. They are listed as follows:

♦ exp(x): Returns the base of natural logarithm (e) raised to a

power specified by x (ex); e is the mathematical expression

for the approximate value of 2.718282.

♦ log(x): Returns the natural logarithm of the argument x,

mathematically written as ln(x). x must be positive.

♦ log10(x): Returns the base-10 logarithm of argument x,

mathematically written as log10(x). x must be positive.

Random-Number Processing

Random events happen every day. You wake up and it is sunny

or rainy. You have a good day or a bad day. You get a phone call from

an old friend or you don’t. Your stock portfolio might go up or down

in value.

Random events are especially important in games. Part of the

fun in games is your luck with rolling dice or drawing cards,

combined with your playing skills.

Simulating random events is an important task for computers.

Computers, however, are finite machines; given the same input,

they always produce the same output. This fact can create some

boring games!

The designers of C++ knew this computer setback and found a

way to overcome it. They wrote a random-number generating

function called rand(). You can use rand() to compute a dice roll or

draw a card, for example.

To call the rand() function and assign the returned random

number to test, use the following syntax:

test = rand();

The rand() function returns an integer from 0 to 32,767. Never

use an argument in the rand() parentheses.

Every time you call rand() in the same program, you receive a

different number. If you run the same program over and over,

The rand()
function produces
random integer
numbers.

Chapter 22 ♦ Character, String, and Numeric Functions

466

however, rand() returns the same set of random numbers. One way

to receive a different set of random numbers is to call the srand()

function. The format of srand() follows:

srand(seed);

where seed is an integer variable or literal. If you don’t call srand(),

C++ assumes a seed value of 1.

NOTE: The rand() and srand() functions are prototyped in the

stdlib.h header file. Be sure to include stdlib.h at the beginning

of any program that uses rand() or srand().

The seed value reseeds, or resets, the random-number genera-

tor, so the next random number is based on the new seed value. If you

call srand() with a different seed value at the top of a program, rand()

returns a different random number each time you run the program.

Why Do You Have To Do This?

There is considerable debate among C++ programmers con-

cerning the random-number generator. Many think that the

random numbers should be truly random, and that they should

not have to seed the generator themselves. They think that C++

should do its own internal seeding when you ask for a random

number.

However, many applications would no longer work if the

random-number generator were randomized for you. Com-

puters are used in business, engineering, and research to

simulate the pattern of real-world events. Researchers have to

be able to duplicate these simulations, over and over. Even

though the events inside the simulations might be random

from each other, the running of the simulations cannot be

random if researchers are to study several different effects.

Mathematicians and statisticians also have to repeat random-

number patterns for their analyses, especially when they work

with risk, probability, and gaming theories.

467

EXAMPLE
C++ By

Because so many computer users have to repeat their random-

number patterns, the designers of C++ have wisely chosen to

give you, the programmer, the option of keeping the same

random patterns or changing them. The advantages far out-

weigh the disadvantage of including an extra srand() function

call.

If you want to produce a different set of random numbers every

time your program runs, you must determine how your C++

compiler reads the computer’s system clock. You can use the

seconds count from the clock to seed the random-number

generator so it seems truly random.

Review Questions
The answers to the review questions are in Appendix B.

1. How do the character testing functions differ from the

character conversion functions?

2. What are the two string input functions?

3. What is the difference between floor() and ceil()?

4. What does the following nested function return?

isalpha(islower(‘s’));

5. If the character array str1 contains the string Peter and the

character array str2 contains Parker, what does str2 contain

after the following line of code executes?

strcat(str1, str2);

6. What is the output of the following cout?

cout << floor(8.5) << “ “ << ceil(8.5);

7. True or false: The isxdigit() and isgraph() functions could

return the same value, depending on the character passed to

them.

Chapter 22 ♦ Character, String, and Numeric Functions

468

8. Assume you declare a character array with the following

statement:

char ara[5];

Now suppose the user types Programming in response to the

following statement:

fgets(ara, 5, stdin);

Would ara contain Prog, Progr, or Programming?

9. True or false: The following statements print the same

results.

cout << pow(64.0, (1.0/2.0)) ;

cout << sqrt(64.0);

Review Exercises
1. Write a program that asks users for their ages. If a user types

anything other than two digits, display an error message.

2. Write a program that stores a password in a character array

called pass. Ask users for the password. Use strcmp() to

inform users whether they typed the proper password. Use

the string I/O functions for all the program’s input and

output.

3. Write a program that rounds up and rounds down the

numbers –10.5, –5.75, and 2.75.

4. Ask users for their names. Print every name in reverse case;

print the first letter of each name in lowercase and the rest of

the name in uppercase.

5. Write a program that asks users for five movie titles. Print

the longest title. Use only the string I/O and manipulation

functions presented in this chapter.

6. Write a program that computes the square root, cube root,

and fourth root of the numbers from 10 to 25, inclusive.

469

EXAMPLE
C++ By

7. Ask users for the titles of their favorite songs. Discard all the

special characters in each title. Print the words in the title,

one per line. For example, if they enter My True Love Is Mine,

Oh, Mine!, you should output the following:

My

True

Love

Is

Mine

Oh

Mine

8. Ask users for the first names of 10 children. Using strcmp()

on each name, write a program to print the name that comes

first in the alphabet.

Summary
You have learned the character, string, and numeric functions

that C++ provides. By including the ctype.h header file, you can test

and convert characters that a user types. These functions have many

useful purposes, such as converting a user’s response to uppercase.

This makes it easier for you to test user input.

The string I/O functions give you more control over both string

and numeric input. You can receive a string of digits from the

keyboard and convert them to a number with the ato() functions.

The string comparison and concatenation functions enable you to

test and change the contents of more than one string.

Functions save you programming time because they take over

some of your computing tasks, leaving you free to concentrate on

your programs. C++’s numeric functions round and manipulate

numbers, produce trigonometric and logarithmic results, and pro-

duce random numbers.

Now that you have learned most of C++’s built-in functions,

you are ready to improve your ability to work with arrays. Chap-

ter 23, “Introducing Arrays,” extends your knowledge of character

arrays and shows you how to produce arrays of any data type.

Chapter 22 ♦ Character, String, and Numeric Functions

470

