
i

EXAMPLE
C++ By

Greg Perry

By

C++

Contents ♦

ii

C++ By Example

© 1992 by Que

All rights reserved. Printed in the United States of America. No part of this

book may be used or reproduced, in any form or by any means, or stored

in a database or retrieval system, without prior written permission of the

publisher except in the case of brief quotations embodied in critical articles

and reviews. Making copies of any part of this book for any purpose other

than your own personal use is a violation of United States copyright laws.

For information, address Que, 11711 N. College Ave., Carmel, IN 46032.

Library of Congress Catalog Card Number: 92-64353

ISBN: 1-56529-038-0

This book is sold as is, without warranty of any kind, either express or

implied, respecting the contents of this book, including but not limited to

implied warranties for the book’s quality, performance, merchantability,

or fitness for any particular purpose. Neither Que Corporation nor its

dealers or distributors shall be liable to the purchaser or any other person

or entity with respect to any liability, loss, or damage caused or alleged to

be caused directly or indirectly by this book.

96 95 94 93 92 8 7 6 5 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is

the year of the book’s printing; the rightmost single-digit number, the

number of the book’s printing. For example, a printing code of 92-1 shows

that the first printing of the book occurred in 1992.

iii

EXAMPLE
C++ By

Publisher
Lloyd Short

Publishing Manager
Joseph Wikert

Development Editor
Stacy Hiquet

Production Editor
Kezia Endsley

Copy Editor
Bryan Gambrel

Technical Editor
Tim Moore

Editorial Assistants
Rosemarie Graham
Melissa Keegan

Book Design
Scott Cook
Michele Laseau

Production Analyst
Mary Beth Wakefield

Cover Design
Jean Bisesi

Indexer
Johnna VanHoose

Production
Caroline Roop (Book Shepherd)
Jeff Baker, Paula Carroll,
Michelle Cleary, Brook Farling,
Kate Godfrey, Bob LaRoche,
Laurie Lee, Jay Lesandrini,
Cindy L. Phipps, Linda Seifert,
Phil Worthington

Composed in Palatino and MCPdigital typefaces by Prentice Hall Computer Publishing.

Screen reproductions in this book were created by means of the program Collage Plus

from Inner Media, Inc., Hollis, NH.

Contents ♦

iv

Dedication

Dr. Rick Burgess, you shaped my life. Good or bad, I’m what I am
thanks to your help. I appreciate the many hours we’ve shared together.

 G.M.P.

v

EXAMPLE
C++ By

About the Author

Greg Perry has been a programmer and trainer for the past 14 years.

He received his first degree in computer science, then he received a

Masters degree in corporate finance. He currently is a professor of

computer science at Tulsa Junior College, as well as a computer

consultant and a lecturer. Greg Perry is the author of 11 other

computer books, including QBASIC By Example and C By Example. In
addition, he has published articles in several publications, including

PC World, Data Training, and Inside First Publisher. He has attended

computer conferences and trade shows in several countries, and is

fluent in nine computer languages.

Contents ♦

vi

vii

EXAMPLE
C++ By

Acknowledgments

Much thanks to Stacy Hiquet and Joseph Wikert at Prentice Hall

(Que) for trusting me completely with the direction and style of this

book. The rest of my editors: Kezia Endsley, Bryan Gambrel, and the

Technical Editor, Tim Moore, kept me on track so the readers can

have an accurate and readable text.

The Tulsa Junior College administration continues to be sup-

portive of my writing. More importantly, Diane Moore, head of our

Business Services Division, Tony Hirad, and Elaine Harris, are

friends who make teaching a joy and not a job.

As always, my beautiful bride Jayne, and my parents Glen and

Bettye Perry, are my closest daily companions. It is for them I work.

Trademark Acknowledgments

Que Corporation has made every attempt to supply trademark

information about company names, products, and services men-

tioned in this book. Trademarks indicated below were derived from

various sources. Que Corporation cannot attest to the accuracy of

this information.

AT&T is a registered trademark of American Telephone &

Telegraph Company.

FORTRAN and COBOL are trademarks of International

Business Machines Corporation (IBM).

Turbo BASIC is a registered trademark of Borland

International, Inc.

Turbo C is a registered trademark of Borland International, Inc.

Microsoft QuickC and MS-DOS are registered trademarks of

Microsoft Corporation.

ANSI is a registered trademark of American National Standards

Institute.

Contents ♦

viii

ix

EXAMPLE
C++ By

Overview

I Introduction to C++

1 Welcome to C++ ...11

2 What Is a Program? ..35

3 Your First C++ Program ..51

4 Variables and Literals ..69

5 Character Arrays and Strings ...99

6 Preprocessor Directives ...113

7 Simple Input/Output ...133

II Using C++ Operators

8 Using C++ Math Operators and Precedence163

9 Relational Operators ..185

10 Logical Operators ...207

11 Additional C++ Operators ..221

III C++ Constructs

12 The while Loop ...245

13 The for Loop ..273

14 Other Loop Options ...295

15 The switch and goto Statements ...311

16 Writing C++ Functions ..331

IV Variable Scope and Modular
Programming

17 Variable Scope ...353

18 Passing Values ..379

19 Function Return Values and Prototypes397

20 Default Arguments and Function Overloading415

V Character Input/Output and
String Functions

21 Device and Character Input/Output.......................................431

22 Character, String, and Numeric Functions449

Contents ♦

x

VI Arrays and Pointers

23 Introducing Arrays ...473

24 Array Processing...493

25 Multidimensional Arrays ..519

26 Pointers ..541

27 Pointers and Arrays ...557

VII Structures and File Input/Output

28 Structures ...583

29 Arrays of Structures ...605

30 Sequential Files ...625

31 Random-Access Files ...645

32 Introduction to Object-Oriented Programming661

VIII References

A Memory Addressing, Binary, and Hexadecimal Review679

B Answers to Review Questions ..701

C ASCII Table ..719

D C++ Precedence Table ..729

E Keyword and Function Reference..733

F The Mailing List Application ..737

Glossary ...747

Index ...761

xi

EXAMPLE
C++ By

Contents

Introduction ...1

Who Should Use This Book ..1

The Book’s Philosophy ..2

Overview of This Book ..2

Conventions Used in This Book ...5

Index to the Icons ...5

Margin Graphics (Book Diagrams)6

Companion Disk Offer ..8

I Introduction to C++

1 Welcome to C++...11

What C++ Can Do for You ..12

The Background of C++ ..15

C++ Compared with Other Languages...................................16

C++ and Microcomputers ...17

An Overview of Your Computer ...19

Hardware ..19

Software ...29

Review Questions ...33

Summary ...34

2 What Is a Program?35

Computer Programs ..36

Program Design ..38

Using a Program Editor ...40

Using a C++ Compiler ...42

Running a Sample Program ..44

Handling Errors ..46

Review Questions ...48

Summary ...49

Contents ♦

xii

3 Your First C++ Program51

Looking at a C++ Program..52

The Format of a C++ Program ...53

Readability Is the Key..54

Uppercase Versus Lowercase ...55

Braces and main() ...56

Comments in C++ ..57

Explaining the Sample Program ..60

Review Questions ...66

Summary ...67

4 Variables and Literals69

Variables ..70

Naming Variables ..70

Variable Types ..72

Declaring Variables ..73

Looking at Data Types ..75

Assigning Values to Variables ...80

Literals ..82

Assigning Integer Literals ...83

Assigning String Literals...85

Assigning Character Literals ..89

Constant Variables ...94

Review Questions ...95

Review Exercises ..97

Summary ...97

5 Character Arrays and Strings......................99

Character Arrays ..100

Character Arrays Versus Strings ..103

Review Questions ...110

Review Exercises ..111

Summary ...111

6 Preprocessor Directives............................113

Understanding Preprocessor Directives114

The #include Directive ..115

The #define Directive ..120

xiii

EXAMPLE
C++ By

Review Questions ...128

Review Exercises ..130

Summary ...130

7 Simple Input/Output...................................133

The cout Operator ..134

Printing Strings ...134

The cin Operator ..144

printf() and scanf() ...149

The printf() Function ..149

Conversion Characters ..151

The scanf() Function ...154

Review Questions ...157

Review Exercises ..158

Summary ...159

II Using C++ Operators

8 Using C++ Math Operators
and Precedence...163

C++’s Primary Math Operators ..164

The Unary Operators ...165

Division and Modulus...167

The Order of Precedence ...168

Using Parentheses ..170

The Assignment Statements ...174

Multiple Assignments ...175

Compound Assignments ..176

Mixing Data Types in Calculations178

Type Casting ...179

Review Questions ...182

Review Exercises ..183

Summary ...184

9 Relational Operators185

Defining Relational Operators..186

The if Statement ..189

The else Statement ..199

Contents ♦

xiv

Review Questions ...203

Review Exercises ..204

Summary ...205

10 Logical Operators207

Defining Logical Operators...207

Logical Operators and Their Uses ...209

C++’s Logical Efficiency..211

Logical Operators and Their Precedence216

Review Questions ...217

Review Exercises ..218

Summary ...219

11 Additional C++ Operators221

The Conditional Operator ...222

The Increment and Decrement Operators225

The sizeof Operator ..230

The Comma Operator ..232

Bitwise Operators ...234

Bitwise Logical Operators ...235

Review Questions ...242

Review Exercises ..243

Summary ...243

III C++ Constructs

12 The while Loop ..245

The while Statement...246

The Concept of Loops ..247

The do-while Loop ...252

The if Loop Versus the while Loop..255

The exit() Function and break Statement256

Counters and Totals ...260

Producing Totals ..265

Review Questions ...268

Review Exercises ..269

Summary ...270

xv

EXAMPLE
C++ By

13 The for Loop...273

The for Statement ...274

The Concept of for Loops ..274

Nested for Loops ..286

Review Questions ...292

Review Exercises ..293

Summary ...293

14 Other Loop Options295

Timing Loops ..296

The break and for Statements ...298

The continue Statement ...303

Review Questions ...308

Review Exercises ..308

Summary ...309

15 The switch and goto Statements311

The switch Statement ...312

The goto Statement ...321

Review Questions ...327

Review Exercises ..328

Summary ...328

16 Writing C++ Functions331

Function Basics ...332

Breaking Down Problems ...333

More Function Basics ...335

Calling and Returning Functions ...337

Review Questions ...349

Summary ...350

IV Variable Scope and Modular Programming

17 Variable Scope ..353

Global Versus Local Variables ..354

Defining Variable Scope..355

Use Global Variables Sparingly ...362

The Need for Passing Variables ...363

Automatic Versus Static Variables...369

Contents ♦

xvi

Three Issues of Parameter Passing...374

Review Questions ...375

Review Exercises ..375

Summary ...377

18 Passing Values ..379

Passing by Value (by Copy) ..379

Passing by Address (by Reference)..385

Variable Addresses ..385

Sample Program ...386

Passing Nonarrays by Address ..391

Review Questions ...394

Review Exercises ..395

Summary ...396

19 Function Return Values and Prototypes ...397

Function Return Values ...398

Function Prototypes ...405

Prototype for Safety ...407

Prototype All Functions ..407

Review Questions ...412

Review Exercises ..412

Summary ...413

20 Default Arguments
and Function Overloading415

Default Argument Lists ...416

Multiple Default Arguments ..417

Overloaded Functions ...420

Review Questions ...426

Review Exercises ..426

Summary ...427

V Character Input/Output
and String Functions

21 Device and Character Input/Output431

Stream and Character I/O ..432

Standard Devices ...434

Redirecting Devices from MS-DOS435

xvii

EXAMPLE
C++ By

Printing Formatted Output to the Printer.............................436

Character I/O Functions ...437

The get() and put() Functions ...438

The getch() and putch() Functions444

Review Questions ...446

Review Exercises ..447

Summary ...448

22 Character, String,
and Numeric Functions449

Character Functions ...450

Character Testing Functions ...450

Alphabetic and Digital Testing ..450

Special Character-Testing Functions453

Character Conversion Functions453

String Functions ..455

Useful String Functions ...456

String I/O Functions ...456

Converting Strings to Numbers ...460

Numeric Functions ...461

Useful Mathematical Functions ...461

Trigonometric Functions ...464

Logarithmic Functions ..465

Random-Number Processing ...465

Review Questions ...467

Review Exercises ..468

Summary ...469

VI Arrays and Pointers

23 Introducing Arrays.....................................473

Array Basics ...474

Initializing Arrays ..479

Initializing Elements at Declaration Time479

Initializing Elements in the Program486

Review Questions ...491

Review Exercises ..491

Summary ...492

Contents ♦

xviii

24 Array Processing493

Searching Arrays ..494

Searching for Values ..496

Sorting Arrays ...501

Advanced Referencing of Arrays ...508

Review Questions ...515

Review Exercises ..516

Summary ...517

25 Multidimensional Arrays............................519

Multidimensional Array Basics ..520

Reserving Multidimensional Arrays522

Mapping Arrays to Memory...524

Defining Multidimensional Arrays526

Tables and for Loops ..530

Review Questions ...537

Review Exercises ..538

Summary ...538

26 Pointers..541

Introduction to Pointer Variables ..542

Declaring Pointers ..543

Assigning Values to Pointers ...545

Pointers and Parameters ...546

Arrays of Pointers ...551

Review Questions ...553

Summary ...555

27 Pointers and Arrays557

Array Names as Pointers...558

Pointer Advantages ..560

Using Character Pointers ..563

Pointer Arithmetic ..568

Arrays of Strings ...574

Review Questions ...578

Review Exercises ..579

Summary ...580

xix

EXAMPLE
C++ By

VII Structures and File Input/Output

28 Structures ..583

Introduction to Structures ...584

Defining Structures ..587

Initializing Structure Data ...591

Nested Structures ...600

Review Questions ...603

Review Exercises ..604

Summary ...604

29 Arrays of Structures605

Declaring Arrays of Structures ...606

Arrays as Members ..615

Review Questions ...623

Review Exercises ..624

Summary ...624

30 Sequential Files ...625

Why Use a Disk? ...626

Types of Disk File Access ..627

Sequential File Concepts ...628

Opening and Closing Files ..629

Writing to a File ..635

Writing to a Printer ..637

Adding to a File ..638

Reading from a File ..639

Review Questions ...642

Review Exercises ..643

Summary ...644

31 Random-Access Files645

Random File Records ...646

Opening Random-Access Files ...647

The seekg() Function ..649

Other Helpful I/O Functions..656

Review Questions ...658

Review Exercises ..658

Summary ...659

Contents ♦

xx

32 Introduction to Object-Oriented
Programming ...661

What Is a Class? ..662

Data Members ..662

Member Functions ...662

Default Member Arguments...670

Class Member Visibility ..674

Review Questions ...676

Review Exercise ..676

Summary ...676

VIII References

A Memory Addressing, Binary,
and Hexadecimal Review..........................679

Computer Memory ..680

Memory and Disk Measurements680

Memory Addresses ..681

Bits and Bytes ..682

The Order of Bits ..686

Binary Numbers ...686

Binary Arithmetic ...690

Binary Negative Numbers ..692

Hexadecimal Numbers ..695

Why Learn Hexadecimal? ...697

How Binary and Addressing Relate to C++698

B Answers to Review Questions701

C ASCII Table ..719

D C++ Precedence Table729

E Keyword and Function Reference733

stdio.h ..734

ctype.h..734

string.h ...735

math.h ..735

stdlib.h ...735

xxi

EXAMPLE
C++ By

F The Mailing List Application737

Glossary ...747

Index ..761

Contents ♦

xxii

1

EXAMPLE
C++ By

Introduction

Every day, more and more people learn and use the C++ program-

ming language. I have taught C to thousands of students in my life.

I see many of those students now moving to C++ in their school work

or career. The C++ language is becoming an industry-accepted

standard programming language, using the solid foundation of C to

gain a foothold. C++ is simply a better C than C.

C++ By Example is one of several books in Que’s new line of By
Example series. The philosophy of these books is simple: The best

way to teach computer programming concepts is with multiple

examples. Command descriptions, format syntax, and language

references are not enough to teach a newcomer a programming

language. Only by looking at numerous examples and by running

sample programs can programming students get more than just a

“feel” for the language.

Who Should Use This Book

This book teaches at three levels: beginning, intermediate, and

advanced. Text and numerous examples are aimed at each level. If

you are new to C++, and even if you are new to computers, this book

attempts to put you at ease and gradually build your C++ program-

ming skills. If you are an expert at C++, this book provides a few

extras for you along the way.

Introduction ♦

2

The Book’s Philosophy

This book focuses on programming correctly in C++ by teaching

structured programming techniques and proper program design.

Emphasis is always placed on a program’s readability rather than

“tricks of the trade” code examples. In this changing world, pro-

grams should be clear, properly structured, and well-documented,

and this book does not waver from the importance of this philos-

ophy.

This book teaches you C++ using a holistic approach. In addi-

tion to learning the mechanics of the language, you learn tips and

warnings, how to use C++ for different types of applications, and a

little of the history and interesting asides about the computing

industry.

Many other books build single applications, adding to them a

little at a time with each chapter. The chapters of this book are stand-

alone chapters, and show you complete programs that fully demon-

strate the commands discussed in the chapter. There is a program for

every level of reader, from beginning to advanced.

This book contains almost 200 sample program listings. These

programs show ways that you can use C++ for personal finance,

school and business record keeping, math and science, and general-

purpose applications that almost everybody with a computer can

use. This wide variety of programs show you that C++ is a very

powerful language that is easy to learn and use.

Appendix F, “The Mailing List Application,” is a complete

application—much longer than any of the other programs in the

book—that brings together your entire working knowledge of C++.

The application is a computerized mailing-list manager. Through-

out the chapters that come before the program, you learn how each

command in the program works. You can modify the program to

better suit your own needs. (The comments in the program suggest

changes you can make.)

Overview of This Book

This book is divided into eight parts. Part I introduces you to

the C++ environment, as well as introductory programming con-

cepts. Starting with Part II, the book presents the C++ programming

3

EXAMPLE
C++ By

language commands and built-in functions. After mastering the

language, you can use the book as a handy reference. When you

need help with a specific C++ programming problem, turn to the

appropriate area that describes that part of the language to see

numerous examples of code.

To get an idea of the book’s layout, read the following descrip-

tion of each section of the book:

Part I: Introduction to C++

This section explains what C++ is by describing a brief history

of the C++ programming language and presenting an overview of

C++’s advantages over other languages. This part describes your

computer’s hardware, how you develop your C++ programs, and

the steps you follow to enter and run programs. You begin to write

C++ programs in Chapter 3.

Part II: Using C++ Operators

This section teaches the entire set of C++ operators. The rich

assortment of operators (more than any other programming lan-

guage except APL) makes up for the fact that the C++ programming

language is very small. The operators and their order of precedence

are more important to C++ than most programming languages.

Part III: C++ Constructs

C++ data processing is most powerful due to the looping,

comparison, and selection constructs that C++ offers. This part

shows you how to write programs flowing with control computa-

tions that produce accurate and readable code.

Part IV: Variable Scope and
Modular Programming

To support true structured programming techniques, C++

must allow for local and global variables, as well as offer several

Introduction ♦

4

ways to pass and return variables between functions. C++ is a very

strong structured language that attempts, if the programmer is

willing to “listen to the language,” to protect local variables by

making them visible only to the parts of the program that need them.

Part V: Character Input/Output and
String Functions

C++ contains no commands that perform input or output. To

make up for this apparent oversight, C++ compiler writers supply

several useful input and output functions. By separating input and

output functions from the language, C++ achieves better portability

between computers; if your program runs on one computer, it will

work on any other.

This part also describes several of the other built-in math,

character, and string functions available with C++. These functions

keep you from having to write your own routines to perform

common tasks.

Part VI: Arrays and Pointers

C++ offers single and multidimensional arrays that hold mul-

tiple occurrences of repeating data, but that do not require much

effort on your part to process.

Unlike many other programming languages, C++ also uses

pointer variables a great deal. Pointer variables and arrays work

together to give you flexible data storage that allow for easy sorting

and searching of data.

Part VII: Structures and File
Input/Output

Variables, arrays, and pointers are not enough to hold the types

of data that your programs require. Structures allow for more

powerful grouping of many different kinds of data into manageable

units.

Your computer would be too limiting if you could not store

data to the disk and retrieve that data back in your programs. Disk

5

EXAMPLE
C++ By

files are required by most “real world” applications. This section

describes how C++ processes sequential and random-access files

and teaches the fundamental principles needed to effectively save

data to the disk. The last chapter in this section introduces object-

oriented programming and its use of classes.

Part VIII: References

This final section of the book includes a reference guide to the

ASCII table, the C++ precedence table, and to keywords and func-

tions in C++. Also in this section are the mailing list application and

the answers to the review questions.

Conventions Used in This
Book

The following typographic conventions are used in this book:

♦ Code lines, variables, and any text you see on-screen are in

monospace.

♦ Placeholders on format lines are in italic monospace.

♦ Filenames are in regular text, all uppercase (CCDOUB.CPP).

♦ Optional parameters on format lines are enclosed in flat

brackets ([]). You do not type the brackets when you

include these parameters.

♦ New terms, which are also found in the glossary, are in italic.

Index to the Icons

The following icons appear throughout this book:

Level 1 difficulty

Introduction ♦

6

Level 2 difficulty

Level 3 difficulty

Tip

Note

Caution

Pseudocode

The pseudocode icon appears beside pseudocode, which is

typeset in italic immediately before the program. The pseudocode

consists of one or more sentences indicating what the program

instructions are doing, in English. Pseudocode appears before se-

lected programs.

Margin Graphics (Book Diagrams)

To help your understanding of C++ further, this book includes

numerous margin graphics. These margin graphics are similar to

flowcharts you have seen before. Both use standard symbols to

represent program logic. If you have heard of the adage “A picture

is worth a thousand words,” you will understand why it is easier to

look at the margin graphics and grasp the overall logic before

dissecting programs line-by-line.

7

EXAMPLE
C++ By

Throughout this book, these margin graphics are used in two

places. Some graphics appear when a new command is introduced,

to explain how the command operates. Others appear when new

commands appear in sample programs for the first time.

The margin graphics do not provide complete, detailed expla-

nations of every statement in each program. They are simple instruc-

tions and provide an overview of the new statements in question.

The symbols used in the margin graphics, along with descriptions

of them, follow:

Terminal symbol
({,},Return...)

Assignment staement (total =
total + newvalue; ctr = ctr =
1;...)

Input/output
(scanf , print f...)

Calling a function

Small circle; loop begin

Large dot; begining and end
of IF-THEN, IF-THEN-ELSE,
and Switch

Input/output of arrays;
assumes implied FOR loop(s)
needed to deal with array I/O

Comment bracket; used for
added info, such as name of a
function

Introduction ♦

8

The margin graphics, the program listings, the program com-

ments, and the program descriptions in the book provide many

vehicles for learning the C++ language!

Companion Disk Offer
If you’d like to save yourself hours of tedious typing, use the

order form in the back of this book to order the companion disk for

C++ By Example. This disk contains the source code for all complete

programs and sample code in this book, as well as the mailing-list

application that appears in Appendix F. Additionally, the answers

to many of the review exercises are included on the disk.

Part I
Introduction to C++

11

EXAMPLE
C++ By

1

Welcome to C++

C++ is a recent addition to the long list of programming languages

now available. Experts predict that C++ will become one of the most

widely used programming languages within two to three years.

Scan your local computer bookstore’s shelves and you will see that

C++ is taking the programming world by storm. More and more

companies are offering C++ compilers. In the world of PCs, both

Borland and Microsoft, two of the leading names of PC software,

offer full-featured C++ compilers.

Although the C++ language is fairly new, having become

popular within the last three years, the designers of C++ compilers

are perfecting this efficient, standardized language that should soon

be compatible with almost every computer in the world. Whether

you are a beginning, an intermediate, or an expert programmer, C++

has the programming tools you need to make your computer do just

what you want it to do. This chapter introduces you to C++, briefly

describes its history, compares C++ to its predecessor C, shows you

the advantages of C++, and concludes by introducing you to hard-

ware and software concepts.

Chapter 1 ♦ Welcome to C++

12

What C++ Can Do for You
Imagine a language that makes your computer perform to your

personal specifications! Maybe you have looked for a program that

keeps track of your household budget—exactly as you prefer—but

haven’t found one. Perhaps you want to track the records of a small

(or large) business with your computer, but you haven’t found a

program that prints reports exactly as you’d like them. Possibly you

have thought of a new and innovative use for a computer and you

would like to implement your idea. C++ gives you the power to

develop all these uses for your computer.

If your computer could understand English, you would not

have to learn a programming language. But because it does not

understand English, you must learn to write instructions in a

language your computer recognizes. C++ is a powerful program-

ming language. Several companies have written different versions

of C++, but almost all C++ languages available today conform to the

AT&T standard. AT&T-compatible means the C++ language in ques-

tion conforms to the standard defined by the company that invented

the language, namely, American Telephone & Telegraph, Incorpo-

rated. AT&T realizes that C++ is still new and has not fully matured.

The good people there just completed the AT&T C++ 3.0 standard

to which software companies can conform. By developing a uniform

C++ language, AT&T helps ensure that programs you write today

will most likely be compatible with the C++ compilers of tomorrow.

NOTE: The AT&T C++ standard is only a suggestion. Software

companies do not have to follow the AT&T standard, although

most choose to do so. No typical computer standards commit-

tee has yet adopted a C++ standard language. The committees

are currently working on the issue, but they are probably

waiting for C++ to entrench the programming community

before settling on a standard.

Companies do not have to follow the AT&T C++ 3.0 standard.

Many do, but add their own extensions and create their own version

to do more work than the AT&T standard includes. If you are using

the AT&T C++ standard, your program should successfully run on

any other computer that also uses AT&T C++.

C++ is currently
defined by American
Telephone &
Telegraph,
Incorporated, to
achieve conformity
between versions
of C++.

C++ is called a
“better C than C.”

13

EXAMPLE
C++ By

AT&T developed C++ as an improved version of the C pro-

gramming language. C has been around since the 1970s and has

matured into a solid, extremely popular programming language.

ANSI, the American National Standards Institute, established a

standard C programming specification called ANSI C. If your C

compiler conforms to ANSI C, your program will work on any other

computer that also has ANSI C. This compatibility between comput-

ers is so important that AT&T’s C++ 3.0 standard includes almost

every element of the ANSI C, plus more. In fact, the ANSI C

committee often requires that a C++ feature be included in subse-

quent versions of C. For instance, function prototypes, a feature not

found in older versions of ANSI C, is now a requirement for

approval by the ANSI committee. Function prototypes did not exist

until AT&T required them in their early C++ specification.

C++ By Example teaches you to program in C++. All programs

conform to the AT&T C++ 2.1 standard. The differences between

AT&T 2.1 and 3.0 are relatively minor for beginning programmers.

As you progress in your programming skills, you will want to tackle

the more advanced aspects of C++ and Version 3.0 will come more

into play later. Whether you use a PC, a minicomputer, a mainframe,

or a supercomputer, the C++ language you learn here should work

on any that conform to AT&T C++ 2.1 and later.

There is a debate in the programming community as to whether

a person should learn C before C++ or learn only C++. Because C++

is termed a “better C,” many feel that C++ is an important language

in its own right and can be learned just as easily as C. Actually, C++

pundits state that C++ teaches better programming habits than the

plain, “vanilla” C. This book is aimed at the beginner programmer,

and the author feels that C++ is a great language with which to

begin. If you were to first learn C, you would have to “unlearn” a few

things when you moved to C++. This book attempts to use the C++

language elements that are better than C. If you are new to program-

ming, you learn C++ from the start. If you have a C background, you

learn that C++ overcomes many of C’s limitations.

When some people attempt to learn C++ (and C), even if they

are programmers in other computer languages, they find that

C++ can be cryptic and difficult to understand. This does not have

to be the case. When taught to write clear and concise C++ code in

an order that builds on fundamental programming concepts,

Chapter 1 ♦ Welcome to C++

14

programmers find that C++ is no more difficult to learn or use than

any other programming language. Actually, after you start using it,

C++’s modularity makes it even easier to use than most other

languages. Once you master the programming elements this book

teaches you, you will be ready for the advanced power for which

C++ was designed—object-oriented programming (OOP). The last

chapter of this book, “Introduction to Object-Oriented Program-

ming,” offers you the springboard to move to this exciting way of

writing programs.

Even if you’ve never programmed a computer before, you will

soon understand that programming in C++ is rewarding. Becoming

an expert programmer in C++—or in any other computer lan-

guage—takes time and dedication. Nevertheless, you can start

writing simple programs with little effort. After you learn the

fundamentals of C++ programming, you can build on what you

learn and hone your skills as you write more powerful programs.

You also might see new uses for your computer and develop

programs others can use.

The importance of C++ cannot be overemphasized. Over the

years, several programming languages were designed to be “the

only programming language you would ever need.” PL/I was

heralded as such in the early 1960s. It turned out to be so large and

took so many system resources that it simply became another

language programmers used, along with COBOL, FORTRAN, and

many others. In the mid-1970s, Pascal was developed for smaller

computers. Microcomputers had just been invented, and the Pascal

language was small enough to fit in their limited memory space

while still offering advantages over many other languages. Pascal

became popular and is still used often today, but it never became the
answer for all programming tasks, and it failed at being “the only

programming language you would ever need.”

When the mass computer markets became familiar with C in

the late 1970s, C also was promoted as “the only programming

language you would ever need.” What has surprised so many

skeptics (including this author) is that C has practically fulfilled this

promise! An incredible number of programming shops have con-

verted to C. The appeal of C’s efficiency, combined with its portabil-

ity among computers, makes it the language of choice. Most of

15

EXAMPLE
C++ By

The UNIX operating
system was written
almost entirely in C.

today’s familiar spreadsheets, databases, and word processors are

written in C. Now that C++ has improved on C, programmers are

retooling their minds to think in C++ as well.

The programmer help-wanted ads seek more and more C++

programmers every day. By learning this popular language, you

will be learning the latest direction of programming and keeping

your skills current with the market. You have taken the first step:

with this book, you learn the C++ language particulars as well as

many programming tips to use and pitfalls to avoid. This book

attempts to teach you to be not just a C++ programmer, but a better

programmer by applying the structured, long-term programming

habits that professionals require in today’s business and industry.

The Background of C++
Before you jump into C++, you might find it helpful to know a

little about the evolution of the C++ programming language. C++ is

so deeply rooted in C that you should first see where C began. Bell

Labs first developed the C programming language in the early

1970s, primarily so Bell programmers could write their UNIX oper-

ating system for a new DEC (Digital Equipment Corporation) com-

puter. Until that time, operating systems were written in assembly

language, which is tedious, time-consuming, and difficult to main-

tain. The Bell Labs people knew they needed a higher-level pro-

gramming language to implement their project quicker and create

code that was easier to maintain.

Because other high-level languages at the time (COBOL, FOR-

TRAN, PL/I, and Algol) were too slow for an operating system’s

code, the Bell Labs programmers decided to write their own lan-

guage. They based their new language on Algol and BCPL. Algol is

still used in the European markets, but is not used much in America.

BCPL strongly influenced C, although it did not offer the various

data types that the makers of C required. After a few versions, these

Bell programmers developed a language that met their goals well. C

is efficient (it is sometimes called a high, low-level language due to

its speed of execution), flexible, and contains the proper language

elements that enable it to be maintained over time.

Chapter 1 ♦ Welcome to C++

16

In the 1980s, Bjourn Stroustrup, working for AT&T, took the C

language to its next progression. Mr. Stroustrup added features to

compensate for some of the pitfalls C allowed and changed the way

programmers view programs by adding object-orientation to the

language. The object-orientation aspect of programming started in

other languages, such as Smalltalk. Mr. Stroustrup realized that C++

programmers needed the flexibility and modularity offered by a

true OOP programming language.

C++ Compared with Other
Languages

If you have programmed before, you should understand a little

about how C++ differs from other programming languages on the

market. C++ is efficient and has much stronger typing than its C

predecessor. C is known as a weakly typed language; variable data

types do not necessarily have to hold the same type of data. (Func-

tion prototyping and type casting help to alleviate this problem.)

For example, if you declare an integer variable and decide to

put a character value in it, C enables you to do so. The data might not

be in the format you expect, but C does its best. This is much different

from stronger-typed languages such as COBOL and Pascal.

If this discussion seems a little over your head at this point,

relax. The upcoming chapters will elaborate on these topics and

provide many examples.

C++ is a small, block-structured programming language. It has

fewer than 46 keywords. To compensate for its small vocabulary,

C++ has one of the largest assortment of operators such as +, -, and &&

(second only to APL). The large number of operators in C++ might

tempt programmers to write cryptic programs that have only a

small amount of code. As you learn throughout this book, however,

you will find that making the program more readable is more

important than saving some bytes. This book teaches you how to

use the C++ operators to their fullest extent, while maintaining

readable programs.

C++’s large number of operators (almost equal to the number

of keywords) requires a more judicious use of an operator precedence

C++ requires more
stringent data-type
checking than
does C.

17

EXAMPLE
C++ By

table. Appendix D, “C++ Precedence Table,” includes the C++

operator precedence table. Unlike most other languages that have

only four or five levels of precedence, C++ has 15. As you learn C++,

you have to master each of these 15 levels. This is not as difficult as

it sounds, but its importance cannot be overstated.

C++ also has no input or output statements. You might want to

read that sentence again! C++ has no commands that perform input

or output. This is one of the most important reasons why C++ is

available on so many different computers. The I/O (input/output)

statements of most languages tie those languages to specific hard-

ware. BASIC, for instance, has almost twenty I/O commands—

some of which write to the screen, to the printer, to a modem, and so

forth. If you write a BASIC program for a microcomputer, chances

are good that it cannot run on a mainframe without considerable

modification.

C++’s input and output are performed through the abundant

use of operators and function calls. With every C++ compiler comes

a library of standard I/O functions. I/O functions are hardware
independent, because they work on any device and on any computer

that conform to the AT&T C++ standard.

To master C++ completely, you have to be more aware of your

computer’s hardware than most other languages would require you

to be. You certainly do not have to be a hardware expert, but

understanding the internal data representation makes C++ much

more usable and meaningful.

It also helps if you can become familiar with binary and

hexadecimal numbers. You might want to read Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review,” for a

tutorial on these topics before you start to learn the C++ language.

If you do not want to learn these topics, you can still become a good

C++ programmer, but knowing what goes on “under the hood”

makes C++ more meaningful to you as you learn it.

C++ and Microcomputers
C was a relatively unknown language until it was placed on the

microcomputer. With the invention and growth of the microcom-

puter, C blossomed into a worldwide computer language. C++

Chapter 1 ♦ Welcome to C++

18

extends that use on smaller computers. Most of readers of C++ By
Example are probably working on a microcomputer-based C++

system. If you are new to computers, this section will help you learn

how microcomputers were developed.

In the 1970s, NASA created the microchip, a tiny wafer of sili-

con that occupies a space smaller than a postage stamp. Computer

components were placed on these microchips, hence computers

required much less space than before. NASA produced these

smaller computers in response to their need to send rocket ships to

the moon with on-board computers. The computers on Earth could

not provide split-second accuracy for rockets because radio waves

took several seconds to travel between the Earth and the moon.

Through development, these microchips became small enough so

the computers could travel with a rocket and safely compute the

rocket’s trajectory.

The space program was not the only beneficiary of computer

miniaturization. Because microchips became the heart of the mi-
crocomputer, computers could now fit on desktops. These micro-

computers cost much less than their larger counterparts, so many

people started buying them. Thus, the home and small-business

computer market was born.

Today, microcomputers are typically called PCs from the wide-

spread use of the original IBM PC. The early PCs did not have the

memory capacity of the large computers used by government and

big business. Nevertheless, PC owners still needed a way to pro-

gram these machines. BASIC was the first programming language

used on PCs. Over the years, many other languages were ported

from larger computers to the PC. However, no language was as

successful as C in becoming the worldwide standard programming

language. C++ seems to be the next standard.

Before diving into C++, you might take a few moments to

familiarize yourself with some of the hardware and software com-

ponents of your PC. The next section, “An Overview of Your

Computer,” introduces you to computer components that C++

interacts with, such as the operating system, memory, disks, and

I/O devices. If you are already familiar with your computer’s

hardware and software, you might want to skip to Chapter 2, “What

Is a Program?,” and begin using C++.

19

EXAMPLE
C++ By

An Overview of Your
Computer

Your computer system consists of two parts: hardware and

software. The hardware consists of all the physical parts of the

machine. Hardware has been defined as “anything you can kick.”

Although this definition is coarse, it illustrates that your computer’s

hardware consists of the physical components of your PC. The

software is everything else. Software comprises the programs and

data that interact with your hardware. The C++ language is an

example of software. You can use C++ to create even more software

programs and data.

Hardware

Figure 1.1 shows you a typical PC system. Before using C++,

you should have a general understanding of what hardware is and

how your hardware components work together.

System Unit

Keyboard
Mouse Printer

Modem

Monitor

Figure 1.1. A typical PC system.

Disk Drives

Chapter 1 ♦ Welcome to C++

20

The System Unit and Memory

The system unit is the large, box-shaped component of the

computer. This unit houses the PC’s microprocessor. You might

hear the microprocessor called the CPU, or central processing unit.
The CPU acts like a traffic cop, directing the flow of information

throughout your computer system. The CPU is analogous also to the

human brain. When you use a computer, you are actually interact-

ing with its CPU. All the other hardware exists so the CPU can send

information to you (through the monitor or the printer), and you can

give instructions to the CPU (through the keyboard or the mouse).

The CPU also houses the computer’s internal memory. Al-

though the memory has several names, it is commonly referred to as

RAM (random-access memory). RAM is where the CPU looks for

software and data. When you run a C++ program, for example, you

are instructing your computer’s CPU to look in RAM for that

program and carry out its instructions. C++ uses RAM space when

it is loaded.

RAM is used for many things and is one of the most important

components of your computer’s hardware. Without RAM, your

computer would have no place for its instructions and data. The

amount of RAM can also affect the computer’s speed. In general, the

more RAM your computer has, the more work it can do and the

faster it can process data.

The amount of RAM is measured by the number of characters

it can hold. PCs generally hold approximately 640,000 characters of

RAM. A character in computer terminology is called a byte, and a

byte can be a letter, a number, or a special character such as an

exclamation point or a question mark. If your computer has 640,000

bytes of RAM, it can hold a total of 640,000 characters.

All the zeros following RAM measurements can become cum-

bersome. You often see the shortcut notation K (which comes from

the metric system’s kilo, meaning 1000) in place of the last three

zeros. In computer terms, K means exactly 1024 bytes; but this

number is usually rounded to 1000 to make it easier to remember.

Therefore, 640K represents approximately 640,000 bytes of RAM.

For more information, see the sidebar titled “The Power of Two.”

The limitations of RAM are similar to the limitations of audio

cassette tapes. If a cassette is manufactured to hold 60 minutes of

A byte is a single
character of memory.

21

EXAMPLE
C++ By

music, it cannot hold 75 minutes of music. Likewise, the total

number of characters that compose your program, the C++ data, and

your computer’s system programs cannot exceed the RAM’s limit

(unless you save some of the characters to disk).

You want as much RAM as possible to hold C++, data, and the

system programs. Generally, 640K is ample room for anything you

might want to do in C++. Computer RAM is relatively inexpensive,

so if your computer has less than 640K bytes of memory, you should

consider purchasing additional memory to increase the total RAM

to 640K. You can put more than 640K in most PCs. There are two

types of additional RAM: extended memory and expanded memory

(they both offer memory capacity greater than 640K). You can access

this extra RAM with some C++ systems, but most beginning C++

programmers have no need to worry about RAM beyond 640K.

The Power of Two

Although K means approximately 1000 bytes of memory, K

equates to 1024. Computers function using on and off states of

electricity. These are called binary states. At the computer’s

lowest level, it does nothing more than turn electricity on and

off with many millions of switches called transistors. Because

these switches have two possibilities, the total number of states

of these switches—and thus the total number of states of

electricity—equals a number that is a power of 2.

The closest power of 2 to 1000 is 1024 (2 to the 10th power). The

inventors of computers designed memory so that it is always

added in kilobytes, or multiples of 1024 bytes at a time. There-

fore, if you add 128K of RAM to a computer, you are actually

adding a total of 131,072 bytes of RAM (128 times 1024 equals

131,072).

Because K actually means more than 1000, you always have a

little more memory than you bargained for! Even though your

computer might be rated at 640K, it actually holds more than

640,000 bytes (655,360 to be exact). See Appendix A, “Memory

Addressing, Binary, and Hexadecimal Review,” for a more

detailed discussion of memory.

Chapter 1 ♦ Welcome to C++

22

The computer stores C++ programs to RAM as you write them.

If you have used a word processor before, you have used RAM. As

you type words in your word-processed documents, your words

appear on the video screen and also go to RAM for storage.

Despite its importance, RAM is only one type of memory in

your computer. RAM is volatile; when you turn the computer off, all

RAM is erased. Therefore, you must store the contents of RAM to a

nonvolatile, more permanent memory device (such as a disk) before

you turn off your computer. Otherwise, you lose your work.

Disk Storage

A disk is another type of computer memory, sometimes called

external memory. Disk storage is nonvolatile. When you turn off your

computer, the disk’s contents do not go away. This is important.

After typing a long C++ program in RAM, you do not want to retype

the same program every time you turn your computer back on.

Therefore, after creating a C++ program, you save the program to

disk, where it remains until you’re ready to retrieve it again.

Disk storage differs from RAM in ways other than volatility.

Disk storage cannot be processed by the CPU. If you have a program

or data on disk that you want to use, you must transfer it from the

disk to RAM. This is the only way the CPU can work with the

program or data. Luckily, most disks hold many times more data

than the RAM’s 640K. Therefore, if you fill up RAM, you can store

its contents on disk and continue working. As RAM continues to fill

up, you or your C++ program can keep storing the contents of RAM

to the disk.

This process might sound complicated, but you have only to

understand that data must be transferred to RAM before your

computer can process it, and saved to disk before you shut your

computer off. Most the time, a C++ program runs in RAM and

retrieves data from the disk as it needs it. In Chapter 30, “Sequential

Files,” you learn that working with disk files is not difficult.

There are two types of disks: hard disks and floppy disks. Hard

disks (sometimes called fixed disks) hold much more data and are

many times faster to work with than floppy disks. Most of your C++

programs and data should be stored on your hard disk. Floppy disks

23

EXAMPLE
C++ By

are good for backing up hard disks, and for transferring data and

programs from one computer to another. (These removable floppy

disks are often called diskettes.) Figure 1.2 shows two common sizes,

the 5 1/4-inch disk and the 3 1/2-inch disk. These disks can hold

from 360K to 1.4 million bytes of data.

Write-protect notch

Write-protect notch

Figure 1.2. 5 1/4-inch disk and 3 1/2-inch disk.

Before using a new box of disks, you have to format them

(unless you buy disks that are already formatted). Formatting

prepares the disks for use on your computer by writing a pattern of

paths, called tracks, where your data and programs are stored. Refer

to the operating system instruction manual for the correct format-

ting procedure.

Disk drives house the disks in your computer. Usually, the disk

drives are stored in your system unit. The hard disk is sealed inside

the hard disk drive, and you never remove it (except for repairs). In

general, the floppy disk drives also are contained in the system unit,

but you insert and remove these disks manually.

Disk drives have names. The computer’s first floppy disk drive

is called drive A. The second floppy disk drive, if you have one, is

called drive B. The first hard disk (many computers have only one)

is called drive C. If you have more than one hard disk, or if your hard

disk is logically divided into more than one, the others are named

drive D, drive E, and so on.

Label

Insert this side into drive

Insert this side into drive

Label

Chapter 1 ♦ Welcome to C++

24

Disk size is measured in bytes, just as RAM is. Disks can hold

many millions of bytes of data. A 60-million-byte hard disk is

common. In computer terminology, a million bytes is called a

megabyte, or M. Therefore, if you have a 60-megabyte hard disk, it

can hold approximately 60 million characters of data before it runs

out of space.

The Monitor

The television-like screen is called the monitor. Sometimes the

monitor is called the CRT (which stands for the primary component

of the monitor, the cathode-ray tube). The monitor is one place where

the output of the computer can be sent. When you want to look at a

list of names and addresses, you could write a C++ program to list

the information on the monitor.

The advantage of screen output over printing is that screen

output is faster and does not waste paper. Screen output, however,

is not permanent. When text is scrolled off-screen (displaced by

additional text coming on-screen), it is gone and you might not

always be able to see it again.

All monitors have a cursor, which is a character such as a

blinking underline or a rectangle. The cursor moves when you type

letters on-screen, and always indicates the location of the next

character to be typed.

Monitors that can display pictures are called graphics monitors.
Most PC monitors are capable of displaying graphics and text, but

some can display only text. If your monitor cannot display colors, it

is called a monochrome monitor.

Your monitor plugs into a display adapter located in your system

unit. The display adapter determines the amount of resolution and

number of possible on-screen colors. Resolution refers to the number

of row and column intersections. The higher the resolution, the more

rows and columns are present on your screen and the sharper your

text and graphics appear. Some common display adapters are

MCGA, CGA, EGA, and VGA.

25

EXAMPLE
C++ By

The Printer

The printer provides a more permanent way of recording your

computer’s results. It is the “typewriter” of the computer. Your

printer can print C++ program output to paper. Generally, you can

print anything that appears on your screen. You can use your printer

to print checks and envelopes too, because most types of paper work

with computer printers.

The two most common PC printers are the dot-matrix printer

and the laser printer. A dot-matrix printer is inexpensive, fast, and

uses a series of small dots to represent printed text and graphics. A

laser printer is faster than a dot-matrix, and its output is much

sharper because a laser beam burns toner ink into the paper. For

many people, a dot-matrix printer provides all the speed and quality

they need for most applications. C++ can send output to either type

of printer.

The Keyboard

Figure 1.3 shows a typical PC keyboard. Most the keys are the

same as those on a standard typewriter. The letter and number keys

in the center of the keyboard produce their indicated characters on-

screen. If you want to type an uppercase letter, be sure to press one

of the Shift keys before typing the letter. Pressing the CapsLock key

shifts the keyboard to an uppercase mode. If you want to type one

of the special characters above a number, however, you must do so

with the Shift key. For instance, to type the percent sign (%), you

would press Shift-5.

Like the Shift keys, the Alt and Ctrl keys can be used with some

other keys. Some C++ programs require that you press Alt or Ctrl

before pressing another key. For instance, if your C++ program

prompts you to press Alt-F, you should press the Alt key, then press

F while still holding down Alt, then release both keys. Do not hold

them both down for long, however, or the computer keeps repeating

your keystrokes as if you typed them more than once.

The key marked Esc is called the escape key. In many C++

programs, you can press Esc to “escape,” or exit from, something

you started and then wanted to stop. For example, if you prompt

your C++ compiler for help and you no longer need the help

Chapter 1 ♦ Welcome to C++

26

message, you can press Esc to remove the help message from the

screen.

SpacebarShiftAltFunction keys ShiftSlash (/)

EnterControlEscape Backslash (\) Backspace

SpacebarShiftAltFunction keys ShiftSlash (/)

ControlTab Backslash (\)Enter Backspace Escape

Tab

Escape Function keys Backslash (\)Backspace

EnterShiftSpacebarControlTab
Slash (/)AltShift

Figure 1.3. The various PC keyboards.

Numeric keypad

Numeric keypad

Numeric keypad

27

EXAMPLE
C++ By

The group of numbers and arrows on the far right of the

keyboard is called the numeric keypad. People familiar with a 10-key

adding machine usually prefer to type numbers from the keypad

rather than from the top row of the alphabetic key section. The

numbers on the keypad work only when you press the NumLock

key. If you press NumLock a second time, you disable these number

keys and make the arrow keys work again. To prevent confusion,

many keyboards have separate arrow keys and a keypad used solely

for numbers.

The arrows help you move the cursor from one area of the

screen to another. To move the cursor toward the top of the screen,

you have to press the up arrow continuously. To move the cursor to

the right, you press the right-arrow, and so on. Do not confuse the

Backspace key with the left-arrow. Pressing Backspace moves the

cursor backward one character at a time—erasing everything as it

moves. The left-arrow simply moves the cursor backward, without

erasing.

The keys marked Insert and Delete (Ins and Del on some

keyboards) are useful for editing. Your C++ program editor prob-

ably takes advantage of these two keys. Insert and Delete work on

C++ programs in the same way they work on a word processor’s

text. If you do not have separate keys labeled Insert and Delete, you

probably have to press NumLock and use the keypad key 0 (for

Insert) and period (for Delete).

PgUp and PgDn are the keys to press when you want to scroll

the screen (that is, move your on-screen text either up or down).

Your screen acts like a camera that pans up and down your C++

programs. You can move the screen down your text by pressing

PgDn, and up by pressing PgUp. (Like Insert and Delete, you might

have to use the keypad for these operations.)

The keys labeled F1 through F12 (some keyboards go only to

F10) are called function keys. The function keys are located either

across the top of the alphabetic section or to the left of it. These keys

perform an advanced function, and when you press one of them,

you usually want to issue a complex command, such as searching for

a specific word in a program. The function keys in your C++

program, however, do not necessarily produce the same results as

they might in another program, such as a word processor. In other

words, function keys are application-specific.

Chapter 1 ♦ Welcome to C++

28

CAUTION: Computer keyboards have a key for number 1, so

do not substitute the lowercase l to represent the number 1, as

you might on a typewriter. To C++, a 1 is different from the

letter l. You should be careful also to use 0 when you mean zero,

and O when you want the uppercase letter O.

The Mouse

The mouse is a relatively new input device. The mouse moves

the cursor to any on-screen location. If you have never used a mouse

before, you should take a little time to become skillful in moving the

cursor with it. Your C++ editor (described in Chapter 2, “What is a

Program?”) might use the mouse for selecting commands from its

menus.

Mouse devices have two or three buttons. Most of the time,

pressing the third button produces the same results as simulta-

neously pressing both keys on a two-button mouse.

The Modem

A PC modem enables your PC to communicate with other

computers over telephone lines. Some modems, called external
modems, sit in a box outside your computer. Internal modems reside

inside the system unit. It does not matter which one you have,

because they operate identically.

Some people have modems so they can share data between

their computer and that of a long-distance friend or off-site co-

worker. You can write programs in C++ that communicate with

your modem.

A modem can be
used to communi-
cate between two
distant computers.

29

EXAMPLE
C++ By

A Modem by Any Other Name...

The term digital computer comes from the fact that your com-

puter operates on binary (on and off) digital impulses of

electricity. These digital states of electricity are perfect for your

computer’s equipment, but they cannot be sent over normal

telephone lines. Telephone signals are called analog signals,

which are much different from the binary digital signals in

your PC.

Therefore, before your computer can transmit data over a

telephone line, the information must be modulated (converted)

to analog signals. The receiving computer must have a way to

demodulate (convert back) those signals to digital.

The modem is the means by which computer signals are

modulated and demodulated from digital to analog and vice

versa. Thus, the name of the device that modulates and demodu-

lates these signals is modem.

Software

No matter how fast, large, and powerful your computer’s

hardware is, its software determines what work is done and how the

computer does it. Software is to a computer what music is to a stereo

system. You store software on the computer’s disk and load it in

your computer’s memory when you are ready to process the soft-

ware, just as you store music on a tape and play it when you want

to hear music.

Programs and Data

No doubt you have heard the phrase, data processing. This is

what computers actually do: they take data and manipulate it into

Chapter 1 ♦ Welcome to C++

30

meaningful output. The meaningful output is called information.
Figure 1.4 shows the input-process-output model, which is the foun-

dation of everything that happens in your computer.

Figure 1.4. Data processing at its most elementary level.

In Chapter 2, “What Is a Program?,” you learn the mechanics of

programs. For now, you should know that the programs you write

in C++ process the data that you input in the programs. Both data

and programs compose the software. The hardware acts as a vehicle

to gather the input and produce the output. Without software,

computers would be worthless, just as an expensive stereo would be

useless without some way of playing music so you can hear it.

The input comes from input devices, such as keyboards, mo-

dems, and disk drives. The CPU processes the input and sends the

results to the output devices, such as the printer and the monitor. A

C++ payroll program might receive its input (the hours worked)

from the keyboard. It would instruct the CPU to calculate the payroll

amounts for each employee in the disk files. After processing the

payroll, the program could print the checks.

MS-DOS

MS-DOS (Microsoft disk operating system) is a system that lets

your C++ programs interact with hardware. MS-DOS (commonly

called DOS) is always loaded into RAM when you turn on your

computer. DOS controls more than just the disks; DOS is there so

your programs can communicate with all the computer’s hardware,

including the monitor, keyboard, and printer.

Figure 1.5 illustrates the concept of DOS as the “go-between”

with your computer’s hardware and software. Because DOS under-

stands how to control every device hooked to your computer, it

stays in RAM and waits for a hardware request. For instance,

printing the words “C++ is fun!” on your printer takes many

computer instructions. However, you do not have to worry about all

31

EXAMPLE
C++ By

those instructions. When your C++ program wants to print some-

thing, it tells DOS to print it. DOS always knows how to send

information to your printer, so it takes your C++ program requests

and does the work of routing that data to the printer.

Figure 1.5. DOS interfaces between hardware and software.

Many people program computers for years and never take the

time to learn why DOS is there. You do not have to be an expert in

DOS, or even know more than a few simple DOS commands, to be

proficient with your PC. Nevertheless, DOS does some things that

C++ cannot do, such as formatting disks and copying files to your

disks. As you learn more about the computer, you might see the

need to better understand DOS. For a good introduction to using

DOS, refer to the book MS-DOS 5 QuickStart (Que).

Chapter 1 ♦ Welcome to C++

32

NOTE: As mentioned, DOS always resides in RAM and is

loaded when you start the computer. This is done automati-

cally, so you can use your computer and program in C++

without worrying about how to transfer DOS to RAM. It is

important to remember that DOS always uses some of your

total RAM.

Figure 1.6 shows you the placement of DOS, C++, and your

C++ data area in RAM. This formation is a typical way to represent

RAM—several boxes stacked on top of each other. Each memory

location (each byte) has a unique address, just as everybody’s resi-

dence has a unique address. The first address in memory begins at

0, the second RAM address is 1, and so on until the last RAM

location, many thousands of bytes later.

Figure 1.6. After MS-DOS and a C++ program, there is less RAM for
data.

Your operating system (whether you use MS-DOS, PC DOS,

DR DOS, or UNIX) takes part of the first few thousand bytes of

memory. The amount of RAM that DOS takes varies with each

computer’s configuration. When working in C++, the C++ system

sits on top of DOS, leaving you with the remainder of RAM for your

program and data. This explains why you might have a total of 512K

of RAM and still not have enough memory to run some programs—

DOS is using some of the RAM for itself.

33

EXAMPLE
C++ By

Review Questions
The answers to each chapter’s review questions are in Appen-

dix B, aptly named “Answers to Review Questions.”

1. What is the name of one of the programming languages

from which C was developed?

2. True or false: C++ is known as a “better C.”

3. In what decade was C++ developed?

4. True or false: C++ is too large to fit on many micro-

computers.

5. Which usually holds more data: RAM or the hard disk?

6. What device is needed for your PC to communicate over

telephone lines?

7. Which of the following device types best describes the

mouse?

a. Storage

b. Input

c. Output

d. Processing

8. What key would you press to turn off the numbers on the

numeric keypad?

9. What operating system is written almost entirely in C?

10. Why is RAM considered volatile?

11. True or false: The greater the resolution, the better the

appearance of graphics on-screen.

12. How many bytes is 512K?

13. What does modem stand for?

Chapter 1 ♦ Welcome to C++

34

Summary
C++ is an efficient, powerful, and popular programming lan-

guage. Whether you are new to C++ or an experienced programmer,

C++ is all you need to program the computer to work the way you

want it to.

This chapter presented the background of C++ by walking you

through the history of its predecessor, the C programming lan-

guage. C++ adds to C and offers some of the most advanced

programming language commands that exist today.

The rest of this book is devoted to teaching you C++. Chapter

2, “What Is a Program?,” explains program concepts so you can

begin to write C++ programs.

35

EXAMPLE
C++ By

2

What Is a
Program?

This chapter introduces you to fundamental programming con-

cepts. The task of programming computers has been described as

rewarding, challenging, easy, difficult, fast, and slow. Actually, it is

a combination of all these descriptions. Writing complex programs

to solve advanced problems can be frustrating and time-consuming,

but you can have fun along the way, especially with the rich

assortment of features that C++ has to offer.

This chapter also describes the concept of programming, from

a program’s inception to its execution on your computer. The most

difficult part of programming is breaking the problem into logical

steps that the computer can execute. Before you finish this chapter,

you will type and execute your first C++ program.

This chapter introduces you to

♦ The concept of programming

♦ The program’s output

♦ Program design

♦ Using an editor

♦ Using a compiler

Chapter 2 ♦ What Is a Program?

36

♦ Typing and running a C++ program

♦ Handling errors

After you complete this chapter, you should be ready to learn

the C++ programming language elements in greater detail.

Computer Programs
Before you can make C++ work for you, you must write a C++

program. You have seen the word program used several times in this

book. The following note defines a program more formally.

NOTE: A program is a list of instructions that tells the computer

to do things.

Keep in mind that computers are only machines. They’re not

smart; in fact, they’re quite the opposite! They don’t do anything

until they are given detailed instructions. A word processor, for

example, is a program somebody wrote—in a language such as

C++—that tells your computer exactly how to behave when you

type words into it.

You are familiar with the concept of programming if you have

ever followed a recipe, which is a “program,” or a list of instructions,

telling you how to prepare a certain dish. A good recipe lists these

instructions in their proper order and with enough description so

you can carry out the directions successfully, without assuming

anything.

If you want your computer to help with your budget, keep

track of names and addresses, or compute your gas mileage, it needs

a program to tell it how to do those things. You can supply that

program in two ways: buy a program somebody else wrote, or write

the program yourself.

Writing the program yourself has a big advantage for many

applications: The program does exactly what you want it to do. If you

buy one that is already written, you have to adapt your needs to

those of the author of the program. This is where C++ comes into

37

EXAMPLE
C++ By

play. With the C++ programming language (and a little studying),

you can make your computer carry out your own tasks precisely.

To give C++ programming instructions to your computer, you

need an editor and a C++ compiler. An editor is similar to a word

processor; it is a program that enables you to type a C++ program

into memory, make changes (such as moving, copying, inserting,

and deleting text), and save the program more permanently in a disk

file. After you use the editor to type the program, you must compile

it before you can run it.

The C++ programming language is called a compiled language.

You cannot write a C++ program and run it on your computer unless

you have a C++ compiler. This compiler takes your C++ language

instructions and translates them into a form that your computer can

read. A C++ compiler is the tool your computer uses to understand

the C++ language instructions in your programs. Many compilers

come with their own built-in editor. If yours does, you probably feel

that your C++ programming is more integrated.

To some beginning programmers, the process of compiling a

program before running it might seem like an added and meaning-

less step. If you know the BASIC programming language, you might

not have heard of a compiler or understand the need for one. That’s

because BASIC (also APL and some versions of other computer

languages) is not a compiled language, but an interpreted language.

Instead of translating the entire program into machine-readable

form (as a compiler does in one step), an interpreter translates each

program instruction—then executes it—before translating the next

one. The difference between the two is subtle, but the bottom line is

not: Compilers produce much more efficient and faster-running

programs than interpreters do. This seemingly extra step of compil-

ing is worth the effort (and with today’s compilers, there is not much

extra effort needed).

Because computers are machines that do not think, the instruc-

tions you write in C++ must be detailed. You cannot assume your

computer understands what to do if some instruction is not in your

program, or if you write an instruction that does not conform to C++

language requirements.

After you write and compile a C++ program, you have to run,
or execute, it. Otherwise, your computer would not know that you

Chapter 2 ♦ What Is a Program?

38

want it to follow the instructions in the program. Just as a cook must

follow a recipe’s instructions before making the dish, so too your

computer must execute a program’s instructions before it can ac-

complish what you want it to do. When you run a program, you are

telling the computer to carry out your instructions.

The Program and Its Output

While you are programming, remember the difference be-

tween a program and its output. Your program contains only

the C++ instructions that you write, but the computer follows

your instructions only after you run the program.

Throughout this book, you often see a program listing (that is,

the C++ instructions in the program) followed by the results

that occur when you run the program. The results are the

output of the program, and they go to an output device such as

the screen, the printer, or a disk file.

Program Design
You must plan your programs before typing them into your

C++ editor. When builders construct houses, for example, they don’t

immediately grab their lumber and tools and start building! They

first find out what the owner of the house wants, then they draw up

the plans, order the materials, gather the workers, and finally start

building the house.

The hardest part of writing a program is breaking it into logical

steps that the computer can follow. Learning the C++ language is a

requirement, but it is not the only thing to consider. There is a

method of writing programs, a formal procedure you should learn,

that makes your programming job easier. To write a program you

should:

1. Define the problem to be solved with the computer.

2. Design the program’s output (what the user should see).

Design your
programs before you
type them.

39

EXAMPLE
C++ By

3. Break the problem into logical steps to achieve this output.

4. Write the program (using the editor).

5. Compile the program.

6. Test the program to assure it performs as you expect.

As you can see from this procedure, the typing of your program

occurs toward the end of your programming. This is important,

because you first have to plan how to tell the computer how to

perform each task.

Your computer can perform instructions only step-by-step.

You must assume that your computer has no previous knowledge

of the problem, so it is up to you to provide that knowledge, which,

after all, is what a good recipe does. It would be a useless recipe for

a cake if all it said was: “Bake the cake.” Why? Because this assumes
too much on the part of the baker. Even if you write the recipe in

step-by-step fashion, proper care must be taken (through planning)

to be sure the steps are in sequence. Wouldn’t it be foolish also to

instruct a baker to put the ingredients into the oven before stirring

them?

This book adheres to the preceding programming procedure

throughout the book, as each program appears. Before you see the

actual program, the thought process required to write the program

appears. The goals of the program are presented first, then these

goals are broken into logical steps, and finally the program is

written.

Designing the program in advance guarantees that the entire

program structure is more accurate and keeps you from having to

make changes later. A builder, for example, knows that a room is

much harder to add after the house is built. If you do not properly

plan every step, it is going to take you longer to create the final,

working program. It is always more difficult to make major changes

after you write your program.

Planning and developing according to these six steps becomes

much more important as you write longer and more complicated

programs. Throughout this book, you learn helpful tips for program

design. Now it’s time to launch into C++, so you can experience the

satisfaction of typing your own program and seeing it run.

Chapter 2 ♦ What Is a Program?

40

Using a Program Editor
The instructions in your C++ program are called the source code.

You type source code into your computer’s memory by using your

program editor. After you type your C++ source code (your pro-

gram), you should save it to a disk file before compiling and running

the program. Most C++ compilers expect C++ source programs to be

stored in files with names ending in .CPP. For example, the follow-

ing are valid filenames for most C++ compilers:

MYPROG.CPP

SALESACT.CPP

EMPLYEE.CPP

ACCREC.CPP

Many C++ compilers include a built-in editor. Two of the most

popular C++ compilers (both conform to the AT&T C++ 2.1 stan-

dard and include their own extended language elements) are

Borland’s C++ and Microsoft’s C/C++ 7.0 compilers. These two

programs run in fully integrated environments that relieve the

programmer from having to worry about finding a separate pro-

gram editor or learning many compiler-specific commands.

Figure 2.1 shows a Borland C++ screen. Across the top of the

screen (as with Microsoft C/C++ 7.0) is a menu that offers pull-

down editing, compiling, and running options. The middle of the

screen contains the body of the program editor, and this is the area

where the program goes. From this screen, you type, edit, compile,

and run your C++ source programs. Without an integrated environ-
ment, you would have to start an editor, type your program, save the

program to disk, exit the editor, run the compiler, and only then run

the compiled program from the operating system. With Borland’s

C++ and Microsoft C/C++ 7.0, you simply type the program into the

editor, then—in one step—you select the proper menu option that

compiles and runs the program.

41

EXAMPLE
C++ By

Figure 2.1. Borland Turbo C++’s integrated environment.

If you do not own an integrated environment such as Borland

C++ or Microsoft C/C++, you have to find a program editor. Word

processors can act as editors, but you have to learn how to save and

load files in a true ASCII text format. It is often easier to use an editor

than it is to make a word processor work like one.

On PCs, DOS Version 5 comes with a nice, full-screen editor

called EDIT. It offers menu-driven commands and full cursor-

control capabilities. EDIT is a simple program to use, and is a good

beginner’s program editor. Refer to your DOS manual or a good

book on DOS, such as MS-DOS 5 QuickStart (Que), for more infor-

mation on this program editor.

Another editor, called EDLIN, is available for earlier versions

of DOS. EDLIN is a line editor that does not allow full-screen cursor

control, and it requires you to learn some cryptic commands. The

advantage to learning EDLIN is that it is always included with all

PCs that use a release of DOS prior to Version 5.

Chapter 2 ♦ What Is a Program?

42

If you use a computer other than a PC, such as a UNIX-based

minicomputer or a mainframe, you have to determine which editors

are available. Most UNIX systems include the vi editor. If you

program on a UNIX operating system, it would be worth your time

to learn vi. It is to UNIX what EDLIN is to PC operating systems, and

is available on almost every UNIX computer in the world.

Mainframe users have other editors available, such as the ISPF

editor. You might have to check with your systems department to

find an editor accessible from your account.

NOTE: Because this book teaches the generic AT&T C++

standard programming language, no attempt is made to tie in

editor or compiler commands—there are too many on the

market to cover them all in one book. As long as you write

programs specific to the AT&T C++, the tools you use to edit,

compile, and run those programs are secondary; your goal of

good programming is the result of whatever applications you

produce.

Using a C++ Compiler
After you type and edit your C++ program’s source code, you

have to compile the program. The process you use to compile your

program depends on the version of C++ and the computer you are

using. Borland C++ and Microsoft C/C++ users need only press Alt-

R to compile and run their programs. When you compile programs

on most PCs, your compiler eventually produces an executable file

with a name beginning with the same name as the source code, but

ends with an .EXE file extension. For example, if your source

program is named GRADEAVG.CPP, the PC would produce a

compiled file called GRADEAVG.EXE, which you could execute at

the DOS prompt by typing the name gradeavg.

43

EXAMPLE
C++ By

NOTE: Each program in this book contains a comment that

specifies a recommended filename for the source program. You

do not have to follow the file-naming conventions used in this

book; the filenames are only suggestions. If you use a main-

frame, you have to follow the dataset-naming conventions set

up by your system administrator. Each program name in the

sample disk (see the order form at the back of the book) matches

the filenames of the program listings.

UNIX users might have to use the cfront compiler. Most cfront

compilers actually convert C++ code into regular C code. The C code

is then compiled by the system’s C compiler. This produces an

executable file whose name (by default) is A.OUT. You can then run

the A.OUT file from the UNIX prompt. Mainframe users generally

have company-standard procedures for compiling C++ source pro-

grams and storing their results in a test account.

Unlike many other programming languages, your C++ pro-

gram must be routed through a preprocessor before it is compiled.

The preprocessor reads preprocessor directives that you enter in the

program to control the program’s compilation. Your C++ compiler

automatically performs the preprocessor step, so it requires no

additional effort or commands to learn on your part.

You might have to refer to your compiler’s reference manuals

or to your company’s system personnel to learn how to compile

programs for your programming environment. Again, learning the

programming environment is not as critical as learning the C++

language. The compiler is just a way to transform your program

from a source code file to an executable file.

Your program must go through one additional stage after

compiling and before running. It is called the linking, or the link
editing stage. When your program is linked, a program called the

linker supplies needed runtime information to the compiled pro-

gram. You can also combine several compiled programs into one

executable program by linking them. Most of the time, however,

Chapter 2 ♦ What Is a Program?

44

your compiler initiates the link editing stage (this is especially true

with integrated compilers such as Borland C++ and Microsoft C/

C++) and you do not have to worry about the process.

Figure 2.2 shows the steps that your C++ compiler and link

editor perform to produce an executable program.

Figure 2.2. Compiling C++ source code into an executable program.

Running a Sample Program
Before delving into the specifics of the C++ language, you

should take a few moments to become familiar with your editor and

C++ compiler. Starting with the next chapter, “Your First C++

Program,” you should put all your concentration into the C++

programming language and not worry about using a specific editor

or compiling environment.

45

EXAMPLE
C++ By

Therefore, start your editor of choice and type Listing 2.1,

which follows, into your computer. Be as accurate as possible—a

single typing mistake could cause the C++ compiler to generate a

series of errors. You do not have to understand the program’s

content at this point; the goal is to give you practice in using your

editor and compiler.

Listing 2.1. Practicing with the editor.

Comment the program with the program name.
Include the header file iostream.h so the output properly works.
Start of the main() function.

Define the BELL constant, which is the computer’s beep.
Initialize the integer variable ctr to 0.
Define the character array fname to hold 20 elements.
Print to the screen What is your first name?.
Accept a string from the keyboard.
Process a loop while the variable ctr is less than five.

Print the string accepted from the keyboard.
Increment the variable ctr by 1.

Print to the screen the character code that sounds the beep.
Return to the operating system.

// Filename: C2FIRST.CPP

// Requests a name, prints the name five times, and rings a bell.

#include <iostream.h>

main()

{

 const char BELL=’\a’; // Constant that rings the bell

 int ctr=0; // Integer variable to count through loop

 char fname[20]; // Define character array to hold name

 cout << “What is your first name? “; // Prompt the user

 cin >> fname; // Get the name from the keyboard

 while (ctr < 5) // Loop to print the name

Chapter 2 ♦ What Is a Program?

46

 { // exactly five times.

 cout << fname << “\n”;

 ctr++;

 }

 cout << BELL; // Ring the terminal’s bell

 return 0;

}

Be as accurate as possible. In most programming languages—

and especially in C++—the characters you type into a program must

be very accurate. In this sample C++ program, for instance, you see

parentheses, (), brackets, [], and braces, {}, but you cannot use them

interchangeably.

The comments (words following the two slashes, //) to the right

of some lines do not have to end in the same place that you see in the

listing. They can be as long or short as you need them to be.

However, you should familiarize yourself with your editor and

learn to space characters accurately so you can type this program

exactly as shown.

Compile the program and execute it. Granted, the first time you

do this you might have to check your reference manuals or contact

someone who already knows your C++ compiler. Do not worry

about damaging your computer: Nothing you do from the keyboard

can harm the physical computer. The worst thing you can do at this

point is erase portions of your compiler software or change the

compiler’s options—all of which can be easily corrected by reload-

ing the compiler from its original source. (It is only remotely likely

that you would do anything like this, even if you are a beginner.)

Handling Errors
Because you are typing instructions for a machine, you must be

very accurate. If you misspell a word, leave out a quotation mark, or

make another mistake, your C++ compiler informs you with an

error message. In Borland C++ and Microsoft C/C++, the error

probably appears in a separate window, as shown in Figure 2.3. The

most common error is a syntax error, and this usually implies a

misspelled word.

47

EXAMPLE
C++ By

Figure 2.3. The compiler reporting a program error.

When you get an error message (or more than one), you must

return to the program editor and correct the error. If you don’t

understand the error, you might have to check your reference

manual or scour your program’s source code until you find the

offending code line.

Getting the Bugs Out

One of the first computers, owned by the military, refused to

print some important data one day. After its programmers

tried for many hours to find the problem in the program, a

programmer by the name of Grace Hopper decided to check

the printer.

She found a small moth lodged between two important wires.

When she removed the moth, the printer started working

perfectly (although the moth did not have the same luck).

Chapter 2 ♦ What Is a Program?

48

Grace Hopper was an admiral from the Navy and, although

she was responsible for developing many important computer

concepts (she was the author of the original COBOL language),

she might be best known for discovering the first computer

bug.

Ever since Admiral Hopper discovered that moth, errors in

computer programs have been known as computer bugs. When

you test your programs, you might have to debug them—get the

bugs (errors) out by correcting your typing errors or changing

the logic so your program does exactly what you want it to do.

After you have typed your program correctly using the editor

(and you get no compile errors), the program should run properly

by asking for your first name, then printing it on-screen five times.

After it prints your name for the fifth time, you hear the computer’s

bell ring.

This example helps to illustrate the difference between a pro-

gram and its output. You must type the program (or load one from

disk), then run the program to see its output.

Review Questions
The answers to the review questions are in Appendix B,

“Answers to Review Questions.”

1. What is a program?

2. What are the two ways to obtain a program that does what

you want?

3. True or false: Computers can think.

4. What is the difference between a program and its output?

5. What do you use for typing C++ programs into the

computer?

49

EXAMPLE
C++ By

6. What filename extension do all C++ programs have?

7. Why is typing the program one of the last steps in the pro-

gramming process?

8. What does the term debug mean?

9. Why is it important to write programs that are compatible

with the AT&T C++?

10. True or false: You must link a program before compiling it.

Summary
After reading this chapter, you should understand the steps

necessary to write a C++ program. You know that planning makes

writing the program much easier, and that your program’s instruc-

tions produce the output only after you run the program.

You also learned how to use your program editor and compiler.

Some program editors are as powerful as word processors. Now

that you know how to run C++ programs, it is time to start learning

the C++ programming language.

Chapter 2 ♦ What Is a Program?

50

51

EXAMPLE
C++ By

3

Your First C++
Program

This chapter introduces you to some important C++ language

commands and other elements. Before looking at the language more

specifically, many people like to “walk through” a few simple

programs to get an overall feel for what a C++ program involves.

This is done here. The rest of the book covers these commands and

elements more formally.

This chapter introduces the following topics:

♦ An overview of C++ programs and their structure

♦ Variables and literals

♦ Simple math operators

♦ Screen output format

This chapter introduces a few general tools you need to become

familiar with the C++ programming language. The rest of the book

concentrates on more specific areas of the actual language.

Chapter 3 ♦ Your First C++ Program

52

Looking at a C++ Program
Figure 3.1 shows the outline of a typical small C++ program.

No C++ commands are shown in the figure. Although there is much

more to a program than this outline implies, this is the general

format of the beginning examples in this book.

Figure 3.1. A skeleton outline of a simple C++ program.

To acquaint yourself with C++ programs as fast as possible,

you should begin to look at a program in its entirety. The following

is a listing of a simple example C++ program. It doesn’t do much, but

it enables you to see the general format of C++ programming. The

next few sections cover elements from this and other programs. You

might not understand everything in this program, even after finish-

ing the chapter, but it is a good place to start.

// Filename: C3FIRST.CPP

// Initial C++ program that demonstrates the C++ comments

// and shows a few variables and their declarations.

Program goes here

Preprocessor directives
go here

Function name

#include <iostream.h>

main()

{

 .

 .

 .

}

Block

53

EXAMPLE
C++ By

#include <iostream.h>

main()

{

 int i, j; // These three lines declare four variables.

 char c;

 float x;

 i = 4; // i and j are both assigned integer literals.

 j = i + 7;

 c = ‘A’; // All character literals are

 // enclosed in single quotations.

 x = 9.087; // x requires a floating-point value because it

 // was declared as a floating-point variable.

 x = x * 4.5; // Change what was in x with a formula.

 // Sends the values of the variables to the screen.

 cout << i << “, “ << j << “, “ << c << “, “ << x << “\n”;

 return 0; // ALWAYS end programs and functions with return.

 // The 0 returns to the operating system and

 // usually indicates no errors occurred.

}

For now, familiarize yourself with this overall program. See if

you can understand any part or all of it. If you are new to program-

ming, you should know that the computer reads each line of the

program, starting with the first line and working its way down, until

it has completed all the instructions in the program. (Of course, you

first have to compile and link the program, as described in Chap-

ter 2, “What Is a Program?”.)

The output of this program is minimal: It simply displays four

values on-screen after performing some assignments and calcula-

tions of arbitrary values. Just concentrate on the general format at

this point.

The Format of a C++ Program

Unlike some other programming languages, such as COBOL,

C++ is a free-form language, meaning that programming statements

C++ is a free-form
language.

Chapter 3 ♦ Your First C++ Program

54

can start in any column of any line. You can insert blank lines in a

program if you want. This sample program is called C3FIRST.CPP

(you can find the name of each program in this book in the first line

of each program listing). It contains several blank lines to help

separate parts of the program. In a simple program such as this, the

separation is not as critical as it might be in a longer, more complex

program.

Generally, spaces in C++ programs are free-form as well. Your

goal should not be to make your programs as compact as possible.

Your goal should be to make your programs as readable as possi-

ble. For example, the C3FIRST.CPP program shown in the previous

section could be rewritten as follows:

// Filename: C3FIRST.CPP Initial C++ program that demonstrates

// the C++ comments and shows a few variables and their

// declarations.

#include <iostream.h>

main(){int i,j;// These three lines declare four variables.

char c;float x;i=4;// i and j are both assigned integer literals.

j=i+7;c=’A’;// All character literals are enclosed in

//single quotations.

x=9.087;//x requires a floating-point value because it was

//declared as a floating-point variable.

x=x*4.5;//Change what was in x with a formula.

//Sends the values of the variables to the screen.

cout<<i<<“, “<<j<<“, “<<c<<“, “<<x<<“\n”;return 0;// ALWAYS

//end programs and functions with return. The 0 returns to

//the operating system and usually indicates no errors occurred.

}

To your C++ compiler, the two programs are exactly the same,

and they produce exactly the same result. However, to people who

have to read the program, the first style is much more readable.

Readability Is the Key

As long as programs do their job and produce correct output,

who cares how well they are written? Even in today’s world of fast

computers and abundant memory and disk space, you should still

55

EXAMPLE
C++ By

care. Even if nobody else ever looks at your C++ program, you might

have to change it at a later date. The more readable you make your

program, the faster you can find what needs changing, and change

it accordingly.

If you work as a programmer for a corporation, you can almost

certainly expect to modify someone else’s source code, and others

will probably modify yours. In programming departments, it is said

that long-term employees write readable programs. Given this new

global economy and all the changes that face business in the years

ahead, companies are seeking programmers who write for the

future. Programs that are straightforward, readable, abundant with

white space (separating lines and spaces), and devoid of hard-to-read

“tricks” that create messy programs are the most desirable.

Use ample white space so you can have separate lines and

spaces throughout your programs. Notice the first few lines of

C3FIRST.CPP start in the first column, but the body of the program

is indented a few spaces. This helps programmers “zero in” on the

important code. When you write programs that contain several

sections (called blocks), your use of white space helps the reader’s

eye follow and recognize the next indented block.

Uppercase Versus Lowercase

Your uppercase and lowercase letters are much more signifi-

cant in C++ than in most other programming languages. You can see

that most of C3FIRST.CPP is in lowercase. The entire C++ language

is in lowercase. For example, you must type the keywords int, char,

and return in programs using lowercase characters. If you use

uppercase letters, your C++ compiler would produce many errors

and refuse to compile the program until you correct the errors.

Appendix E, “Keyword and Function Reference,” shows a list of

every command in the C++ programming language. You can see

that none of the commands have uppercase letters.

Many C++ programmers reserve uppercase characters for

some words and messages sent to the screen, printer, or disk file;

they use lowercase letters for almost everything else. There is,

however, one exception to this rule in Chapter 4, “Variables and

Literals,” dealing with the const keyword.

Use lowercase
abundantly in C++!

Chapter 3 ♦ Your First C++ Program

56

Braces and main()

All C++ programs require the following lines:

main()

{

The statements that follow main() are executed first. The section

of a C++ program that begins with main(), followed by an opening

brace, {, is called the main function. A C++ program is actually a

collection of functions (small sections of code). The function called

main() is always required and always the first function executed.

In the sample program shown here, almost the entire program

is main() because the matching closing brace that follows main()’s

opening brace is at the end of the program. Everything between two

matching braces is called a block. You read more about blocks in

Chapter 16, “Writing C++ Functions.” For now, you only have to

realize that this sample program contains just one function, main(),

and the entire function is a single block because there is only one

pair of braces.

All executable C++ statements must have a semicolon (;) after

them so C++ is aware that the statement is ending. Because the

computer ignores all comments, do not put semicolons after your

comments. Notice that the lines containing main() and braces do not

end with semicolons either, because these lines simply define the

beginning and ending of the function and are not executed.

As you become better acquainted with C++, you learn when to

include the semicolon and when to leave it off. Many beginning C++

programmers learn quickly when semicolons are required; your

compiler certainly lets you know if you forget to include a semicolon

where one is needed.

Figure 3.2 repeats the sample program shown in Figure 3.1. It

contains additional markings to help acquaint you with these new

terms as well as other items described in the remainder of this

chapter.

All executable C++
statements must
end with a semi-
colon (;).

A C++ block is
enclosed in two
braces.

57

EXAMPLE
C++ By

// Filename: C3FIRST.CPP

// Initial C++ program that demonstrates the C++ comments

// and shows a few variables and their declarations.

#include <iostream.h>

main()

{

 int i, j; // These three lines declare four variables.

 char c;

 float x;

 i = 4; // i and j are both assigned integer literals.

 j = i + 7;

 c = ‘A’; // All character literals are

 // enclosed in single quotations.

 x = 9.087; // x requires a floating-point value because it

 // was declared as a floating-point variable.

 x = x * 4.5; // Change what was in x with a formula.

 // Sends the values of the variables to the screen.

 cout << i << “, “ << j << “, “ << c << “, “ << x << “\n”;

 return 0; // ALWAYS end programs and functions with return.

 // The 0 returns to the operating system and

 // usually indicates no errors occurred.

}End block

Body of program

Variable declarations

Begin block

Comments

Figure 3.2. The parts of the sample program.

Comments in C++

In Chapter 2, “What Is a Program?,” you learned the difference

between a program and its output. Most users of a program do not

see the actual program; they see the output from the execution of the

program’s instructions. Programmers, on the other hand, look at the

program listings, add new routines, change old ones, and update for

advancements in computer equipment.

Preprocessor directive

Chapter 3 ♦ Your First C++ Program

58

As explained earlier, the readability of a program is important

so you and other programmers can look through it easily. Neverthe-

less, no matter how clearly you write C++ programs, you can always

enhance their readability by adding comments throughout.

Comments are messages that you insert in your C++ programs,

explaining what is going on at that point in the program. For

example, if you write a payroll program, you might put a comment

before the check-printing routine that describes what is about to

happen. You never put C++ language statements inside a comment,

because a comment is a message for people—not computers. Your

C++ compiler ignores all comments in every program.

NOTE: C++ comments always begin with a // symbol and end

at the end of the line.

Some programmers choose to comment several lines. Notice in

the sample program, C3FIRST.CPP, that the first three lines are

comment lines. The comments explain the filename and a little about

the program.

Comments also can share lines with other C++ commands. You

can see several comments sharing lines with commands in the

C3FIRST.CPP program. They explain what the individual lines do.

Use abundant comments, but remember who they’re for: people,

not computers. Use comments to help explain your code, but do not

overcomment. For example, even though you might not be familiar

with C++, the following statement is easy: It prints “C++ By Ex-

ample” on-screen.

cout << “C++ By Example”; // Print C++ By Example on-screen.

This comment is redundant and adds nothing to your under-

standing of the line of code. It would be much better, in this case, to

leave out the comment. If you find yourself almost repeating the

C++ code, leave out that particular comment. Not every line of a

C++ program should be commented. Comment only when code

lines need explaining—in English—to the people looking at your

program.

It does not matter if you use uppercase, lowercase, or a mixture

of both in your comments because C++ ignores them. Most C++

Comments tell
people what the
program is doing.

59

EXAMPLE
C++ By

programmers capitalize the first letter of sentences in comments,

just as you would in everyday writing. Use whatever case seems

appropriate for the letters in your message.

C++ can also use C-style comments. These are comments that

begin with /* and end with */. For instance, this line contains a

comment in the C and C++ style:

netpay = grosspay - taxes; /* Compute take-home pay. */

Comment As You Go

Insert your comments as you write your programs. You are

most familiar with your program logic at the time you are

typing the program in the editor. Some people put off adding

comments until after the program is written. More often than

not, however, those comments are never added, or else they are

written halfheartedly.

If you comment as you write your code, you can glance back at

your comments while working on later sections of the pro-

gram—instead of having to decipher the previous code. This

helps you whenever you want to search for something earlier

in the program.

Examples

1. Suppose you want to write a C++ program that produces a

fancy boxed title containing your name with flashing dots

around it (like a marquee). The C++ code to do this might be

difficult to understand. Before such code, you might want to

insert the following comment so others can understand the

code later:

// The following few lines draw a fancy box around

// a name, then display flashing dots around the

// name like a Hollywood movie marquee.

Chapter 3 ♦ Your First C++ Program

60

This would not tell C++ to do anything because a comment

is not a command, but it would make the next few lines of

code more understandable to you and others. The comment

explains in English, for people reading the program, exactly

what the program is getting ready to do.

2. You should also put the disk filename of the program in one

of the first comments. For example, in the C3FIRST.CPP

program shown earlier, the first line is the beginning of a

comment:

// Filename: C3FIRST.CPP

The comment is the first of three lines, but this line tells you

in which disk file the program is stored. Throughout this

book, programs have comments that include a possible

filename under which the program can be stored. They

begin with Cx, where x is the chapter number in which they

appear (for example, C6VARPR.CPP and C10LNIN.CPP).

This method helps you find these programs when they are

discussed in another section of the book.

TIP: It might be a good idea to put your name at the top of a

program in a comment. If people have to modify your program

at a later date, they first might want to consult with you, as the

original programmer, before they change it.

Explaining the Sample
Program

Now that you have an overview of a C++ program, its struc-

ture, and its comments, the rest of this chapter walks you through

the entire sample program. Do not expect to become a C++ expert

just by completing this section—that is what the rest of the book is

for! For now, just sit back and follow this step-by-step description of

the program code.

61

EXAMPLE
C++ By

As described earlier, this sample program contains several

comments. The first three lines of the program are comments:

// Filename: C3FIRST.CPP

// Initial C++ program that demonstrates the C++ comments

// and shows a few variables and their declarations.

This comment lists the filename and explains the purpose of the

program. This is not the only comment in the program; others

appear throughout the code.

The next line beginning with #include is called a preprocessor

directive and is shown here:

#include <iostream.h>

This strange looking statement is not actually a C++ command, but

is a directive that instructs the C++ compiler to load a file from disk

into the middle of the current program. The only purpose for this

discussion is to ensure that the output generated with cout works

properly. Chapter 6, “Preprocessor Directives,” more fully explains

this directive.

The next two lines (following the blank separating line) are

shown here:

main()

{

This begins the main() function. Basically, the main() function’s

opening and closing braces enclose the body of this program and

main()’s instructions that execute. C++ programs often contain more

than one function, but they always contain a function called main().

The main() function does not have to be the first one, but it usually is.

The opening brace begins the first and only block of this program.

When a programmer compiles and runs this program, the

computer looks for main() and starts executing whatever instruction

follows main()’s opening brace. Here are the three lines that follow:

int i, j; // These three lines declare four variables.

char c;

float x;

Chapter 3 ♦ Your First C++ Program

62

These three lines declare variables. A variable declaration describes

variables used in a block of code. Variable declarations describe the

program’s data storage.

A C++ program processes data into meaningful results. All

C++ programs include the following:

♦ Commands

♦ Data

Data comprises variables and literals (sometimes called con-

stants). As the name implies, a variable is data that can change

(become variable) as the program runs. A literal remains the same.

In life, a variable might be your salary. It increases over time (if you

are lucky). A literal would be your first name or social security

number, because each remains with you throughout life and does

not (naturally) change.

Chapter 4, “Variables and Literals,” fully explains these con-

cepts. However, to give you an overview of the sample program’s

elements, the following discussion explains variables and literals in

this program.

C++ enables you to use several kinds of literals. For now, you

simply have to understand that a C++ literal is any number, charac-

ter, word, or phrase. The following are all valid C++ literals:

5.6

-45

‘Q’

“Mary”

18.67643

0.0

As you can see, some literals are numeric and some are

character-based. The single and double quotation marks around

two of the literals, however, are not part of the actual literals. A

single-character literal requires single quotation marks around it; a

string of characters, such as “Mary”, requires double quotation marks.

63

EXAMPLE
C++ By

Look for the literals in the sample program. You find these:

4

7

‘A’

9.087

4.5

A variable is like a box inside your computer that holds

something. That “something” might be a number or a character. You

can have as many variables as needed to hold changing data. After

you define a variable, it keeps its value until you change it or define

it again.

Variables have names so you can tell them apart. You use the

assignment operator, the equal sign (=), to assign values to variables.

The following statement,

sales=25000;

puts the literal value 25000 into the variable named sales. In the

sample program, you find the following variables:

i

j

c

x

The three lines of code that follow the opening brace of the

sample program declare these variables. This variable declaration

informs the rest of the program that two integer variables named i

and j as well as a character variable called c and a floating-point

variable called x appear throughout the program. The terms integer
and floating-point basically refer to two different types of numbers:

Integers are whole numbers, and floating-point numbers contain

decimal points.

The next few statements of the sample program assign values

to these variables.

Chapter 3 ♦ Your First C++ Program

64

i = 4; // i and j are both assigned integer literals.

j = i + 7;

c = ‘A’; // All character literals are

 // enclosed in single quotations.

x = 9.087; // x requires a floating-point value because it

 // was declared as a floating-point variable.

x = x * 4.5; // Change what was in x with a formula.

The first line puts 4 in the integer variable, i. The second line

adds 7 to the variable i’s value to get 11, which then is assigned to (or

put into) the variable called j. The plus sign (+) in C++ works just

like it does in mathematics. The other primary math operators are

shown in Table 3.1.

Table 3.1. The primary math operators.

Operator Meaning Example

+ Addition 4 + 5

– Subtraction 7 – 2

* Multiplication 12 * 6

/ Division 48 / 12

The character literal A is assigned to the c variable. The number

9.087 is assigned to the variable called x, then x is immediately

overwritten with a new value: itself (9.087) multiplied by 4.5. This

helps illustrate why computer designers use an asterisk (*) for

multiplication and not a lowercase x as people generally do to

show multiplication; the computer would confuse the variable x

with the multiplication symbol, x, if both were allowed.

TIP: If mathematical operators are on the right side of the

equal sign, the program completes the math before assigning

the result to a variable.

65

EXAMPLE
C++ By

The next line (after the comment) includes the following

special—and, at first, confusing—statement:

cout << i << “, “ << j << “, “ << c << “, “ << x << “\n”;

When the program reaches this line, it prints the contents of the

four variables on-screen. The important part of this line is that the

four values for i, j, c, and x print on-screen.

The output from this line is

4, 11, A, 40.891499

Because this is the only cout in the program, this is the only

output the sample program produces. You might think the program

is rather long for such a small output. After you learn more about

C++, you should be able to write more useful programs.

The cout is not a C++ command. You might recall from Chapter

2, “What Is a Program?,” that C++ has no built-in input/output

commands. The cout is an operator, described to the compiler in the

#include file called iostream.h, and it sends output to the screen.

C++ also supports the printf() function for formatted output.

You have seen one function already, main(), which is one for which

you write the code. The C++ programming designers have already

written the code for the printf function. At this point, you can think

of printf as a command that outputs values to the screen, but it is

actually a built-in function. Chapter 7, “Simple Input/Output”

describes the printf function in more detail.

NOTE: To differentiate printf from regular C++ commands,

parentheses are used after the name, as in printf(). In C++, all

function names have parentheses following them. Sometimes

these parentheses have something between them, and some-

times they are blank.

The last two lines in the program are shown here:

return 0; // ALWAYS end programs and functions with return.

}

Put a return
statement at the end
of each function.

Chapter 3 ♦ Your First C++ Program

66

The return command simply tells C++ that this function is

finished. C++ returns control to whatever was controlling the pro-

gram before it started running. In this case, because there was only

one function, control is returned either to DOS or to the C++ editing

environment. C++ requires a return value. Most C++ programmers

return a 0 (as this program does) to the operating system. Unless you

use operating-system return variables, you have little use for a

return value. Until you have to be more specific, always return a 0

from main().

Actually, many return statements are optional. C++ would

know when it reached the end of the program without this state-

ment. It is a good programming practice, however, to put a return

statement at the end of every function, including main(). Because

some functions require a return statement (if you are returning

values), it is better to get in the habit of using them, rather than run

the risk of leaving one out when you really need it.

You will sometimes see parentheses around the return value,

as in:

return (0); // ALWAYS end programs and functions with return.

The parentheses are unnecessary and sometimes lead begin-

ning C++ students into thinking that return is a built-in function.

However, the parentheses are recommended when you want to

return an expression. You read more about returning values in

Chapter 19, “Function Return Values and Prototypes.”

The closing brace after the return does two things in this

program. It signals the end of a block (begun earlier with the open-

ing brace), which is the end of the main() function, and it signals

the end of the program.

Review Questions
The answers to the review questions are in Appendix B, aptly

named “Answers to Review Questions.”

1. What must go before each comment in a C++ program?

2. What is a variable?

3. What is a literal?

67

EXAMPLE
C++ By

4. What are four C++ math operators?

5. What operator assigns a variable its value? (Hint: It is called

the assignment operator.)

6. True or false: A variable can consist of only two types:

integers and characters.

7. What is the operator that writes output to the screen?

8. Is the following a variable name or a string literal?

city

9. What, if anything, is wrong with the following C++

statement?

RETURN;

Summary
This chapter focused on teaching you to write helpful and

appropriate comments for your programs. You also learned a little

about variables and literals, which hold the program’s data. Without

them, the term data processing would no longer be meaningful (there

would be no data to process).

Now that you have a feel for what a C++ program looks like, it

is time to begin looking at specifics of the commands. Starting with

the next chapter, you begin to write your own programs. The next

chapter picks up where this one left off; it takes a detailed look at

literals and variables, and better describes their uses and how to

choose their names.

Chapter 3 ♦ Your First C++ Program

68

69

EXAMPLE
C++ By

4

Variables and
Literals

To understand data processing with C++, you must understand

how C++ creates, stores, and manipulates data. This chapter teaches

you how C++ handles data by introducing the following topics:

♦ The concepts of variables and literals

♦ The types of C++ variables and literals

♦ Special literals

♦ Constant variables

♦ Naming and using variables

♦ Declaring variables

♦ Assigning values to variables

Now that you have seen an overview of the C++ programming

language, you can begin writing C++ programs. In this chapter, you

begin to write your own programs from scratch.

You learned in Chapter 3, “Your First C++ Program,” that C++

programs consist of commands and data. Datum is the heart of all

C++ programs; if you do not correctly declare or use variables and

literals, your data are inaccurate and your results are going to be

Garbage in, garbage
out!

Chapter 4 ♦ Variables and Literals

70

inaccurate as well. A computer adage says the if you put garbage in,

you are going to get garbage out. This is very true. People usually

blame computers for mistakes, but the computers are not always at

fault. Rather, their data are often not entered properly into their

programs.

This chapter spends a long time focusing on numeric variables

and numeric literals. If you are not a “numbers” person, do not fret.

Working with numbers is the computer’s job. You have to under-

stand only how to tell the computer what you want it to do.

Variables
Variables have characteristics. When you decide your program

needs another variable, you simply declare a new variable and C++

ensures that you get it. In C++, variable declarations can be placed

anywhere in the program, as long as they are not referenced until

after they are declared. To declare a variable, you must understand

the possible characteristics, which follow.

♦ Each variable has a name.

♦ Each variable has a type.

♦ Each variable holds a value that you put there, by assigning

it to that variable.

The following sections explain each of these characteristics in

detail.

Naming Variables

Because you can have many variables in a single program, you

must assign names to them to keep track of them. Variable names are

unique, just as house addresses are unique. If two variables have the

same name, C++ would not know to which you referred when you

request one of them.

Variable names can be as short as a single letter or as long as 32

characters. Their names must begin with a letter of the alphabet but,

after the first letter, they can contain letters, numbers, and under-

score (_) characters.

71

EXAMPLE
C++ By

TIP: Spaces are not allowed in a variable name, so use the

underscore character to separate parts of the name.

The following list of variable names are all valid:

salary aug91_sales i index_age amount

It is traditional to use lowercase letters for C++ variable names.

You do not have to follow this tradition, but you should know that

uppercase letters in variable names are different from lowercase

letters. For example, each of the following four variables is viewed

differently by your C++ compiler.

sales Sales SALES sALES

Be very careful with the Shift key when you type a variable

name. Do not inadvertently change the case of a variable name

throughout a program. If you do, C++ interprets them as distinct

and separate variables.

Variables cannot have the same name as a C++ command or

function. Appendix E, “Keyword and Function Reference,” shows

a list of all C++ command and function names.

The following are invalid variable names:

81_sales Aug91+Sales MY AGE printf

TIP: Although you can call a variable any name that fits the

naming rules (as long as it is not being used by another variable

in the program), you should always use meaningful variable

names. Give your variables names that help describe the values

they are holding.

For example, keeping track of total payroll in a variable called

total_payroll is much more descriptive than using the variable

name XYZ34. Even though both names are valid, total_payroll is

easier to remember and you have a good idea of what the

variable holds by looking at its name.

Do not give variables
the same name as a
command or built-in
function.

Chapter 4 ♦ Variables and Literals

72

Variable Types

Variables can hold different types of data. Table 4.1 lists the

different types of C++ variables. For instance, if a variable holds an

integer, C++ assumes no decimal point or fractional part (the part to

the right of the decimal point) exists for the variable’s value. A large

number of types are possible in C++. For now, the most important

types you should concentrate on are char, int, and float. You can

append the prefix long to make some of them hold larger values than

they would otherwise hold. Using the unsigned prefix enables them

to hold only positive numbers.

Table 4.1. Some C++ variable types.

Declaration Name Type

char Character

unsigned char Unsigned character

signed char Signed character (same as char)

int Integer

unsigned int Unsigned integer

signed int Signed integer (same as int)

short int Short integer

unsigned short int Unsigned short integer

signed short int Signed short integer (same as short int)

long Long integer

long int Long integer (same as long)

signed long int Signed long integer (same as long int)

unsigned long int Unsigned long integer

float Floating-point

double Double floating-point

long double Long double floating-point

73

EXAMPLE
C++ By

The next section more fully describes each of these types. For

now, you have to concentrate on the importance of declaring them

before using them.

Declaring Variables

There are two places you can declare a variable:

♦ Before the code that uses the variable

♦ Before a function name (such as before main() in the

program)

The first of these is the most common, and is used throughout

much of this book. (If you declare a variable before a function name,

it is called a global variable. Chapter 17, “Variable Scope,” addresses

the pros and cons of global variables.) To declare a variable, you

must state its type, followed by its name. In the previous chapter,

you saw a program that declared four variables in the following

way.

Start of the main() function.
Declare the variables i and j as integers.
Declare the variable c as a character.
Declare the variable x as a floating-point variable.

main()

{

 int i, j; // These three lines declare four variables.

 char c;

 float x;

 // The rest of program follows.

This declares two integer variables named i and j. You have no

idea what is inside those variables, however. You generally cannot

assume a variable holds zero—or any other number—until you

assign it a value. The first line basically tells C++ the following:

“I am going to use two integer variables somewhere in this

program. Be expecting them. I want them named i and j. When I

put a value into i or j, I ensure that the value is an integer.”

Declare all variables
in a C++ program
before you use them.

Chapter 4 ♦ Variables and Literals

74

Without such a declaration, you could not assign i or j a value

later. All variables must be declared before you use them. This does

not necessarily hold true in other programming languages, such as

BASIC, but it does for C++. You could declare each of these two

variables on its own line, as in the following code:

main()

{

 int i;

 int j;

 // The rest of program follows.

You do not gain any readability by doing this, however. Most

C++ programmers prefer to declare variables of the same type on the

same line.

The second line in this example declares a character variable

called c. Only single characters should be placed there. Next, a

floating-point variable called x is declared.

Examples

1. Suppose you had to keep track of a person’s first, middle,

and last initials. Because an initial is obviously a character, it

would be prudent to declare three character variables to

hold the three initials. In C++, you could do that with the

following statement:

main()

{

 char first, middle, last;

 // The rest of program follows.

This statement could go after the opening brace of main(). It

informs the rest of the program that you require these three

character variables.

2. You could declare these three variables also on three sepa-

rate lines, although it does not necessarily improve readabil-

ity to do so. This could be accomplished with:

75

EXAMPLE
C++ By

main()

{

 char first;

 char middle;

 char last;

 // The rest of program follows.

3. Suppose you want to keep track of a person’s age and

weight. If you want to store these values as whole numbers,

they would probably go in integer variables. The following

statement would declare those variables:

main()

{

 int age, weight;

 // The rest of program follows.

Looking at Data Types

You might wonder why it is important to have so many

variable types. After all, a number is just a number. C++ has more

data types, however, than almost all other programming languages.

The variable’s type is critical, but choosing the type among the many

offerings is not as difficult as it might first seem.

The character variable is easy to understand. A character

variable can hold only a single character. You cannot put more than

a single character into a character variable.

NOTE: Unlike many other programming languages, C++

does not have a string variable. Also, you cannot hold more

than a single character in a C++ character variable. To store a

string of characters, you must use an aggregate variable type

that combines other fundamental types, such as an array.

Chapter 5, “Character Arrays and Strings,” explains this more

fully.

Integers hold whole numbers. Although mathematicians might

cringe at this definition, an integer is actually any number that does

Chapter 4 ♦ Variables and Literals

76

not contain a decimal point. All the following expressions are

integers:

45 -932 0 12 5421

Floating-point numbers contain decimal points. They are known

as real numbers to mathematicians. Any time you have to store a

salary, a temperature, or any other number that might have a

fractional part (a decimal portion), you must store it in a floating-

point variable. All the following expressions are floating-point

numbers, and any floating-point variable can hold them:

45.12 -2344.5432 0.00 .04594

Sometimes you have to keep track of large numbers, and

sometimes you have to keep track of smaller numbers. Table 4.2

shows a list of ranges that each C++ variable type can hold.

CAUTION: All true AT&T C++ programmers know that

they cannot count on using the exact values in Table 4.2 on

every computer that uses C++. These ranges are typical on a

PC, but might be much different on another computer. Use this

table only as a guide.

Table 4.2. Typical ranges that C++ variables hold.

Type Range*

char –128 to 127

unsigned char 0 to 255

signed char –128 to 127

int –32768 to 32767

unsigned int 0 to 65535

signed int –32768 to 32767

short int –32768 to 32767

unsigned short int 0 to 65535

77

EXAMPLE
C++ By

signed short int –32768 to 32767

long int –2147483648 to 2147483647

signed long int –2147483648 to 2147483647

float –3.4E–38 to 3.4E+38

double –1.7E–308 to 1.7E+308

long double –3.4E–4932 to 1.1E+4932

* Use this table only as a guide; different compilers and different computers can have different
 ranges.

NOTE: The floating-point ranges in Table 4.2 are shown in

scientific notation. To determine the actual range, take the

number before the E (meaning Exponent) and multiply it by

10 raised to the power after the plus sign. For instance, a

floating-point number (type float) can contain a number as

small as –3.438.

Notice that long integers and long doubles tend to hold larger

numbers (and therefore, have a higher precision) than regular

integers and regular double floating-point variables. This is due to

the larger number of memory locations used by many of the C++

compilers for these data types. Again, this is usually—but not

always—the case.

Do Not Over Type a Variable

If the long variable types hold larger numbers than the regular

ones, you might initially want to use long variables for all your

data. This would not be required in most cases, and would

probably slow your program’s execution.

Type Range*

Chapter 4 ♦ Variables and Literals

78

As Appendix A, “Memory Addressing, Binary, and Hexadeci-

mal Review,” describes, the more memory locations used by

data, the larger that data can be. However, every time your

computer has to access more storage for a single variable (as is

usually the case for long variables), it takes the CPU much

longer to access it, calculate with it, and store it.

Use the long variables only if you suspect your data might

overflow the typical data type ranges. Although the ranges

differ between computers, you should have an idea of whether

you numbers might exceed the computer’s storage ranges.

If you are working with extremely large (or extremely small

and fractional) numbers, you should consider using the long

variables.

Generally, all numeric variables should be signed (the default)

unless you know for certain that your data contain only positive

numbers. (Some values, such as age and distances, are always

positive.) By making a variable an unsigned variable, you gain a

little extra storage range (as explained in Appendix A, “Memory

Addressing, Binary, and Hexadecimal Review”). That range of

values must always be positive, however.

Obviously, you must be aware of what kinds of data your

variables hold. You certainly do not always know exactly what each

variable is holding, but you can have a general idea. For example, in

storing a person’s age, you should realize that a long integer variable

would be a waste of space, because nobody can live to an age that

can’t be stored by a regular integer.

At first, it might seem strange for Table 4.2 to state that

character variables can hold numeric values. In C++, integers and

character variables frequently can be used interchangeably. As

explained in Appendix A, “Memory Addressing, Binary, and Hexa-

decimal Review,” each ASCII table character has a unique number

that corresponds to its location in the table. If you store a number in

a character variable, C++ treats the data as if it were the ASCII

character that matched that number in the table. Conversely, you

can store character data in an integer variable. C++ finds that

79

EXAMPLE
C++ By

character’s ASCII number, and stores that number rather than the

character. Examples that help illustrate this appear later in the

chapter.

Designating Long, Unsigned, and Floating-Point Literals

When you type a number, C++ interprets its type as the

smallest type that can hold that number. For example, if you

print 63, C++ knows that this number fits into a signed integer

memory location. It does not treat the number as a long integer,

because 63 is not large enough to warrant a long integer literal

size.

However, you can append a suffix character to numeric literals

to override the default type. If you put an L at the end of an

integer, C++ interprets that integer as a long integer. The

number 63 is an integer literal, but the number 63L is a long

integer literal.

Assign the U suffix to designate an unsigned integer literal. The

number 63 is, by default, a signed integer literal. If you type 63U,

C++ treats it as an unsigned integer. The suffix UL indicates an

unsigned long literal.

C++ interprets all floating-point literals (numbers that contain

decimal points) as double floating-point literals (double float-

ing-point literals hold larger numbers than floating-point liter-

als). This process ensures the maximum accuracy in such

numbers. If you use the literal 6.82, C++ treats it as a double

floating-point data type, even though it would fit in a regular

float. You can append the floating-point suffix (F) or the long

double floating-point suffix (L) to literals that contain decimal

points to represent a floating-point literal or a long double

floating-point literal.

You may rarely use these suffixes, but if you have to assign a

literal value to an extended or unsigned variable, your literals

might be a little more accurate if you add U, L, UL, or F (their

lowercase equivalents work too) to their ends.

Chapter 4 ♦ Variables and Literals

80

Assigning Values to Variables

Now that you know about the C++ variable types, you are

ready to learn the specifics of assigning values to those variables.

You do this with the assignment statement. The equal sign (=) is used

for assigning values to variables. The format of the assignment

statement is

variable=expression;

The variable is any variable that you declared earlier. The

expression is any variable, literal, expression, or combination that

produces a resulting data type that is the same as the variable’s data

type.

TIP: Think of the equal sign as a left-pointing arrow. Loosely,

the equal sign means you want to take the number, variable, or

expression on the right side of the equal sign and put it into the

variable on the left side of the equal sign.

Examples

1. If you want to keep track of your current age, salary, and

dependents, you could store these values in three C++

variables. You first declare the variables by deciding on

correct types and good names for them. You then assign

values to them. Later in the program, these values might

change (for example, if the program calculates a new pay

increase for you).

Good variable names include age, salary, and dependents.

To declare these three variables, the first part of the main()

function would look like this:

// Declare and store three values.

main()

{

 int age;

 float salary;

 int dependents;

81

EXAMPLE
C++ By

Notice that you do not have to declare all integer variables

together. The next three statements assign values to the

variables.

 age=32;

 salary=25000.00;

 dependents=2;

 // Rest of program follows.

This example is not very long and doesn’t do much, but it

illustrates the using and assigning of values to variables.

2. Do not put commas in values that you assign to variables.

Numeric literals should never contain commas. The follow-

ing statement is invalid:

salary=25,000.00;

3. You can assign variables or mathematical expressions to

other variables. Suppose, earlier in a program, you stored

your tax rate in a variable called tax_rate, then decided to

use your tax rate for your spouse’s rate as well. At the

proper point in the program, you would code the following:

spouse_tax_rate = tax_rate;

(Adding spaces around the equal sign is acceptable to the

C++ compiler, but you do not have to do so.) At this point in

the program, the value in tax_rate is copied to a new variable

named spouse_tax_rate. The value in tax_rate is still there

after this line finishes. The variables were declared earlier in

the program.

If your spouse’s tax rate is 40 percent of yours, you can

assign an expression to the spouse’s variable, as in:

spouse_tax_rate = tax_rate * .40;

Any of the four mathematical symbols you learned in the

previous chapter, as well as the additional ones you learn

later in the book, can be part of the expression you assign to

a variable.

Chapter 4 ♦ Variables and Literals

82

4. If you want to assign character data to a character variable,

you must enclose the character in single quotation marks.

All C++ character literals must be enclosed in single quota-

tion marks.

The following section of a program declares three variables,

then assigns three initials to them. The initials are character

literals because they are enclosed in single quotation marks.

main()

{

 char first, middle, last;

 first = ‘G’;

 middle = ‘M’;

 last = ‘P’;

 // Rest of program follows.

Because these are variables, you can reassign their values

later if the program warrants it.

CAUTION: Do not mix types. C enables programmers to do

this, but C++ does not. For instance, in the middle variable

presented in the previous example, you could not have stored

a floating-point literal:

middle = 345.43244; // You cannot do this!

If you did so, middle would hold a strange value that would

seem to be meaningless. Make sure that values you assign to

variables match the variable’s type. The only major exception

to this occurs when you assign an integer to a character vari-

able, or a character to an integer variable, as you learn shortly.

Literals
As with variables, there are several types of C++ literals.

Remember that a literal does not change. Integer literals are whole

numbers that do not contain decimal points. Floating-point literals

83

EXAMPLE
C++ By

are numbers that contain a fractional portion (a decimal point with

an optional value to the right of the decimal point).

Assigning Integer Literals

You already know that an integer is any whole number without

a decimal point. C++ enables you to assign integer literals to vari-

ables, use integer literals for calculations, and print integer literals

using the cout operator.

A regular integer literal cannot begin with a leading 0. To C++,

the number 012 is not the number twelve. If you precede an integer

literal with a 0, C++ interprets it as an octal literal. An octal literal is

a base-8 number. The octal numbering system is not used much in

today’s computer systems. The newer versions of C++ retain octal

capabilities for compatibility with previous versions.

A special integer in C++ that is still greatly used today is the

base-16, or hexadecimal, literal. Appendix A, “Memory Addressing,

Binary, and Hexadecimal Review,” describes the hexadecimal num-

bering system. If you want to represent a hexadecimal integer literal,

add the 0x prefix to it. The following numbers are hexadecimal

numbers:

0x10 0x2C4 0xFFFF 0X9

Notice that it does not matter if you use a lowercase or upper-

case letter x after the leading zero, or an uppercase or lowercase

hexadecimal digit (for hex numbers A through F). If you write

business-application programs in C++, you might think you never

have the need for using hexadecimal, and you might be correct. For

a complete understanding of C++ and your computer in general,

however, you should become a little familiar with the fundamentals

of hexadecimal numbers.

Table 4.3 shows a few integer literals represented in their

regular decimal, hexadecimal, and octal notations. Each row con-

tains the same number in all three bases.

An octal integer liter-
al contains a leading
0, and a hexadeci-
mal literal contains a
leading 0x.

Chapter 4 ♦ Variables and Literals

84

Table 4.3. Integer literals represented in three
bases.

Decimal Hexadecimal Octal
(Base 10) (Base 16) (Base 8)

16 0x10 020

65536 0x10000 0100000

25 0x19 031

NOTE: Floating-point literals can begin with a leading zero,

for example, 0.7. They are properly interpreted by C++. Only

integers can be hexadecimal or octal literals.

Your Computer’s Word Size Is Important

If you write many system programs that use hexadecimal

numbers, you probably want to store those numbers in un-
signed variables. This keeps C++ from improperly interpreting

positive numbers as negative numbers.

For example, if your computer stores integers in 2-byte words

(as most PCs do), the hexadecimal literal 0xFFFF represents

either –1 or 65535, depending on how the sign bit is interpreted.

If you declared an unsigned integer, such as

unsigned_int i_num = 0xFFFF;

C++ knows you want it to use the sign bit as data and not as the

sign. If you declared the same value as a signed integer,

however, as in

int i_num = 0xFFFF; /* The word “signed” is optional.*/

C++ thinks this is a negative number (–1) because the sign bit

is on. (If you were to convert 0xFFFF to binary, you would get

sixteen 1s.) Appendix A, “Memory Addressing, Binary, and

Hexadecimal Review,” discusses these concepts in more detail.

85

EXAMPLE
C++ By

Assigning String Literals

One type of C++ literal, called the string literal, does not have a

matching variable. A string literal is always enclosed in double

quotation marks. Here are examples of string literals:

“C++ Programming” “123” “ “ “4323 E. Oak Road” “x”

Any string of characters between double quotation marks—

even a single character—is considered to be a string literal. A single

space, a word, or a group of words between double quotation marks

are all C++ string literals.

If the string literal contains only numeric digits, it is not a

number; it is a string of numeric digits that you cannot use to

perform mathematics. You can perform math only on numbers, not

on string literals.

NOTE: A string literal is any character, digit, or group of

characters enclosed in double quotation marks. A character

literal is any character enclosed in single quotation marks.

The double quotation marks are never considered part of the

string literal. The double quotation marks surround the string and

simply inform your C++ compiler that the code is a string literal and

not another type of literal.

It is easy to print string literals. Simply put the string literals in

a cout statement. The following code prints a string literal to the

screen:

The following code prints the string literal, C++ By Example.

cout << “C++ By Example”;

Examples

1. The following program displays a simple message on-screen.

No variables are needed because no datum is stored or

calculated.

A string literal is
always enclosed in
double quotation
marks.

Chapter 4 ♦ Variables and Literals

86

// Filename: C4ST1.CPP

// Display a string on-screen.

#include <iostream.h>

main()

{

 cout << “C++ programming is fun!”;

 return 0;

}

Remember to make the last line in your C++ program (be-

fore the closing brace) a return statement.

2. You probably want to label the output from your programs.

Do not print the value of a variable unless you also print a

string literal that describes that variable. The following

program computes sales tax for a sale and prints the tax.

Notice a message is printed first that tells the user what the

next number means.

// Filename: C4ST2.CPP

// Compute sales tax and display it with an appropriate

message.

#include <iostream.h>

main()

{

 float sale, tax;

 float tax_rate = .08; // Sales tax percentage

 // Determine the amount of the sale.

 sale = 22.54;

 // Compute the sales tax.

 tax = sale * tax_rate;

 // Print the results.

 cout << “The sales tax is “ << tax << “\n”;

 return 0;

}

87

EXAMPLE
C++ By

Here is the output from the program:

The sales tax is 1.8032

You later learn how to print accurately to two decimal places

to make the cents appear properly.

String-Literal Endings

An additional aspect of string literals sometimes confuses

beginning C++ programmers. All string literals end with a zero. You

do not see the zero, but C++ stores the zero at the end of the string

in memory. Figure 4.1 shows what the string “C++ Program” looks like

in memory.

Figure 4.1. In memory, a string literal always ends with 0.

You do not have to worry about putting the zero at the end of

a string literal; C++ does it for you every time it stores a string. If your

program contained the string “C++ Program”, for example, the com-

piler would recognize it as a string literal (from the double quotation

marks) and store the zero at the end.

Null zero

Chapter 4 ♦ Variables and Literals

88

The zero is important to C++. It is called the string delimiter.
Without it, C++ would not know where the string literal ended in

memory. (Remember that the double quotation marks are not stored

as part of the string, so C++ cannot use them to determine where the

string ends.)

The string-delimiting zero is not the same as the character zero.

If you look at the ASCII table in Appendix C, “ASCII Table,” you can

see that the first entry, ASCII number 0, is the null character. (If you

are unfamiliar with the ASCII table, you should read Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review,” for a

brief description.) This string-delimiting zero is different from the

from the character ‘0’, which has an ASCII value of 48.

As explained in Appendix A, “Memory Addressing, Binary,

and Hexadecimal Review,” all memory locations in your computer

actually hold bit patterns for characters. If the letter A is stored in

memory, an A is not actually there; the binary bit pattern for the

ASCII A (01000001) is stored there. Because the binary bit pattern for

the null zero is 00000000, the string-delimiting zero is also called a

binary zero.
To illustrate this further, Figure 4.2 shows the bit patterns for

the following string literal when stored in memory: “I am 30”.

All string literals end
in a null zero (also
called binary zero or
ASCII zero).

String-terminating zero

Figure 4.2. The bit pattern showing that a null zero and a character zero
are different.

Figure 4.2 shows how a string is stored in your computer’s

memory at the binary level. It is important for you to recognize that

the character 0, inside the number 30, is not the same zero (at the bit

level) as the string-terminating null zero. If it were, C++ would think

this string ended after the 3, which would be incorrect.

89

EXAMPLE
C++ By

This is a fairly advanced concept, but you truly have to under-

stand it before continuing. If you are new to computers, reviewing

the material in Appendix A, “Memory Addressing, Binary, and

Hexadecimal Review,” will help you understand this concept.

String Lengths

Many times, your program has to know the length of a string.

This becomes critical when you learn how to accept string input

from the keyboard. The length of a string is the number of characters

up to, but not including, the delimiting null zero. Do not include the

null character in that count, even though you know C++ adds it to

the end of the string.

Examples

1. The following are all string literals:

“0” “C” “A much longer string literal”

2. The following table shows some string literals and their

corresponding string lengths.

String Length

”C” 1

”0" 21

”Hello” 5

”” 0

”30 oranges” 10

Assigning Character Literals

All C character literals should be enclosed in single quotation

marks. The single quotation marks are not part of the character, but

they serve to delimit the character. The following are valid C++

character literals:

‘w’ ‘W’ ‘C’ ‘7’ ‘*’ ‘=’ ‘.’ ‘K’

The length of a
string literal does
not include the null
binary zero.

Chapter 4 ♦ Variables and Literals

90

C++ does not append a null zero to the end of character literals.

You should know that the following are different to C++.

‘R’ and “R”

‘R’ is a single character literal. It is one character long, because

all character literals (and variables) are one character long. “R” is a

string literal because it is delimited by double quotation marks. Its

length is also one, but it includes a null zero in memory so C++

knows where the string ends. Due to this difference, you cannot mix

character literals and character strings. Figure 4.3 shows how these

two literals are stored in memory.

Figure 4.3. The difference in memory between ‘R’ as a character
literal and “R” as a string literal.

All the alphabetic, numeric, and special characters on your

keyboard can be character literals. Some characters, however, can-

not be represented with your keyboard. They include some of

the higher ASCII characters (such as the Spanish Ñ). Because you do

not have keys for every character in the ASCII table, C++ enables you

to represent these characters by typing their ASCII hexadecimal

number inside single quotation marks.

For example, to store the Spanish Ñ in a variable, look up its

hexadecimal ASCII number from Appendix C, “ASCII Table.” You

find that it is A5. Add the prefix \x to it and enclose it in single

quotation marks, so C++ will know to use the special character. You

could do that with the following code:

char sn=’\xA5'; // Puts the Spanish Ñ into a variable called sn.

91

EXAMPLE
C++ By

This is the way to store (or print) any character from the ASCII table,

even if that character does not have a key on your keyboard.

The single quotation marks still tell C++ that a single character

is inside the quotation marks. Even though ‘\xA5’ contains four

characters inside the quotation marks, those four characters repre-

sent a single character, not a character string. If you were to include

those four characters inside a string literal, C++ would treat \xA5 as

a single character in the string. The following string literal,

“An accented a is \xA0”

is a C++ string that is 18 characters, not 21 characters. C++ interprets

the \xA0 character as the á, just as it should.

CAUTION: If you are familiar with entering ASCII charac-

ters by typing their ASCII numbers with the Alt-keypad com-

bination, do not do this in your C++ programs. They might

work on your computer (not all C++ compilers support this),

but your program might not be portable to another computer’s

C++ compiler.

Any character preceded by a backslash, \, (such as these have

been) is called an escape sequence, or escape character. Table 4.4 shows

some additional escape sequences that come in handy when you

want to print special characters.

TIP: Include “\n” in a cout if you want to skip to the next

line when printing your document.

Table 4.4. Special C++ escape-sequence
characters.

Escape Sequence Meaning

\a Alarm (the terminal’s bell)

\b Backspace

\f Form feed (for the printer)

continues

Chapter 4 ♦ Variables and Literals

92

\n Newline (carriage return and line feed)

\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash (\)

\? Question mark

\’ Single quotation mark

\” Double quotation mark

\000 Octal number

\xhh Hexadecimal number

\0 Null zero (or binary zero)

Math with C++ Characters

Because C++ links characters so closely with their ASCII num-

bers, you can perform arithmetic on character data. The follow-

ing section of code,

char c;

c = ‘T’ + 5; // Add five to the ASCII character.

actually stores a Y in c. The ASCII value of the letter T is 84.

Adding 5 to 84 produces 89. Because the variable c is not an

integer variable, but is a character variable, C++ adds the ASCII

character for 89, not the actual number.

Conversely, you can store character literals in integer variables.

If you do, C++ stores the matching ASCII number for that

character. The following section of code

int i=’P’;

Table 4.4. Continued.

Escape Sequence Meaning

93

EXAMPLE
C++ By

does not put a letter P in i because i is not a character variable.

C++ assigns the number 80 in the variable because 80 is the

ASCII number for the letter P.

Examples

1. To print two names on two different lines, include the \n

between them.

Print the name Harry; drop the cursor down to a new line and
print Jerry.

cout << “Harry\nJerry”;

When the program reaches this line, it prints

Harry

Jerry

You also could separate the two names by appending more

of the cout operator, such as:

cout << “Harry” << “\n” << “Jerry”;

Because the \n only takes one byte of storage, you can output

it as a character literal by typing ‘\n’ in place of the preced-

ing “\n”.

2. The following short program rings the bell on your com-

puter by assigning the \a escape sequence to a variable, then

printing that variable.

// Filename: C4BELL.CPP

// Rings the bell

#include <iostream.h>

main()

{

 char bell=’\a’;

 cout << bell; // No newline needed here.

 return 0;

}

Chapter 4 ♦ Variables and Literals

94

Constant Variables
The term constant variable might seem like a contradiction. After

all, a constant never changes and a variable holds values that

change. In C++ terminology, you can declare variables to be con-

stants with the const keyword. Throughout your program, the

constants act like variables; you can use a constant variable any-

where you can use a variable, but you cannot change constant

variables. To declare a constant, put the keyword const in front of the

variable declaration, for instance:

const int days_of_week = 7;

C++ offers the const keyword as an improvement of the #define

preprocessor directive that C uses. Although C++ supports #define

as well, const enables you to specify constant values with specific

data types.

The const keyword is appropriate when you have data that

does not change. For example, the mathematical π is a good candi-

date for a constant. If you accidently attempt to store a value in a

constant, C++ will let you know. Most C++ programmers choose to

type their constant names in uppercase characters to distinguish

them from regular variables. This is the one time when uppercase

reigns in C++.

NOTE: This book reserves the name constant for C++ pro-

gram constants declared with the const keyword. The term

literal is used for numeric, character, and string data values.

Some books choose to use the terms constant and literal inter-

changeably, but in C++, the difference can be critical.

Example

Suppose a teacher wanted to compute the area of a circle for the

class. To do so, the teacher needs the value of π (mathematically, π
is approximately 3.14159). Because π remains constant, it is a good

candidate for a const keyword, as the following program shows:

95

EXAMPLE
C++ By

Comment for the program filename and description.

 Declare a constant value for π.

 Declare variables for radius and area.

Compute and print the area for both radius values.

// Filename: C4AREAC.CPP

// Computes a circle with radius of 5 and 20.

#include <iostream.h>

main()

{

 const float PI=3.14159;

 float radius = 5;

 float area;

 area = radius * radius * PI; // Circle area calculation

 cout << “The area is “ << area << “ with a radius of 5.\n”;

 radius = 20; // Compute area with new radius.

 area = radius * radius * PI;

 cout << “The area is “ << area << “ with a radius of 20.\n”;

 return 0;

}

Review Questions
The answers to the review questions are in Appendix B.

1. Which of the following variable names are valid?

my_name 89_sales sales_89 a-salary

2. Which of the following literals are characters, strings, inte-

gers, and floating-point literals?

0 -12.0 “2.0” “X” ‘X’ 65.4 -708 ‘0’

Chapter 4 ♦ Variables and Literals

96

3. How many variables do the following statements declare,

and what are their types?

int i, j, k;

char c, d, e;

float x=65.43;

4. With what do all string literals end?

5. True or false: An unsigned variable can hold a larger value

than a signed variable.

6. How many characters of storage does the following literal

take?

‘\x41’

7. How is the following string stored at the bit level?

“Order 10 of them.”

8. How is the following string (called a null string) stored at the

bit level? (Hint: The length is zero, but there is still a termi-

nating character.)

“”

9. What is wrong with the following program?

#include <iostream.h>

main()

{

 const int age=35;

 cout << age << “\n”;

 age = 52;

 cout << age << “\n”;

 return 0;

}

97

EXAMPLE
C++ By

Review Exercises
Now that you have learned some basic C++ concepts, the

remainder of the book will include this section of review exercises so

you can practice your programming skills.

1. Write the C++ code to store three variables: your weight

(you can fib), height in feet, and shoe size. Declare the

variables, then assign their values in the body of your

program.

2. Rewrite your program from Exercise 1, adding proper cout

statements to print the values to the screen. Use appropriate

messages (by printing string literals) to describe the numbers

that are printed.

3. Write a program that stores a value and prints each type of

variable you learned in this chapter.

4. Write a program that stores a value into every type of vari-

able C++ allows. You must declare each variable at the

beginning of your program. Give them values and print

them.

Summary
A firm grasp of C++’s fundamentals is critical to a better

understanding of the more detailed material that follows. This is one

of the last general-topic chapters in the book. You learned about

variable types, literal types, how to name variables, how to assign

variable values, and how to declare constants. These issues are

critical to understanding the remaining concepts in C++.

This chapter taught you how to store almost every type of

literal into variables. There is no string variable, so you cannot store

string literals in string variables (as you can in other programming

languages). However, you can “fool” C++ into thinking it has a string

variable by using a character array to hold strings. You learn this

important concept in the next chapter.

Chapter 4 ♦ Variables and Literals

98

99

EXAMPLE
C++ By

5

Character Arrays
and Strings

Even though C++ has no string variables, you can act as if C++ has

them by using character arrays. The concept of arrays might be new

to you, but this chapter explains how easy they are to declare and

use. After you declare these arrays, they can hold character strings—

just as if they were real string variables. This chapter includes

♦ Character arrays

♦ Comparison of character arrays and strings

♦ Examples of character arrays and strings

After you master this chapter, you are on your way to being

able to manipulate almost every type of variable C++ offers. Ma-

nipulating characters and words is one feature that separates your

computer from a powerful calculator; this capability gives comput-

ers true data-processing capabilities.

Chapter 5 ♦ Character Arrays and Strings

100

Character Arrays
Almost every type of data in C++ has a variable, but there is no

variable for holding character strings. The authors of C++ realized

that you need some way to store strings in variables, but instead of

storing them in a string variable (as some languages such as BASIC

or Pascal do) you must store them in an array of characters.

If you have never programmed before, an array might be new

to you. An array is a list (sometimes called a table) of variables, and

most programming languages allow the use of such lists. Suppose

you had to keep track of the sales records of 100 salespeople. You

could make up 100 variable names and assign a different salesperson’s

sales record to each one.

All those different variable names, however, are difficult to

track. If you were to put them in an array of floating-point variables,

you would have to keep track of only a single name (the array name)

and reference each of the 100 values by a numeric subscript.

The last few chapters of this book cover array processing in

more detail. However, to work with character string data in your

early programs, you have to become familiar with the concept of

character arrays.
Because a string is simply a list of one or more characters, a

character array is the perfect place to hold strings of information.

Suppose you want to keep track of a person’s full name, age, and

salary in variables. The age and salary are easy because there are

variable types that can hold such data. The following code declares

those two variables:

int age;

float salary;

You have no string variable to hold the name, but you can

create an appropriate array of characters (which is actually one or

more character variables in a row in memory) with the following

declaration:

char name[15];

This reserves a character array. An array declaration always

includes brackets ([]) that declare the space for the array. This array

is 15 characters long. The array name is name. You also can assign a

A string literal can be
stored in an array of
characters.

101

EXAMPLE
C++ By

value to the character array at the time you declare the array. The

following declaration statement not only declares the character

array, but also assigns the name “Michael Jones” at the same time:

Declare the character array called name as 15 characters long, and assign
Michael Jones to the array.

char name[15]=”Michael Jones”;

Figure 5.1 shows what this array looks like in memory. Each of

the 15 boxes of the array is called an element. Notice the null zero (the

string-terminating character) at the end of the string. Notice also that

the last character of the array contains no data. You filled only the

first 14 elements of the array with the data and the data’s null zero.

The 15th element actually has a value in it—but whatever follows

the string’s null zero is not a concern.

Figure 5.1. A character array after being declared and assigned a string
value.

You can access individual elements in an array, or you can

access the array as a whole. This is the primary advantage of an array

over the use of many differently named variables. You can assign

values to the individual array elements by putting the elements’

location, called a subscript, in brackets, as follows:

name[3]=’k’;

Chapter 5 ♦ Character Arrays and Strings

102

This overwrites the h in the name Michael with a k. The string now

looks like the one in Figure 5.2.

All array subscripts
begin at 0.

Figure 5.2. The array contents (see Figure 5.1) after changing one of the
elements.

All array subscripts start at zero. Therefore, to overwrite the

first element, you must use 0 as the subscript. Assigning name[3] (as

is done in Figure 5.2) changes the value of the fourth element in the

array.

You can print the entire string—or, more accurately, the entire

array—with a single cout statement, as follows:

cout << name;

Notice when you print an array, you do not include brackets

after the array name. You must be sure to reserve enough characters

in the array to hold the entire string. The following line,

char name[5]=”Michael Jones”;

is incorrect because it reserves only five characters for the array,

whereas the name and its null zero require 14 characters. However,

C++ does give you an error message for this mistake (illegal

initialization).

103

EXAMPLE
C++ By

CAUTION: Always reserve enough array elements to hold the

string, plus its null-terminating character. It is easy to forget the

null character, but don’t do it!

If your string contains 13 characters, it also must have a 14th for

the null zero or it will never be treated like a string. To help eliminate

this error, C++ gives you a shortcut. The following two character

array statements are the same:

char horse[9]=”Stallion”;

and

char horse[]=”Stallion”;

If you assign a value to a character array at the same time you declare

the array, C++ counts the string’s length, adds one for the null zero,

and reserves the array space for you.

If you do not assign a value to an array at the time it is declared,

you cannot declare it with empty brackets. The following statement,

char people[];

does not reserve any space for the array called people. Because you

did not assign a value to the array when you declared it, C++

assumes this array contains zero elements. Therefore, you have no

room to put values in this array later. Most compilers generate an

error if you attempt this.

Character Arrays
Versus Strings

In the previous section, you saw how to put a string in

a character array. Strings can exist in C++ only as string literals, or

as stored information in character arrays. At this point, you have

only to understand that strings must be stored in character arrays.

As you read through this book and become more familiar with

arrays and strings, however, you should become more comfortable

with their use.

Chapter 5 ♦ Character Arrays and Strings

104

NOTE: Strings must be stored in character arrays, but not all

character arrays contain strings.

Look at the two arrays shown in Figure 5.3. The first one, called

cara1, is a character array, but it does not contain a string. Rather than

a string, it contains a list of several characters. The second array,

called cara2, contains a string because it has a null zero at its end.

Figure 5.3. Two character arrays: Cara1 contains characters, and Cara2
contains a character string.

You could initialize these arrays with the following assignment

statements.

Null zero

105

EXAMPLE
C++ By

Declare the array cara1 with 10 individual characters.
Declare the array cara2 with the character string “Excellent”.

char cara1[10]={‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’,

 ‘j’};

char cara2[10]=”Excellent”;

If you want to put only individual characters in an array, you

must enclose the list of characters in braces, as shown. You could

initialize cara1 later in the program, using assignment statements, as

the following code section does.

char cara1[10];

cara1[0]=’a’;

cara1[1]=’b’;

cara1[2]=’c’;

cara1[3]=’d’;

cara1[4]=’e’;

cara1[5]=’f’;

cara1[6]=’g’;

cara1[7]=’h’;

cara1[8]=’i’;

cara1[9]=’j’; // Last element possible with subscript of nine.

Because the cara1 character array does not contain a null zero,

it does not contain a string of characters. It does contain characters

that can be stored in the array—and used individually—but they

cannot be treated in a program as if they were a string.

CAUTION: You cannot assign string values to character arrays

in a regular assignment statement, except when you first

declare the character arrays.

Because a character array is not a string variable (it can be used

only to hold a string), it cannot go on the left side of an equal (=) sign.

The program that follows is invalid:

Chapter 5 ♦ Character Arrays and Strings

106

#include <iostream.h>

main()

{

 char petname[20]; // Reserve space for the pet’s name.

 petname = “Alfalfa”; // INVALID!

 cout << petname; // The program will never get here.

 return;

}

Because the pet’s name was not assigned at the time the character
array was declared, it cannot be assigned a value later. The following

is allowed, however, because you can assign values individually to

a character array:

#include <iostream.h>

main()

{

 char petname[20]; // Reserve space for the pet’s name.

 petname[0]=’A’; // Assign values one element at a time.

 petname[1]=’l’;

 petname[2]=’f’;

 petname[3]=’a’;

 petname[4]=’l’;

 petname[5]=’f’;

 petname[6]=’a’;

 petname[7]=’\0'; // Needed to ensure this is a string!

 cout <<petname; // Now the pet’s name prints properly.

 return;

}

The petname character array now holds a string because the last

character is a null zero. How long is the string in petname? It is seven

characters long because the length of a string never includes the null

zero.

You cannot assign more than 20 characters to this array because

its reserved space is only 20 characters. However, you can store any

string of 19 (leaving one for the null zero) or fewer characters to the

array. If you assign the “Alfalfa” string in the array as shown, and

then assign a null zero to petname[3] as in:

petname[3]=’\0';

107

EXAMPLE
C++ By

the string in petname is now only three characters long. You have, in

effect, shortened the string. There are still 20 characters reserved for

petname, but the data inside it is the string “Alf” ending with a null

zero.

There are many other ways to assign a value to a string. You can

use the strcpy() function, for example. This is a built-in function that

enables you to copy a string literal in a string. To copy the “Alfalfa”

pet name into the petname array, you type:

strcpy(petname, “Alfalfa”); // Copies Alfalfa into the array.

The strcpy() (“string copy”) function assumes that the first

value in the parentheses is a character array name, and that the

second value is a valid string literal or another character array that

holds a string. You must be sure that the first character array in the

parentheses is long enough (in number of reserved elements) to hold

whatever string you copy into it.

NOTE: Place an #include <string.h> line before the main()

function in programs that use strcpy() or any other built-in

string functions mentioned in this book. Your compiler sup-

plies the string.h file to help the strcpy() function work prop-

erly. The #include files such as iostream.h and string.h will be

further explained as you progress through this book.

Other methods of initializing arrays are explored throughout

the rest of this book.

Examples

1. Suppose you want to keep track of your aunt’s name in a

program so you can print it. If your aunt’s name is Ruth Ann

Cooper, you have to reserve at least 16 elements—15 to hold

the name and one to hold the null character. The following

statement properly reserves a character array to hold her

name:

char aunt_name[16];

The strcpy()
function puts string
literals in string
arrays.

Chapter 5 ♦ Character Arrays and Strings

108

2. If you want to put your aunt’s name in the array at the same

time you reserve the array space, you could do it like this:

char aunt_name[16]=”Ruth Ann Cooper”;

You could also leave out the array size and allow C++ to

count the number needed:

char aunt_name[]=”Ruth Ann Cooper”;

3. Suppose you want to keep track of the names of three

friends. The longest name is 20 characters (including the null

zero). You simply have to reserve enough character-array

space to hold each friend’s name. The following code does

the trick:

char friend1[20];

char friend2[20];

char friend3[20];

These array declarations should appear toward the top of

the block, along with any integer, floating-point, or character

variables you have to declare.

4. The next example asks the user for a first and last name. Use

the cin operator (the opposite of cout) to retrieve data from

the keyboard. Chapter 7, “Simple I/O,” more fully explains

the cout and cin operators. The program then prints the

user’s initials on-screen by printing the first character of each

name in the array. The program must print each array’s 0

subscript because the first subscript of any array begins at 0,

not 1.

// Filename: C5INIT.CPP

// Print the user’s initials.

#include <iostream.h>

main()

{

 char first[20]; // Holds the first name

 char last[20]; // Holds the last name

 cout << “What is your first name? \n”;

 cin >> first;

109

EXAMPLE
C++ By

 cout << “What is your last name? \n”;

 cin >> last;

 // Print the initials

 cout << “Your initials are “ << first[0] << “ “

 << last[0];

 return 0;

}

5. The following program takes your three friends’ character

arrays and assigns them string values by using the three

methods shown in this chapter. Notice the extra #include file

used with the string function strcpy().

// Filename: C5STR.CPP

// Store and initialize three character arrays for three

friends.

#include <iostream.h>

#include <string.h>

main()

{

 // Declare all arrays and initialize the first one.

 char friend1[20]=”Jackie Paul Johnson”;

 char friend2[20];

 char friend3[20];

// Use a function to initialize the second array.

 strcpy(friend2, “Julie L. Roberts”);

 friend3[0]=’A’; // Initialize the last,

 friend3[1]=’d’; // an element at a time.

 friend3[2]=’a’;

 friend3[3]=’m’;

 friend3[4]=’ ‘;

 friend3[5]=’G’;

 friend3[6]=’.’;

 friend3[7]=’ ‘;

 friend3[8]=’S’;

 friend3[9]=’m’;

 friend3[10]=’i’;

Chapter 5 ♦ Character Arrays and Strings

110

 friend3[11]=’t’;

 friend3[12]=’h’;

 friend3[13]=’\0';

 // Print all three names.

 cout << friend1 << “\n”;

 cout << friend2 << “\n”;

 cout << friend3 << “\n”;

 return 0;

}

The last method of initializing a character array with a

string—one element at a time—is not used as often as the

other methods.

Review Questions
The answers to the review questions are in Appendix B.

1. How would you declare a character array called my_name that

holds the following string literal?

“This is C++”

2. How long is the string in Question 1?

3. How many bytes of storage does the string in Question 1

take?

4. With what do all string literals end?

5. How many variables do the following statements declare,

and what are their types?

char name[25];

char address[25];

6. True or false: The following statement assigns a string literal

to a character array.

myname[]=”Kim Langston”;

111

EXAMPLE
C++ By

7. True or false: The following declaration puts a string in the

character array called city.

char city[]={‘M’, ‘i’, ‘a’, ‘m’, ‘i’, ‘\0’};

8. True or false: The following declaration puts a string in the

character array called city.

char city[]={‘M’, ‘i’, ‘a’, ‘m’, ‘i’};

Review Exercises
1. Write the C++ code to store your weight, height (in feet),

shoe size, and name with four variables. Declare the vari-

ables, then assign their values in the body of your program.

2. Rewrite the program in Exercise 1, adding proper printf()

statements to print the values. Use appropriate messages (by

printing string literals) to describe the printed values.

3. Write a program to store and print the names of your two

favorite television programs. Store these programs in two

character arrays. Initialize one of the strings (assign it the

first program’s name) at the time you declare the array.

Initialize the second value in the body of the program with

the strcpy() function.

4. Write a program that puts 10 different initials in 10 elements

of a single character array. Do not store a null zero. Print the

list backward, one initial on each line.

Summary
This has been a short, but powerful chapter. You learned about

character arrays that hold strings. Even though C++ has no string

variables, character arrays can hold string literals. After you put a

string in a character array, you can print or manipulate it as if it were

a string.

Chapter 5 ♦ Character Arrays and Strings

112

Starting with the next chapter, you begin to hone the C++ skills

you are building. Chapter 6, “Preprocessor Directives,” introduces

preprocessor directives, which are not actually part of the C++

language but help you work with your source code before your

program is compiled.

113

EXAMPLE
C++ By

6

Preprocessor
Directives

As you might recall from Chapter 2, “What Is a Program?,” the C++

compiler routes your programs through a preprocessor before it

compiles them. The preprocessor can be called a “pre-compiler”

because it preprocesses and prepares your source code for compil-

ing before your compiler receives it.

Because this preprocess is so important to C++, you should

familiarize yourself with it before learning more specialized com-

mands in the language. Regular C++ commands do not affect the

preprocessor. You must supply special non-C++ commands, called

preprocessor directives, to control the preprocessor. These directives

enable you, for example, to modify your source code before the code

reaches the compiler. To teach you about the C++ preprocessor, this

chapter

♦ Defines preprocessor directives

♦ Introduces the #include preprocessor directive

♦ Introduces the #define preprocessor directive

♦ Provides examples of both

Chapter 6 ♦ Preprocessor Directives

114

Almost every proper C++ program contains preprocessor di-

rectives. This chapter teaches you the two most common: #include

and #define.

Understanding Preprocessor
Directives

Preprocessor directives are commands that you supply to the

preprocessor. All preprocessor directives begin with a pound sign

(#). Never put a semicolon at the end of preprocessor directives,

because they are preprocessor commands and not C++ commands.

Preprocessor directives typically begin in the first column of your

source program. They can begin in any column, of course, but you

should try to be consistent with the standard practice and start them

in the first column wherever they appear. Figure 6.1 illustrates a

program that contains three preprocessor directives.

// Filename: C6PRE.CPP

// C++ program that demonstrates preprocessor directives.

#include <iostream.h>

#define AGE 28

#define MESSAGE “Hello, world”

main()

{

 int i = 10, age; // i is assigned a value at declaration

 // age is still UNDEFINED

 age = 5; // Defines the variable, age, as five.

 i = i * AGE; // AGE is not the same as the variable, age.

 cout << i << “ “ << age << “ “ << AGE << “\n”; // 280 5 28

 cout << MESSAGE; // Prints “Hello world”.

 return 0;

}

Figure 6.1. Program containing three preprocessor directives.

Preprocessor
directives

115

EXAMPLE
C++ By

Preprocessor directives cause your C++ preprocessor to change

your source code, but these changes last only as long as the compi-

lation. When you look at your source code again, the preprocessor

is finished with your file and its changes are no longer in the file.

Your preprocessor does not in any way compile your program or

change your actual C++ commands. This concept confuses some

beginning C++ students, but just remember that your program has

yet to be compiled when your preprocessor directives execute.

It has been said that a preprocessor is nothing more than a text-

editor on your program. This analogy holds true throughout this

chapter.

The #include Directive
The #include preprocessor directive merges a disk file into your

source program. Remember that a preprocessor directive does

nothing more than a word processing command does to your

program; word processors also are capable of file merging. The

format of the #include preprocessor directive follows:

#include <filename>

or

#include “filename”

In the #include directive, the filename must be an ASCII text file

(as your source file must be) located somewhere on a disk. To better

illustrate this rule, it might help to leave C++ for just a moment. The

following example shows the contents of two files on disk. One is

called OUTSIDE and the other is called INSIDE.

These are the contents of the OUTSIDE file:

Now is the time for all good men

#include <INSIDE>

to come to the aid of their country.

Preprocessor
directives
temporarily change
your source code.

Chapter 6 ♦ Preprocessor Directives

116

The INSIDE file contains the following:

A quick brown fox jumped

over the lazy dog.

Assume you can run the OUTSIDE file through the C++

preprocessor, which finds the #include directive and replaces it with

the entire file called INSIDE. In other words, the C++ preprocessor

directive merges the INSIDE file into the OUTSIDE file—at the

#include location—and OUTSIDE expands to include the merged

text. After the preprocessing ends, OUTSIDE looks like this:

Now is the time for all good men

A quick brown fox jumped

over the lazy dog.

to come to the aid of their country.

The INSIDE file remains on disk in its original form. Only the

file containing the #include directive is changed. This change is only

temporary; that is, OUTSIDE is expanded by the included file only

for as long as it takes to compile the program.

A few real-life examples might help, because the OUTSIDE and

INSIDE files are not C++ programs. You might want to include a file

containing common code that you frequently use. Suppose you

print your name and address quite often. You can type the following

few lines of code in every program that prints your name and

address:

cout << “Kelly Jane Peterson\n”;

cout << “Apartment #217\n”;

cout << “4323 East Skelly Drive\n”;

cout << “New York, New York\n”;

cout << “ 10012\n”;

Instead of having to retype the same five lines again and again,

you type them once and save them in a file called MYADD.C. From

then on, you only have to type the single line:

#include <myadd.c>

117

EXAMPLE
C++ By

This not only saves typing, but it also maintains consistency

and accuracy. (Sometimes this kind of repeated text is known as a

boilerplate.)
You usually can use angled brackets, <>, or double quotation

marks, “”, around the included filename with the same results. The

angled brackets tell the preprocessor to look for the include file in a

default include directory, set up by your compiler. The double

quotation marks tell the preprocessor first to look for the include file

in the directory where the source code is stored, and then, to look for

it in the system’s include directory.

Most of the time, you do see angled brackets around the

included filename. If you want to include sections of code in other

programs, be sure to store that code in the system’s include directory

(if you use angled brackets).

Even though #include works well for inserted source code,

there are other ways to include common source code that are more

efficient. You learn about one technique, called writing external
functions, in Chapter 16, “Writing C++ Functions.”

This source code #include example serves well to explain what

the #include preprocessor directive does. Despite this fact, #include

seldom is used to include source code text, but is more often used to

include special system files called header files. These system files

help C++ interpret the many built-in functions that you use. Your

C++ compiler comes with its own header files. When you (or your

system administrator) installed your C++ compiler, these header

files were automatically stored on your hard drive in the system’s

include directory. Their filenames always end in .h to differentiate

them from regular C++ source code.

The most common header file is named iostream.h. This file

gives your C++ compiler needed information about the built-in cout

and cin operators, as well as other useful built-in routines that

perform input and output. The name “iostream.h” stands for input/
output stream header.

At this point, you don’t have to understand the iostream.h file.

You only have to place this file before main() in every program you

write. It is rare that a C++ program does not need the iostream.h file.

Even when the file is not needed, including it does no harm. Your

programs can work without iostream.h as long as they do not use

The #include
directive is most
often used for
system header files.

Chapter 6 ♦ Preprocessor Directives

118

an input or output operator defined there. Nevertheless, your

programs are more accurate and hidden errors come to the surface

much faster if you include this file.

Throughout this book, whenever a new built-in function is

described, the function’s matching header file is included. Because

almost every C++ program you write includes a cout to print to the

screen, almost every program contains the following line:

Include the built-in C++ header file called iostream.h.

#include <iostream.h>

In the last chapter, you saw the strcpy() function. Its header file

is called string.h. Therefore, if you write a program that contains

strcpy(), include its matching header file at the same time you

include <iostream.h>. These appear on separate lines, such as:

#include <iostream.h>

#include <string.h>

The order of your include files does not matter as long as you

include the files before the functions that need them. Most C++

programmers include all their needed header files before main().

These header files are simply text files. If you like, find a header

file such as stdio.h on your hard drive and look at it. The file might

seem complex at this point, but there is nothing “hidden” about it.

Don’t change the header file in any way while looking at it. If you do,

you might have to reload your compiler to restore the file.

Examples

1. The following program is short. It includes the name-and-

address printing routine described earlier. After printing the

name and address, it ends.

// Filename: C6INC1.CPP

// Illustrates the #include preprocessor directives.

#include <iostream.h>

119

EXAMPLE
C++ By

main()

{

#include “myadd.c”

return 0;

}

The double quotation marks are used because the file called

MYADD.C is stored in the same directory as the source file.

Remember that if you type this program into your computer

(after typing and saving the MYADD.C file) and then com-

pile your program, the MYADD.C file is included only as

long as it takes to compile the program. Your compiler does

not see this file. Your compiler acts as if you have typed the

following:

// Filename: C6INCL1.CPP

// Illustrates the #include preprocessor directive.

#include <iostream.h>

main()

{

cout(“Kelly Jane Peterson\n”;

cout(“Apartment #217\n”;

cout(“4323 East Skelly Drive\n”;

cout(“New York, New York\n”;

cout(“ 10012\n”;

return 0;

}

This explains what is meant by a preprocessor: The changes

are made to your source code before it’s compiled. Your

original source code is restored as soon as the compile is

finished. When you look at your program again, it appears

as originally typed, with the #include statement.

2. The following program copies a message into a character

array and prints it to the screen. Because the cout and

strcpy() built-in functions are used, both of their header files

are included.

Chapter 6 ♦ Preprocessor Directives

120

The #define
directive replaces
every occurrence of
a first argument with
a second argument.

// Filename: C6INCL3.CPP

// Uses two header files.

#include <iostream.h>

#include <string.h>

main()

{

 char message[20];

 strcpy(message, “This is fun!”);

 cout << message;

 return 0;

}

The #define Directive
The #define preprocessor directive is used in C++ program-

ming, although not nearly as frequently as it is in C. Due to the

const keyword (in C++) that enables you to define variables as

constants, #define is not used as much in C++. Nevertheless, #define

is useful for compatibility to C programs you are converting to C++.

The #define directive might seem strange at first, but it is similar to

a search-and-replace command on a word processor. The format of

#define follows:

#define ARGUMENT1 argument2

where ARGUMENT1 is a single word containing no spaces. Use the same

naming rules for the #define statement’s first argument as for vari-

ables (see Chapter 4, “Variables and Literals”). For the first argu-

ment, it is traditional to use uppercase letters—one of the only uses

of uppercase in the entire C++ language. At least one space separates

ARGUMENT1 from argument2. The argument2 can be any character, word,

or phrase; it also can contain spaces or anything else you can type on

the keyboard. Because #define is a preprocessor directive and not a

C++ command, do not put a semicolon at the end of its expression.

The #define preprocessor directive replaces the occurrence

of ARGUMENT1 everywhere in your program with the contents of

121

EXAMPLE
C++ By

argument2. In most cases, the #define directive should go before main()

(along with any #include directives). Look at the following #define

directive:

Define the AGELIMIT literal to 21.

#define AGELIMIT 21

If your program includes one or more occurrences of the term

AGELIMIT, the preprocessor replaces every one of them with the

number 21. The compiler then reacts as if you actually had typed 21

rather than AGELIMIT, because the preprocessor changes all occur-

rences of AGELIMIT to 21 before your compiler reads the source code.

But, again, the change is only temporary. After your program is

compiled, you see it as you originally typed it, with #define and

AGELIMIT still intact.

AGELIMIT is not a variable, because variables are declared and

assigned values only at the time when your program is compiled

and run. The preprocessor changes your source file before the time

it is compiled.

You might wonder why you would ever have to go to this much

trouble. If you want 21 everywhere AGELIMIT occurs, you could type

21 to begin with! But the advantage of using #define rather than

literals is that if the age limit ever changes (perhaps to 18), you have

to change only one line in the program, not every single occurrence

of the literal 21.

Because #define enables you easily to define and change liter-

als, the replaced arguments of the #define directive are sometimes

called defined literals. (C programmers say that #define “defines

constants,” but C++ programmers rarely use the word “constant”

unless they are discussing the use of const.) You can define any type

of literal, including string literals. The following program contains

a defined string literal that replaces a string in two places.

// Filename: C6DEF1.CPP

// Defines a string literal and uses it twice.

#include <iostream.h>

#define MYNAME “Phil Ward”

main()

The #define
directive creates
defined literals.

Chapter 6 ♦ Preprocessor Directives

122

{

 char name[]=MYNAME;

 cout << “My name is “ << name << “\n”; // Prints the array.

 cout << “My name is “ << MYNAME << “\n”; // Prints the

 // defined literal.

 return 0;

}

The first argument of #define is in uppercase to distinguish it

from variable names in the program. Variables are usually typed in

lowercase. Although your preprocessor and compiler will not con-

fuse the two, other users who look at your program can more quickly

scan through and tell which items are defined literals and which are

not. They will know when they see an uppercase word (if you follow

the recommended standard for this first #define argument) to look at

the top of the program for its actual defined value.

The fact that defined literals are not variables is even more clear

in the following program. This program prints five values. Try to

guess what those five values are before you look at the answer

following the program.

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

#define X1 b+c

#define X2 X1 + X1

#define X3 X2 * c + X1 - d

#define X4 2 * X1 + 3 * X2 + 4 * X3

main()

{

 int b = 2; // Declares and initializes four variables.

 int c = 3;

 int d = 4;

 int e = X4;

 // Prints the values.

 cout << e << “, “ << X1 << “, “ << X2;

 cout << “, “ << X3 << “, “ << X4 << “\n”;

 return 0;

}

123

EXAMPLE
C++ By

The output from this program is

44 5 10 17 44

If you treated X1, X2, X3, and X4 as variables, you would not

receive the correct answers. X1 through X4 are not variables; they are

defined literals. Before your program is compiled, the preprocessor

reads the first line and changes every occurrence of X1 to b+c. This

occurs before the next #define is processed. Therefore, after the first

#define, the source code looks like this:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

#define X2 b+c + b+c

#define X3 X2 * c + b+c - d

#define X4 2 * b+c + 3 * X2 + 4 * X3

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=X4;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << X2;

 cout << “, “ << X3 << “, “ << X4 << “\n”;

 return 0;

}

After the first #define finishes, the second one takes over and

changes every occurrence of X2 to b+c + b+c. Your source code at that

point becomes:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

Chapter 6 ♦ Preprocessor Directives

124

#define X3 b+c + b+c * c + b+c - d

#define X4 2 * b+c + 3 * b+c + b+c + 4 * X3

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=X4;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << b+c + b+c;

 cout << “, “ << X3 << “, “ << X4 << “\n”;

 return 0;

}

After the second #define finishes, the third one takes over and

changes every occurrence of X3 to b+c + b+c * c + b+c - d. Your source

code then becomes:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

#define X4 2 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * c + b+c - d

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=X4;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << b+c + b+c;

 cout << “, “ << b+c + b+c * c + b+c - d

 << “, “ << X4 << “\n”;

 return 0;

}

125

EXAMPLE
C++ By

The source code is growing rapidly! After the third #define

finishes, the fourth and last one takes over and changes every occur-

rence of X4 to 2 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * c + b+c - d.

Your source code at this last point becomes:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=2 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * c + b+c - d;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << b+c + b+c;

 cout << “, “ << b+c + b+c * c + b+c - d

 << “, “ << 2 * b+c + 3 * b+c + b+c + 4 * b+c +

 b+c * c + b+c - d << “\n”;

 return 0;

}

This is what your compiler actually reads. You did not type this

complete listing; you typed the original listing (shown first). The

preprocessor expanded your source code into this longer form, just

as if you had typed it this way.

This is an extreme example, but it serves to illustrate how

#define works on your source code and doesn’t define any variables.

The #define behaves like a word processor’s search-and-replace

command. Due to #define’s behavior, you can even rewrite the C++

language!

If you are used to BASIC, you might be more comfortable

typing PRINT rather than C++’s cout when you want to print on-

screen. If so, the following #define statement,

#define PRINT cout

enables you to print in C++ with these statements:

Chapter 6 ♦ Preprocessor Directives

126

PRINT << “This is a new printing technique\n”;

PRINT << “I could have used cout instead.”\n;

This works because by the time your compiler reads the pro-

gram, it reads only the following:

cout << “This is a new printing technique\n”;

cout << “I could have used cout instead.”\n;

In the next chapter, “Simple Input/Output,” you learn about

two functions sometimes used for input and output called printf()

and scanf(). You can just as easily redefine function names using

#define as you did with cout.

Also, remember that you cannot replace a defined literal if it

resides in another string literal. For example, you cannot use the

following #define statement:

#define AGE

to replace information in this cout:

cout << “AGE”;

because AGE is a string literal, and it prints literally just as it appears

inside the double quotation marks. The preprocessor can replace

only defined literals that do not appear in quotation marks.

Do Not Overdo #define

Many early C programmers enjoyed redefining parts of the

language to suit whatever they were used to in another lan-

guage. The cout to PRINT example was only one example of this.

You can redefine virtually any C++ statement or function to

“look” any way you like.

There is a danger to this, however, so be wary of using #define

for this purpose. Your redefining the language becomes con-

fusing to others who modify your program later. Also, as you

become more familiar with C++, you will naturally use the true

127

EXAMPLE
C++ By

C++ language more and more. When you are comfortable with

C++, older programs that you redefined will be confusing—

even to you!

If you are programming in C++, use the language conventions

that C++ provides. Shy away from trying to redefine com-

mands in the language. Think of the #define directive as a way

to define numeric and string literals. If those literals ever

change, you have to change only one line in your program.

“Just say no” to any temptation to redefine commands and

built-in functions. Better yet, modify any older C code that uses

#define, and replace the #define preprocessor directive with the

more useful const command.

Examples

1. Suppose you want to keep track of your company’s target

sales amount of $55,000.00. That target amount has not

changed for the previous two years. Because it probably will

not change soon (sales are flat), you decide to start using a

defined literal to represent this target amount. Then, if target

sales do change, you just have to change the amount on the

#define line to:

#define TARGETSALES 55000.00

which defines a floating-point literal. You can then assign

TARGETSALES to floating-point variables and print its value, just

as if you had typed 55000.00 throughout your program, as

these lines show:

amt = TARGETSALES

cout << TARGETSALES;

2. If you find yourself defining the same literals in many

programs, file the literals on disk and include them. Then,

you don’t have to type your defined literals at the beginning

Chapter 6 ♦ Preprocessor Directives

128

of every program. If you store these literals in a file called

MYDEFS.C in your program’s directory, you can include the

file with the following #include statement:

#include “mydefs.c”

(To use angled brackets, you have to store the file in your

system’s include directory.)

3. Defined literals are appropriate for array sizes. For example,

suppose you declare an array for a customer’s name. When

you write the program, you know you don’t have a cus-

tomer whose name is longer than 22 characters (including

the null). Therefore, you can do this:

#define CNMLENGTH 22

When you define the array, you can use this:

char cust_name[CNMLENGTH]

Other statements that need the array size also can use

CNMLENGTH.

4. Many C++ programmers define a list of error messages.

Once they define the messages with an easy-to-remember

name, they can print those literals if an error occurs and still

maintain consistency in their programs. The following error

messages (or a similar form) often appear at the beginning of

C++ programs.

#define DISKERR “Your disk drive seems not to be working”

#define PRNTERR “Your printer is not responding”

#define AGEERR “You cannot enter an age that small”

#define NAMEERR “You must enter a full name”

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: You can define variables with the preprocessor

directives.

129

EXAMPLE
C++ By

2. Which preprocessor directive merges another file into your

program?

3. Which preprocessor directive defines literals throughout

your program?

4. True or false: You can define character, string, integer, and

floating-point literals with the #define directive.

5. Which happens first: your program is compiled or pre-

processed?

6. What C++ keyword is used to replace the #define prepro-

cessor directive?

7. When do you use the angled brackets in an #include, and

when do you use double quotation marks?

8. Which are easier to change: defined literals or literals that

you type throughout a program? Why?

9. Which header file should you include in almost every C++

program you write?

10. True or false: The #define in the following:

#define MESSAGE “Please press Enter to continue...”

changes this statement:

cout << “MESSAGE”;

11. What is the output from the following program?

// Filename: C6EXER,C

#include <iostream.h>

#define AMT1 a+a+a

#define AMT2 AMT1 - AMT1

main()

{

 int a=1;

 cout << “Amount is “ << AMT2 << “\n”;

 return 0;

}

Chapter 6 ♦ Preprocessor Directives

130

Even if you get this right, you will appreciate the side effects

of #define. The const keyword (discussed in Chapter 4,

“Variables and Literals”) before a constant variable has none

of the side effects that #define has.

Review Exercises
1. Write a program that prints your name to the screen. Use a

defined literal for the name. Do not use a character array,

and don’t type your actual name inside the cout.

2. Suppose your boss wanted you to write a program that

produced an “exception report.” If the company’s sales are

less than $100,000.00 or more than $750,000.00, your boss

wants your program to print the appropriate message. You

learn how to produce these types of reports later in the book,

but for now just write the #define statements that define

these two floating-point literals.

3. Write the cout statements that print your name and birth

date to the screen. Store these statements in their own file.

Write a second program that includes the first file and

prints your name and birth date. Be sure also to include

<iostream.h>, because the included file contains cout

statements.

4. Write a program that defines the ten digits, 0 through 9, as

literals ZERO through NINE. Add these ten defined digits and

print the result.

Summary
This chapter taught you the #include and #define preprocessor

directives. Despite the fact that these directives are not executed,

they temporarily change your source code by merging and defining

literals into your program.

131

EXAMPLE
C++ By

The next chapter, “Simple Input/Output,” explains input and

output in more detail. There are ways to control precision when

using cin and cout, as well as built-in functions that format input

and output.

Chapter 6 ♦ Preprocessor Directives

132

133

EXAMPLE
C++ By

7

Simple
Input/Output

You have already seen the cout operator. It prints values to the

screen. There is much more to cout than you have learned. Using cout

and the screen (the most common output device), you can print

information any way you want it. Your programs also become much

more powerful if you learn to receive input from the keyboard. cin

is an operator that mirrors the cout. Instead of sending output values

to the screen, cin accepts values that the user types at the keyboard.

The cout and cin operators offer the new C++ programmer

input and output operators they can use with relative ease. Both of

these operators have a limited scope, but they give you the ability to

send output from and receive input to your programs. There are

corresponding functions supplied with all C++ compilers called

printf() and scanf(). These functions are still used by C++ program-

mers due to their widespread use in regular C programs.

This chapter introduces you to

♦ The cout operator

♦ Control operators

♦ The cin operator

Chapter 7 ♦ Simple Input/Output

134

♦ The printf() output function

♦ The scanf() input function

You will be surprised at how much more advanced your

programs can be after you learn these input/output operators.

The cout Operator
The cout operator sends data to the standard output device. The

standard output device is usually the screen; you can, however,

redirect standard output to another device. If you are unfamiliar

with device redirection at the operating system level, don’t worry,

you learn more about it in this book. At this point, cout sends all

output to the screen.

The format of the cout is different from those of other C++

commands. The format for cout is

cout << data [<< data];

The data placeholder can be variables, literals, expressions, or

a combination of all three.

Printing Strings

To print a string constant, simply type the string constant after

the cout operator. For example, to print the string, The rain in Spain,

you would simply type this:

Print the sentence “The rain in Spain” to the screen.

cout << “The rain in Spain”;

You must remember, however, that cout does not perform an

automatic carriage return. This means the screen’s cursor appears

directly after the last printed character and subsequent couts begin

thereafter.

To better understand this concept, try to predict the output

from the following three cout operators:

cout sends output
to the screen.

135

EXAMPLE
C++ By

cout << “Line 1”;

cout << “Line 2”;

cout << “Line 3”;

These operators produce the following output:

Line 1Line 2Line 3

which is probably not what you intended. Therefore, you must

include the newline character, \n, whenever you want to move the

cursor to the next line. The following three cout operators produce

a three-line output:

cout << “Line 1\n”;

cout << “Line 2\n”;

cout << “Line 3\n”;

The output from these couts is

Line 1

Line 2

Line 3

The \n character sends the cursor to the next line no matter

where you insert it. The following three cout operators also produce

the correct three-line output:

cout << “Line 1”;

cout << “\nLine 2\n”;

cout “Line 3”;

The second cout prints a newline before it prints anything else.

It then prints its string followed by another newline. The third string

prints on the third line.

You also can print strings stored in character arrays by typing

the array name inside the cout. If you were to store your name in an

array defined as:

char my_name[] = “Lyndon Harris”;

you could print the name with the following cout:

cout << my_name;

Chapter 7 ♦ Simple Input/Output

136

The following section of code prints three string literals on

three different lines:

cout << “Nancy Carson\n”;

cout << “1213 Oak Street\n”;

cout << “Fairbanks, Alaska\n”;

The cout is often used to label output. Before printing an age,

amount, salary, or any other numeric data, you should print a string

constant that tells the user what the number means. The following

cout tells the user that the next number printed is an age. Without this

cout, the user would not know what the number represented.

cout << “Here is the age that was found in our files:”;

You can print a blank line by printing two newline characters,

\n, next to each other after your string, as in:

cout << “Prepare the invoices...\n\n”;

Examples

1. The following program stores a few values in three vari-

ables, then prints the results:

// Filename: C7PRNT1.CPP

// Prints values in variables.

#include <iostream.h>

main()

{

 char first = ‘E’; // Store some character, integer,

 char middle = ‘W’; // and floating-point variable.

 char last = ‘C’;

 int age = 32;

 int dependents = 2;

 float salary = 25000.00;

 float bonus = 575.25;

 // Prints the results.

 cout << first << middle << last;

137

EXAMPLE
C++ By

 cout << age << dependents;

 cout << salary << bonus;

 return 0;

}

2. The last program does not help the user. The output is not

labeled, and it prints on a single line. Here is the same

program with a few messages included and some newline

characters placed where needed:

// Filename: C7PRNT2.CPP

// Prints values in variables with appropriate labels.

#include <iostream.h>

main()

{

 char first = ‘E’; // Store some character, integer,

 char middle = ‘W’; // and floating-point variable.

 char last = ‘C’;

 int age = 32;

 int dependents = 2;

 float salary = 25000.00;

 float bonus = 575.25;

 // Prints the results.

 cout << “Here are the initials:\n”;

 cout << first << middle << last <<“\n”;

 cout << “The age and number of dependents are\n”;

 cout << age << “ “ << dependents << “\n\n”;

 cout << “The salary and bonus are\n”;

 cout << salary << ‘ ‘ << bonus;

 return 0;

}

The output from this program appears below:

Here are the initials:

EWC

The age and number of dependents are

32 2

Chapter 7 ♦ Simple Input/Output

138

The salary and bonus are

25000 575.25

The first floating-point values do not print with zeros, but

the number is correct. The next section shows you how to set

the number of leading and trailing zeros.

3. If you have to print a table of numbers, you can use the \t

tab character to do so. Place the tab character between each

of the printed numbers. The following program prints a list

of team names and number of hits for the first three weeks of

the season:

// Filename: C7TEAM.CPP

// Prints a table of team names and hits for three weeks.

#include <iostream.h>

main()

{

 cout << “Parrots\tRams\tKings\tTitans\tChargers\n”;

 cout << “3\t5\t3\t1\t0\n”;

 cout << “2\t5\t1\t0\t1\n”;

 cout << “2\t6\t4\t3\t0\n”;

 return 0;

}

This program produces the table shown below. You can see

that even though the names are different widths, the num-

bers print correctly beneath them. The \t character forces the

next name or value to the next tab position (every eight

characters).

Parrots Rams Kings Titans Chargers

3 5 3 1 0

2 5 1 0 1

2 6 4 3 0

139

EXAMPLE
C++ By

Control Operators

You have already seen the need for additional program-output

control. All floating-point numbers print with too many decimal

places for most applications. What if you want to print only dollars

and cents (two decimal places), or print an average with a single

decimal place?

You can specify how many print positions to use in printing a

number. For example, the following cout prints the number 456,

using three positions (the length of the data):

cout << 456;

If the 456 were stored in an integer variable, it would still use

three positions to print because the number of digits printed is three.

However, you can specify how many positions to print. The follow-

ing cout prints the number 456 in five positions (with two leading

spaces):

cout << setw(5) << setfill(‘ ‘) << 456;

You typically use the setw manipulator when you want to print

data in uniform columns. Be sure to include the iomanip.h header

file in any programs that use manipulators because iomanip.h

describes how the setw works to the compiler.

The following program shows you the importance of the width

number. Each cout output is described in the comment to its left.

// Filename: C7MOD1.CPP

// Illustrates various integer width cout modifiers.

#include <iostream.h>

#include <iomanip.h>

main()

{ // The output appears below.

 cout << 456 << 456 << 456 << “\n”; // Prints 456456456

 cout << setw(5) << 456 << setw(5) << 456 << setw(5) <<

 456 << “\n”; // Prints 456 456 456

 cout << setw(7) << 456 << setw(7) << 456 << setw(7) <<

 456 << “ \n”; // Prints 456 456 456

 return 0;

}

You can modify the
way numbers print.

Chapter 7 ♦ Simple Input/Output

140

When you use a setw manipulator inside a conversion charac-

ter, C++ right-justifies the number by the width you specify. When

you specify an eight-digit width, C++ prints a value inside those

eight digits, padding the number with leading blanks if the number

does not fill the whole width.

NOTE: If you do not specify a width large enough to hold the

number, C++ ignores your width request and prints the num-

ber in its entirety.

You can control the width of strings in the same manner with

the setw manipulator. If you don’t specify enough width to output

the full string, C++ ignores the width. The mailing list application in the

back of this book uses this technique to print names on mailing labels.

NOTE: setw() becomes more important when you print

floating-point numbers.

setprecision(2) prints a floating-point number with two deci-

mal places. If C++ has to round the fractional part, it does so. The

following cout:

cout << setw(6) << setprecision(2) << 134.568767;

produces the following output:

134.57

Without the setw o r setprecision manipulators, C++ would

have printed:

134.568767

TIP: When printing floating-point numbers, C++ always prints

the entire portion to the left of the decimal (to maintain as much

accuracy as possible) no matter how many positions you

specify. Therefore, many C++ programmers ignore the setw

manipulator for floating-point numbers and only specify the

precision, as in setprecision(2).

141

EXAMPLE
C++ By

Examples

1. If you want to control the width of your data, use a setw

manipulator. The following program is a revision of the

C7TEAM.CPP shown earlier. Instead of using the tab charac-

ter, \t, which is limited to eight spaces, this program uses the

width specifier to set the tabs. It ensures that each column is

10 characters wide.

// Filename: C7TEAMMD.CPP

// Prints a table of team names and hits for three weeks

// using width-modifying conversion characters.

#include <iostream.h>

#include <iomanip.h>

main()

{

 cout << setw(10) << “Parrots” << setw(10) <<

 “Rams” << setw(10) << “Kings” << setw(10) <<

 “Titans” << setw(10) << “Chargers” << “\n”;

 cout << setw(10) << 3 << setw(10) << 5 <<

 setw(10) << 2 << setw(10) << 1 <<

 setw(10) << 0 << “\n”;

 cout << setw(10) << 2 << setw(10) << 5 <<

 setw(10) << 1 << setw(10) << 0 <<

 setw(10) << 1 << “\n”;

 cout << setw(10) << 2 << setw(10) << 6 <<

 setw(10) << 4 << setw(10) << 3 <<

 setw(10) << 0 << “\n”;

 return 0;

}

2. The following program is a payroll program. The output is

in “dollars and cents” because the dollar amounts print

properly to two decimal places.

// Filename: C7PAY1.CPP

// Computes and prints payroll data properly in dollars

// and cents.

Chapter 7 ♦ Simple Input/Output

142

#include <iostream.h>

#include <iomanip.h>

main()

{

 char emp_name[] = “Larry Payton”;

 char pay_date[] = “03/09/92”;

 int hours_worked = 43;

 float rate = 7.75; // Pay per hour

 float tax_rate = .32; // Tax percentage rate

 float gross_pay, taxes, net_pay;

 // Computes the pay amount.

 gross_pay = hours_worked * rate;

 taxes = tax_rate * gross_pay;

 net_pay = gross_pay - taxes;

 // Prints the results.

 cout << “As of: “ << pay_date << “\n”;

 cout << emp_name << “ worked “ << hours_worked <<

 “ hours\n”;

 cout << “and got paid “ << setw(2) << setprecision(2)

 << gross_pay << “\n”;

 cout << “After taxes of: “ << setw(6) << setprecision(2)

 << taxes << “\n”;

 cout << “his take-home pay was $” << setw(8) <<

 setprecision(2) << net_pay << “\n”;

 return 0;

}

The output from this program follows. Remember that the

floating-point variables still hold the full precision (to six

decimal places), as they did in the previous program. The

modifying setw manipulators only affect how the variables

are output, not what is stored in them.

As of: 03/09/92

Larry Payton worked 43 hours

and got paid 333.25

After taxes of: 106.64

his take-home pay was $226.61

143

EXAMPLE
C++ By

3. Most C++ programmers do not use the setw manipulator

when printing dollars and cents. Here is the payroll program

again that uses the shortcut floating-point width method.

Notice the previous three cout statements include no setw

manipulator. C++ automatically prints the full number to

the left of the decimal and prints only two places to the right.

// Filename: C7PAY2.CPP

// Computes and prints payroll data properly

// using the shortcut modifier.

#include <iostream.h>

#include <iomanip.h>

main()

{

 char emp_name[] = “Larry Payton”;

 char pay_date[] = “03/09/92”;

 int hours_worked = 43;

 float rate = 7.75; // Pay per hour

 float tax_rate = .32; // Tax percentage rate

 float gross_pay, taxes, net_pay;

 // Computes the pay amount.

 gross_pay = hours_worked * rate;

 taxes = tax_rate * gross_pay;

 net_pay = gross_pay - taxes;

 // Prints the results.

 cout << “As of: “ << pay_date << “\n”;

 cout << emp_name << “ worked “ << hours_worked <<

 “ hours\n”;

 cout << “and got paid “ << setprecision(2) << gross_pay

 << “\n”;

 cout << “After taxes of: “ << setprecision(2) << taxes

 << “\n”;

 cout << “his take-home pay was “ << setprecision(2) <<

 net_pay << “\n”;

 return 0;

}

Chapter 7 ♦ Simple Input/Output

144

This program’s output is the same as the previous

program’s.

The cin Operator

You now understand how C++ represents data and variables,

and you know how to print the data. There is one additional part of

programming you have not seen: inputting data to your programs.

Until this point, you have not inputted data into a program. All

data you worked with was assigned to variables in the program.

However, this is not always the best way to transfer data to your

programs; you rarely know what your data is when you write your

programs. The data is known only when you run the programs (or

another user runs them).

The cin operator is one way to input from the keyboard. When

your programs reach the line with a cin, the user can enter values

directly into variables. Your program can then process those vari-

ables and produce output. Figure 7.1 illustrates the difference be-

tween cout and cin.

The cin operator
stores keyboard
input in variables.

Figure 7.1. The actions of cout and cin.

145

EXAMPLE
C++ By

The cin Function Fills Variables with Values

There is a major difference between cin and the assignment

statements (such as i = 17;). Both fill variables with values.

However, the assignment statement assigned specific values to

variables at programming time. When you run a program with

assignment statements, you know from the program’s listing

exactly what values go into the variables because you wrote the

program specifically to store those values. Every time you run

the program, the results are exactly the same because the same

values are assigned to the same variables.

You have no idea, when you write programs that use cin, what

values will be assigned to the cin’s variables because their

values are not known until the program runs and the user

enters those values. This means you have a more flexible

program that can be used by a variety of people. Every time the

program is run, different results are created, depending on the

values typed at each cin in the program.

The cin has its drawbacks. Therefore, in the next few chapters

you will use cin until you learn more powerful (and flexible) input

methods. The cin operator looks much like cout. It contains one or

more variables that appear to the right of the operator name. The

format of the cin is

cin >> value [>> values];

The iostream.h header file contains the information C++ needs

to use cin, so include it when using cin.

NOTE: The cin operator uses the same manipulators (setw and

setprecision) as the cout operator.

As mentioned earlier, cin poses a few problems. The cin opera-

tor requires that your user type the input exactly as cin expects it.

Because you cannot control the user’s typing, this cannot be en-

sured. You might want the user to enter an integer value followed

Chapter 7 ♦ Simple Input/Output

146

by a floating-point value and your cin operator call might expect it

too, but your user might decide to enter something else! If this

happens, there is not much you can do because the resulting input

is incorrect and your C++ program has no reliable method for testing

user accuracy. Before every cin, print a prompt that explains exactly

what you expect the user to type.

For the next few chapters, you can assume that the user knows

to enter the proper values, but for your “real” programs, read on for

better methods to receive input, starting with Chapter 21, “Device

and Character Input/Output.”

Examples

1. If you wanted a program that computed a seven percent

sales tax, you could use the cin statement to figure the sales,

compute the tax, and print the results as the following

program shows:

// Filename: C7SLTX1.CPP

// Prompt for a sales amount and print the sales tax.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float total_sale; // User’s sale amount goes here.

 float stax;

 // Display a message for the user.

 cout << “What is the total amount of the sale? “;

 // Receive the sales amount from user.

 cin >> total_sale;

 // Calculate sales tax.

 stax = total_sale * .07;

The cin operator
requires that the user
type correct input.
This is not always
possible to
guarantee!

147

EXAMPLE
C++ By

 cout << “The sales tax for “ << setprecision(2) <<

 total_sale << “ is “ << setprecision (2) << stax;

 return 0;

}

Because the first cout does not contain a newline character,

\n, the user’s response to the prompt appears to the right of

the question mark.

2. When inputting keyboard strings into character arrays with

cin, you are limited to receiving one word at a time. The cin

does not enable you to type more than one word in a single

character array at a time. The following program asks the

user for his or her first and last name. The program has to

store those two names in two different character arrays

because cin cannot input both names at once. The program

then prints the names in reverse order.

// Filename: C7PHON1.CPP

// Program that requests the user’s name and prints it

// to the screen as it would appear in a phone book.

#include <iostream.h>

#include <iomanip.h>

main()

{

 char first[20], last[20];

 cout << “What is your first name? “;

 cin >> first;

 cout << “What is your last name? “;

 cin >> last;

 cout << “\n\n”; // Prints two blank lines.

 cout << “In a phone book, your name would look like this:\n”;

 cout << last << “, “ << first;

 return 0;

}

Chapter 7 ♦ Simple Input/Output

148

3. Suppose you want to write a program that does simple

addition for your seven-year-old daughter. The following

program prompts her for two numbers. The program then

waits for her to type an answer. When she gives her answer,

the program displays the correct result so she can see how

well she did.

// Filename: C7MATH.CPP

// Program to help children with simple addition.

// Prompt child for two values after printing

// a title message.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int num1, num2, ans;

 int her_ans;

 cout << “*** Math Practice ***\n\n\n”;

 cout << “What is the first number? “;

 cin >> num1;

 cout << “What is the second number? “;

 cin >> num2;

 // Compute answer and give her a chance to wait for it.

 ans = num1 + num2;

 cout << “\nWhat do you think is the answer? “;

 cin >> her_ans; // Nothing is done with this.

 // Prints answer after a blank line.

 cout << “\n” << num1 << “ plus “ << num2 << “ is “

 << ans << “\n\nHope you got it right!”;

 return 0;

}

149

EXAMPLE
C++ By

printf() and scanf()
Before C++, C programmers had to rely on function calls to

perform input and output. Two of those functions, printf() and

scanf(), are still used frequently in C++ programs, although cout and

cin have advantages over them. printf() (like cout) prints values to

the screen and scanf() (like cin) inputs values from the keyboard.

printf() requires a controlling format string that describes the data

you want to print. Likewise, scanf() requires a controlling format

string that describes the data the program wants to receive from the

keyboard.

NOTE: cout is the C++ replacement to printf() and cin is the

C++ replacement to scanf().

Because you are concentrating on C++, this chapter only briefly

covers printf() and scanf(). Throughout this book, a handful of

programs use these functions to keep you familiar with their format.

printf() and scanf() are not obsolete in C++, but their use will

diminish dramatically when programmers move away from C and

to C++. cout and cin do not require controlling strings that describe

their data; cout and cin are intelligent enough to know how to treat

data. Both printf() and scanf() are limited—especially scanf()—but

they do enable your programs to send output and to receive input.

The printf() Function
printf() sends data to the standard output device, which is

generally the screen. The format of printf() is different from those of

regular C++ commands. The values that go inside the parentheses

vary, depending on the data you are printing. However, as a general

rule, the following printf() format holds true:

printf(control_string [, one or more values]);

Notice printf() always requires a control_string. This is a

string, or a character array containing a string, that determines how

the rest of the values (if any are listed) print. These values can be

variables, literals, expressions, or a combination of all three.

The printf()
function sends
output to the screen.

Chapter 7 ♦ Simple Input/Output

150

TIP: Despite its name, printf() sends output to the screen and

not to the printer.

The easiest data to print with printf() are strings. To print a

string constant, you simply type that string constant inside the

printf() function. For example, to print the string The rain in Spain,

you would simply type the following:

Print the phrase “The rain in Spain” to the screen.

printf(“The rain in Spain”);

printf(), like cout, does not perform an automatic carriage

return. Subsequent printf()s begin next to that last printed charac-

ter. If you want a carriage return, you must supply a newline

character, as so:

printf(“The rain in Spain\n”);

You can print strings stored in character arrays also by typing

the array name inside the printf(). For example, if you were to store

your name in an array defined as:

char my_name[] = “Lyndon Harris”;

you could print the name with this printf():

printf(my_name);

You must include the stdio.h header file when using printf()

and scanf() because stdio.h determines how the input and output

functions work in the compiler. The following program assigns a

message in a character array, then prints that message.

// Filename: C7PS2.CPP

// Prints a string stored in a character array.

#include <stdio.h>

main()

{

 char message[] = “Please turn on your printer”;

 printf(message);

 return 0;

}

151

EXAMPLE
C++ By

Conversion Characters
Inside most printf() control strings are conversion characters.

These special characters tell printf() exactly how the data (following

the characters) are to be interpreted. Table 7.1 shows a list of

common conversion characters. Because any type of data can go

inside the printf()’s parentheses, these conversion characters are

required any time you print more than a single string constant. If you

don’t want to print a string, the string constant must contain at least

one of the conversion characters.

Table 7.1. Common printf() conversion characters.

Conversion

Character Output

%s String of characters (until null zero is reached)

%c Character

%d Decimal integer

%f Floating-point numbers

%u Unsigned integer

%x Hexadecimal integer

%% Prints a percent sign (%)

Note: You can insert an l (lowercase l) or L before the integer and floating-point conversion characters

(such as %ld and %Lf) to indicate that a long integer or long double floating-point is to be printed.

NOTE: Characters other than those shown in the table print

exactly as they appear in the control string.

When you want to print a numeric constant or variable, you

must include the proper conversion character inside the printf()

control string. If i, j, and k are integer variables, you cannot print

them with the printf() that follows.

printf(i,j,k);

Chapter 7 ♦ Simple Input/Output

152

Because printf() is a function and not a command, this printf()

function has no way of knowing what type the variables are. The

results are unpredictable, and you might see garbage on your

screen—if anything appears at all.

When you print numbers, you must first print a control string

that includes the format of those numbers. The following printf()

prints a string. In the output from this line, a string appears with an

integer (%d) and a floating-point number (%f) printed inside that

string.

printf(“I am Betty, I am %d years old, and I make %f\n”,

 35, 34050.25);

This produces the following output:

I am Betty, I am 35 years old, and I make 34050.25

Figure 7.2 shows how C interprets the control string and the

variables that follow. Be sure you understand this example before

moving on. It is the foundation of the printf() function.

Figure 7.2. Control string in action.

You also can print integer and floating-point variables in the

same manner.

Examples

1. The following program stores a few values in three vari-

ables, then prints the results.

153

EXAMPLE
C++ By

// Filename: C7PRNTF.CPP

// Prints values in variables with appropriate labels.

#include <stdio.h>

main()

{

 char first=’E’; // Store some character, integer,

 char middle=’W’; // and floating-point variable.

 char last=’C’;

 int age=32;

 int dependents=2;

 float salary=25000.00;

 float bonus=575.25;

 /* Prints the results. */

 printf(“Here are the initials\n”);

 printf(“%c%c%c\n\n”, first, middle, last);

 printf(“The age and number of dependents are\n”);

 printf(“%d %d\n\n”, age, dependents);

 printf(“The salary and bonus are\n”);

 printf(“%f %f”, salary, bonus);

 return 0;

}

The output from this program is

Here are the initials

EWC

The age and number of dependents are

32 2

The salary and bonus are

25000.000000 575.250000

2. The floating-point values print with too many zeros, of

course, but the numbers are correct. You can limit the num-

ber of leading and trailing zeros that is printed by adding a

width specifier in the control string. For instance, the following

printf() prints the salary and bonus with two decimal places:

printf(“%.2f %.2f”, salary, bonus);

Chapter 7 ♦ Simple Input/Output

154

Make sure your printed values match the control string

supplied with them. The printf() function cannot fix prob-

lems resulting from mismatched values and control strings.

Don’t try to print floating-point values with character-string

control codes. If you list five integer variables in a printf(),

be sure to include five %d conversion characters in the

printf() as well.

Printing ASCII Values

There is one exception to the rule of printing with matching

conversion characters. If you want to print the ASCII value of

a character, you can print that character (whether it is a constant

or a variable) with the integer %d conversion character. Instead

of printing the character, printf() prints the matching ASCII

number for that character.

Conversely, if you print an integer with a %c conversion char-

acter, you see the character that matches that integer’s value

from the ASCII table.

The following printf()s illustrate this fact:

printf(“%c”, 65); // Prints the letter A.

printf(“%d”, ‘A’); // Prints the number 65.

The scanf() Function
The scanf() function reads input from the keyboard. When

your programs reach the line with a scanf(), the user can enter values

directly into variables. Your program can then process the variables

and produce output.

The scanf() function looks much like printf(). It contains a

control string and one or more variables to the right of the control

string. The control string informs C++ exactly what the incoming

keyboard values look like, and what their types are. The format of

scanf() is

scanf(control_string, one or more values);

The scanf()
function stores
keyboard input to
variables.

155

EXAMPLE
C++ By

The scanf() control_string uses almost the same conversion

characters as the printf() control_string, with two slight differences.

You should never include the newline character, \n, in a scanf()

control string. The scanf() function “knows” when the input is

finished when the user presses Enter. If you supply an additional

newline code, scanf() might not terminate properly. Also, always

put a beginning space inside every scanf() control string. This does

not affect the user’s input, but scanf() sometimes requires it to work

properly. Later examples in this chapter clarify this fact.

As mentioned earlier, scanf() poses a few problems. The scanf()

function requires that your user type the input exactly the way

control_string specifies. Because you cannot control your user’s

typing, this cannot always be ensured. For example, you might

want the user to enter an integer value followed by a floating-point

value (your scanf() control string might expect it too), but your user

might decide to enter something else! If this happens, there is not

much you can do. The resulting input is incorrect, but your C

program has no reliable method for testing user accuracy before

your program is run.

CAUTION: The user’s keyboard input values must match, in

number and type, the control string contained in each scanf().

Another problem with scanf() is not as easy for beginners to

understand as the last. The scanf() function requires that you use

pointer variables, not regular variables, in its parentheses. Although

this sounds complicated, it doesn’t have to be. You should have no

problem with scanf()’s pointer requirements if you remember these

two simple rules:

1. Always put an ampersand (&) before variable names inside a

scanf().

2. Never put an ampersand (&) before an array name inside a

scanf().

Despite these strange scanf() rules, you can learn this function

quickly by looking at a few examples.

The scanf()
function requires
that your user type
accurately. This is
not always possible
to guarantee!

Chapter 7 ♦ Simple Input/Output

156

Examples

1. If you want a program that computes a seven percent sales

tax, you could use the scanf() statement to receive the sales,

compute the tax, and print the results as the following

program shows.

// Filename: C7SLTXS.CPP

// Compute a sales amount and print the sales tax.

#include <stdio.h>

main()

{

 float total_sale; // User’s sale amount goes here.

 float stax;

 // Display a message for the user.

 printf(“What is the total amount of the sale? “);

 // Compute the sales amount from user.

 scanf(“ %f”, &total_sale); // Don’t forget the beginning

 // space and an &.

 stax = total_sale * .07; // Calculate the sales tax.

 printf(“The sales tax for %.2f is %.2f”, total_sale, stax);

 return 0;

}

If you run this program, the program waits for you to enter a

value for the total sale. Remember to use the ampersand in

front of the total_sale variable when you enter it in the

scanf() function. After pressing the Enter key, the program

calculates the sales tax and prints the results.

If you entered 10.00 as the sale amount, you would receive

the following output :

The sales tax for 10.00 is 0.70

2. Use the string %s conversion character to input keyboard

strings into character arrays with scanf(). As with cin, you

are limited to inputting one word at a time, because you

157

EXAMPLE
C++ By

cannot type more than one word into a single character array

with scanf(). The following program is similar to

C7PHON1.CPP except the scanf() function, rather than cin,

is used. It must store two names in two different character

arrays, because scanf() cannot input both names at once. The

program then prints the names in reverse order.

// Filename: C7PHON2.CPP

// Program that requests the user’s name and prints it

// to the screen as it would appear in a phone book.

#include <stdio.h>

main()

{

 char first[20], last[20];

 printf(“What is your first name? “);

 scanf(“ %s”, first);

 printf(“What is your last name? “);

 scanf(“ %s”, last);

 printf(“\n\n”); // Prints two blank lines.

 printf(“In a phone book, your name would look like”

 “this:\n”);

 printf(“%s, %s”, last, first);

 return 0;

}

3. How many values are entered with the following scanf(),

and what are their types?

scanf(“ %d %d %f %s”, &i, &j, &k, l);

Review Questions
The answers to the Review Questions are in Appendix B.

] 1. What is the difference between cout and cin?

2. Why is a prompt message important before using cin for

input?

Chapter 7 ♦ Simple Input/Output

158

3. How many values do you enter with the following cin?

cin >> i >> j >> k >> l;

4. Because they both assign values to variables, is there any

difference between assigning values to variables and using

cin to give them values?

5. True or false: The %s conversion character is usually not

required in printf() control strings.

6. Which types of variables do not require the ampersand (&)

character in scanf() functions?

7. What is the output produced by the following cout?

cout << “The backslash \”\\\” character is special”;

8. What is the result of the following cout?

cout << setw(8) << setprecision(3) << 123.456789;

Review Exercises
1. Write a program that prompts the user for his or her name

and weight. Store these values in separate variables and

print them on-screen.

2. Assume you are a college professor and have to average

grades for 10 students. Write a program that prompts you

for 10 different grades, then displays an average of them.

3. Modify the program in Exercise 2 to ask for each student’s

name as well as her grade. Print the grade list to the screen,

with each student’s name and grade in two columns. Make

sure the columns align by using a setw manipulator on the

grade. At the bottom, print the average of the grades. (Hint:
Store the 10 names and 10 grades in different variables with

different names.) This program is easy, but takes thirty or so

lines, plus appropriate comments and prompts. Later, you

learn ways to streamline this program.

159

EXAMPLE
C++ By

4. This exercise tests your understanding of the backslash

conversion character: Write a program that uses cout opera-

tors to produce the following picture on-screen:

 +

 /*\

 |||

 * |||

 ** |||

 /\ __* |||

 / \|| /|||\

 / | / * \

 / |======|\ ***

 | + + | *

 | || |

 ____|_+||+_|______________/================_______

Summary
You now can print almost anything to the screen. By studying

the manipulators and how they behave, you can control your output

more thoroughly than ever before. Also, because you can receive

keyboard values, your programs are much more powerful. No

longer do you have to know your data values when you write the

program. You can ask the user to enter values into variables with cin.

You have the tools to begin writing programs that fit the data

processing model of INPUT->PROCESS->OUTPUT. This chapter

concludes the preliminary discussion of the C++ language. This part

of the book attempted to give you an overview of the language and

to teach you enough of the language elements so you can begin

writing helpful programs.

Chapter 8, “Using C++ Math Operators and Precedence,”

begins a new type of discussion. You learn how C++’s math and

relational operators work on data, and the importance of the prece-

dence table of operators.

Chapter 7 ♦ Simple Input/Output

160

