

I n t r o d u c t i o n 1

Delphi for Windows

Copyright
Agreement

I n t r o d u c t i o n

This manual is about the Object Pascal language as it is used in Delphi. For an overview
of the Delphi documentation, see the introduction to the Delphi User’s Guide. This
manual

• Presents the formal definition of the Object Pascal language

• Describes what goes on inside an Object Pascal application in regard to memory, data
formats, calling conventions, input and output, and automatic optimizations

• Explains how to use assembly language in Object Pascal applications

• Introduces the command-line compiler for Delphi

• Explains the use of compiler directives

• Presents explanations of error messages

What’s in this manual?
This manual contains several different kinds of information:

• The first twelve chapters define the Object Pascal language, examining each element
of a program in detail.

• The next six chapters present technical information for advanced users about input
and output, numerical processing, memory management, program control, and
optimization.

• The last two chapters explain how to use the built-in assembler and how to link
assembly-language code into your Delphi applications.

At the end of the book there are three appendixes, describing the use of the command-
line compiler, compiler directives, and error messages.

Syntax Diagrams
In this book you’ll encounter syntax diagrams. For example:

Object Pascal Language Guide

Copyright Agreement
Borland may have patents and/or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents.Copyright © 1995 Borland International. All rights reserved. All Borland products are trademarks or registered trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks of their respective holders.Printed in the U.S.A.

2 O b j e c t P a s c a l L a n g u a g e G u i d e

procedure

procedure heading

identifier

qualified method identifier

formal parameter list

To read a syntax diagram, follow the arrows. Frequently, more than one path is
possible. The above diagram indicates that a formal parameter list is optional in a
procedure heading. You can follow the path from the indentifier to the end of the
procedure heading, or you can follow it to the formal parameter list before reaching
the end.

The names in the boxes stand for constructions. Those in circles — reserved words.
operators, and punctuation — are actual terms used in the programs; they are
boldfaced in the diagrams.

C h a p t e r 1 , T o k e n s 3

 C h a p t e r

1
Tokens

Tokens are the smallest meaningful units of text in an Object Pascal program. They
are categorized as special symbols, identifiers, labels, numbers, and string constants.

An Object Pascal program is made up of tokens and separators. A separator is either
a blank or a comment. Two adjacent tokens must be separated by one or more
separators if each token is a reserved word, an identifier, a label, or a number.
Separators can’t be part of tokens except in string constants.

Special symbols
Object Pascal uses the following subsets of the ASCII character set:

• Letters—the English alphabet, A through Z and a through z

• Digits—the Arabic numerals 0 through 9

• Hex digits—the Arabic numerals 0 through 9, the letters A through F, and the
letters a through f

• Blanks—the space character (ASCII 32) and all ASCII control characters (ASCII 0
through 31), including the end-of-line or return character (ASCII 13)

These are the syntax diagrams for letter, digit, and hex digit:

letter

A Z a z... ...

0 9...
digit

4 O b j e c t P a s c a l L a n g u a g e G u i d e

hex digit digit

A F a f... ...

Special symbols and reserved words are characters that have one or more fixed
meanings. The following single characters are special symbols:

 + - * / = < > [] . , () : ; ^ @ { } $ #

These character pairs are also special symbols:

 <= >= := .. (* *) (. .)

A left bracket ([) is equivalent to the character pair of left parenthesis and a period—
(., and a right bracket (]) is equivalent to the character pair of a period and a right
parenthesis—.). Likewise, a left brace ({) is equivalent to the character pair of left
parenthesis and an asterisk—(*, and a right brace (}) is equivalent to the character
pair of an asterisk and a right parenthesis—*).

Reserved words and standard directives
Reserved words can’t be redefined.

Reserved words appear in lowercase boldface throughout this manual. Object
Pascal is not case sensitive, however, so you can use either uppercase or lowercase
letters in your programs.

Following are Obejct Pascal’s reserved words:

 Table 1-1 Object Pascal reserved words

and exports library set
array file mod shl
as finally nil shr
asm for not string
begin function object then
case goto of to
class if on try
const implementation or type
constructor in packed unit
destructor inherited procedure until
div initialization program uses
do inline property var
downto interface raise while
else is record with
end label repeat xor
except

The following are Object Pascal’s standard directives. Directives are used only in
contexts where user-defined identifiers can’t occur. Unlike reserved words, you can
redefine standard directives, but we advise that you don’t.

C h a p t e r 1 , T o k e n s 5

 Table 1-2 Object Pascal directives

absolute export name published
abstract external near read
assembler far nodefault resident
at forward override stored
cdecl index private virtual
default interrupt protected write
dynamic message public

private, protected, public, and published act as reserved words within object type
declarations, but are otherwise treated as directives.

Identifiers
Identifiers denote constants, types, variables, procedures, functions, units,
programs, and fields in records.

An identifier can be of any length, but only the first 63 characters are significant. An
identifier must begin with a letter or an underscore character (_) and can’t contain
spaces. Letters, digits, and underscore characters (ASCII $5F) are allowed after the
first character. Like reserved words, identifiers are not case sensitive.

When several instances of the same identifier exist, you may need to qualify the
identifier by another identifier to select a specific instance. For example, to qualify
the identifier Ident by the unit identifier UnitName, write UnitName.Ident. The
combined identifier is called a qualified identifier. Units are described on page 206 of
the Delphi User’s Guide and Chapter 11 of this manual.

identifier

underscore

underscore

letter
letter

digit

underscore _

qualified
identifier identifier

.

Here are some examples of identifiers and qualified identifiers:

Writeln
Exit
Real2String
System.MemAvail
SysUtils.StrLen
WinCrt.ReadText

In this manual, standard and user-defined identifiers are italicized when they are
referred to in text.

6 O b j e c t P a s c a l L a n g u a g e G u i d e

Numbers
Ordinary decimal notation is used for numbers that are constants of integer and real
types. A hexadecimal integer constant uses a dollar sign ($) as a prefix. Engineering
notation (E or e, followed by an exponent) is read as “times ten to the power of” in
real types. For example, 7E-2 means 7 x 10-2; 12.25e+6 or 12.25e6 both mean 12.25 x
10+6. Syntax diagrams for writing numbers follow:

hex digit sequence hex digit

digit sequence digit

unsigned integer digit sequence

hex digit sequence$

sign +

-

unsigned real

digit sequence digit sequence.

scale factor

scale factor E

e
sign

digit sequence

unsigned number unsigned integer

unsigned real

signed number
sign

unsigned number

Numbers with decimals or exponents denote real-type constants. Other decimal
numbers denote integer-type constants; they must be within the range -2,147,483,648
to 2,147,483,647.

Hexadecimal numbers denote integer-type constants; they must be within the range
$00000000 to $FFFFFFFF. The resulting value’s sign is implied by the hexadecimal
notation.

Labels
A label is a digit sequence in the range 0 to 9999. Leading zeros are not significant.
Labels are used with goto statements.

label digit sequence

identifier

C h a p t e r 1 , T o k e n s 7

As an extension to Standard Pascal, Object Pascal allows identifiers to function as
labels.

Character strings
A character string is a sequence of zero or more characters from the extended ASCII
character set, written on one line in the program and enclosed by apostrophes.

A character string with nothing between the apostrophes is a null string. Two
sequential apostrophes in a character string denote a single character, an
apostrophe. For example,

'BORLAND' { BORLAND }
'You''ll see' { You'll see }
'''' { ' }
'' { null string }
' ' { a space }

Object Pascal lets you embed control characters in character strings. The # character
followed by an unsigned integer constant in the range 0 to 255 denotes a character of
the corresponding ASCII value. There must be no separators between the #
character and the integer constant. Likewise, if several are part of a character string,
there must be no separators between them. For example,

#13#10
'Line 1'#13'Line2'
#7#7'Wake up!'#7#7

character string

control string

quoted string

quoted string
string character

’ ’

string character

’ ’

any character except or’ CR

control string unsigned integer#

A character string’s length is the actual number of characters in the string. A
character string of any length is compatible with any string type, and with the PChar
type when the extended syntax is enabled {$X+}. Also, a character string of length
one is compatible with any Char type, and a character string of length N, where N is
greater than or equal to one, is compatible with packed arrays of N characters.

Comments
The following constructs are comments and are ignored by the compiler:

8 O b j e c t P a s c a l L a n g u a g e G u i d e

{ Any text not containing right brace }
(* Any text not containing star/right parenthesis *)

A comment that contains a dollar sign ($) immediately after the opening { or (* is a
compiler directive. A mnemonic of the compiler command follows the $ character.

Program lines
Object Pascal program lines have a maximum length of 126 characters.

C h a p t e r 2 , C o n s t a n t s 9

 C h a p t e r

2
Constants

A constant is an identifier that marks a value that can’t change. A constant declaration
declares a constant within the block containing the declaration. A constant identifier
can’t be included in its own declaration.

constant declaration identifier = constant ;

Object Pascal allows the use of constant expressions. A constant expression is an
expression that can be evaluated by the compiler without actually executing the
program. Wherever Standard Pascal allows only a simple constant, Object Pascal
allows a constant expression.

Examples of constant expressions follow:

100
'A'x
256 - 1
(2.5 + 1) / (2.5 - 1)
'Borland' + ' ' + 'Pascal'
Chr(32)
Ord('Z') - Ord('A') + 1

The simplest case of a constant expression is a simple constant, such as 100 or ‘A’.

constant expression

Because the compiler has to be able to completely evaluate a constant expression at
compile time, the following constructs are not allowed in constant expressions:

• References to variables and typed constants (except in constant address
expressions as described on page 35)

• Function calls (except those noted in the following text)

1 0 O b j e c t P a s c a l L a n g u a g e G u i d e

• The address operator (@) (except in constant address expressions as described on
page 35)

Except for these restrictions, constant expressions follow the syntactical rules as
ordinary expressions. For expression syntax, see Chapter 5, “Expressions.”

The following standard functions are allowed in constant expressions:

Ab Length Ord SizeOf

Chr Lo Pred Succ

Hi Low Ptr Swap

High Odd Round Trunc

Here are some examples of the use of constant expressions in constant declarations:

const
 Min = 0;
 Max = 100;
 Center = (Max - Min) div 2;
 Beta = Chr(225);
 NumChars = Ord('Z') - Ord('A') + 1;
 Message = 'Out of memory';
 ErrStr = ' Error: ' + Message + '. ';
 ErrPos = 80 - Length(ErrStr) div 2;
 Ln10 = 2.302585092994045684;
 Ln10R = 1 / Ln10;
 Numeric = ['0'..'9'];
 Alpha = ['A'..'Z', 'a'..'z'];
 AlphaNum = Alpha + Numeric;

C h a p t e r 3 , T y p e s 1 1

 C h a p t e r

3
Types

When you declare a variable, you must state its type. A variable’s type circumscribes
the set of values it can have and the operations that can be performed on it. A type
declaration specifies the identifier that denotes a type.

type declaration identifier ;type=

When an identifier occurs on the left side of a type declaration, it’s declared as a type
identifier for the block in which the type declaration occurs. A type identifier’s scope
doesn’t include itself except for pointer types.

type simple type

pointer type

structured type

string type

procedural type

type identifier

There are six major type classes. They are described in the following sections.

Simple types
Simple types define ordered sets of values.

simple type ordinal type

real type

real type real type identifier

1 2 O b j e c t P a s c a l L a n g u a g e G u i d e

A real type identifier is one of the standard identifiers: Real, Single, Double, Extended,
or Comp. Chapter 1 explains how to denote constant integer type and real type
values.

Ordinal types
Ordinal types are a subset of simple types. All simple types other than real types are
ordinal types, which are set off by six characteristics:

• All possible values of a given ordinal type are an ordered set, and each possible
value is associated with an ordinality, which is an integral value. Except for
integer type values, the first value of every ordinal type has ordinality 0, the next
has ordinality 1, and so on for each value in that ordinal type. The ordinality of
an integer type value is the value itself. In any ordinal type, each value other than
the first has a predecessor, and each value other than the last has a successor
based on the ordering of the type.

• The standard function Ord can be applied to any ordinal type value to return the
ordinality of the value.

• The standard function Pred can be applied to any ordinal type value to return the
predecessor of the value. If applied to the first value in the ordinal type and if
range checking is enabled {$R+}, Pred produces a run-time error.

• The standard function Succ can be applied to any ordinal type value to return the
successor of the value. If applied to the last value in the ordinal type and if range
checking is enabled {$R+}, Succ produces a run-time error.

• The standard function Low can be applied to an ordinal type identifier and to a
variable reference of an ordinal type. The result is the lowest value in the range of
the given ordinal type.

• The standard function High can be applied to an ordinal type identifier and to a
variable reference of an ordinal type. The result is the highest value in the range
of the given ordinal type.

The syntax of an ordinal type follows:

ordinal type subrange type

enumerated type

ordinal type identifier

Object Pascal has twelve predefined ordinal types: Integer, Shortint, Smallint, Longint,
Byte, Word, Cardinal, Boolean, ByteBool, WordBool, LongBool, and Char. In addition,
there are two other classes of user-defined ordinal types: enumerated types and
subrange types.

Integer types
Object Pascal's predefined integer types are divided into two categories: fundamental
types and generic types. The range and format of the fundamental types is
independent of the underlying CPU and operating system and does not change

C h a p t e r 3 , T y p e s 1 3

across different implementations of Object Pascal. The range and format of the
generic types, on the other hand, depends on the underlying CPU and operating
system.

The fundamental integer types are Shortint, Smallint, Longint, Byte, and Word. Each
fundamental integer type denotes a specific subset of the whole numbers, according
to the following table:

 Table 3-1 Fundamental integer types

Type Range Format
Shortint -128..127 Signed 8-bit
Smallint -32768..32767 Signed 16-bit
Longint -2147483648..2147483647 Signed 32-bit
Byte 0..255 Unsigned 8-bit
Word 0..65535 Unsigned 16-bit

The generic integer types are Integer and Cardinal. The Integer type represents a
generic signed integer, and the Cardinal type represents a generic unsigned integer.
The actual ranges and storage formats of the Integer and Cardinal vary across
different implementations of Object Pascal, but are generally the ones that result in
the most efficient integer operations for the underlying CPU and operating system.

 Table 3-2 Generic integer types for 16-bit implementations of Object Pascal

Type Range Format
Integer -32768..32767 Signed 16-bit
Cardinal 0..65535 Unsigned 16-bit

 Table 3-3 Generic integer types for 32-bit implementations of Object Pascal

Type Range Format
Integer -2147483648..2147483647 Signed 32-bit
Cardinal 0..2147483647 Unsigned 32-bit

Applications should use the generic integer formats whenever possible, since they
generally result in the best performance for the underlying CPU and operating
system. The fundamental integer types should be used only when the actual range
and/or storage format matters to the application.

Arithmetic operations with integer-type operands use 8-bit, 16-bit, or 32-bit
precision, according to the following rules:

• The type of an integer constant is the predefined integer type with the smallest
range that includes the value of the integer constant.

• For a binary operator (an operator that takes two operands), both operands are
converted to their common type before the operation. The common type is the
predefined integer type with the smallest range that includes all possible values
of both types. For example, the common type of Smallint and Byte is Smallint, and
the common type of Smallint and Word is Longint. The operation is performed
using the precision of the common type, and the result type is the common type.

• The expression on the right of an assignment statement is evaluated
independently from the size or type of the variable on the left.

1 4 O b j e c t P a s c a l L a n g u a g e G u i d e

• Any byte-sized operand is converted to an intermediate word-sized operand that
is compatible with both Smallint and Word before any arithmetic operation is
performed.

An integer-type value can be explicitly converted to another integer type through
typecasting. Typecasting is described in Chapters 4 and 5.

Boolean types
There are four predefined boolean types: Boolean, ByteBool, WordBool, and LongBool.
Boolean values are denoted by the predefined constant identifiers False and True.
Because booleans are enumerated types, these relationships hold:

• False < True

• Ord(False) = 0

• Ord(True) = 1

• Succ(False) = True

• Pred(True) = False

Boolean and ByteBool variables occupy one byte, a WordBool variable occupies two
bytes (one word), and a LongBool variable occupies four bytes (two words). Boolean
is the preferred type and uses the least memory; ByteBool, WordBool, and LongBool
primarily exist to provide compatibility with other languages and the Windows
environment.

A Boolean variable can assume the ordinal values 0 and 1 only, but variables of type
ByteBool, WordBool, and LongBool can assume other ordinal values. An expression of
type ByteBool, WordBool, or LongBool is considered False when its ordinal value is
zero, and True when its ordinal value is nonzero. Whenever a ByteBool, WordBool, or
LongBool value is used in a context where a Boolean value is expected, the compiler
will automatically generate code that converts any nonzero value to the value True.

Char type
Char’s set of values are characters, ordered according to the extended ASCII
character set. The function call Ord(Ch), where Ch is a Char value, returns Ch’s
ordinality.

A string constant of length 1 can denote a constant character value. Any character
value can be generated with the standard function Chr.

Enumerated types
Enumerated types define ordered sets of values by enumerating the identifiers that
denote these values. Their ordering follows the sequence the identifiers are
enumerated in.

enumerated type identifier list()

identifier list identifier

,

C h a p t e r 3 , T y p e s 1 5

When an identifier occurs within the identifier list of an enumerated type, it’s
declared as a constant for the block the enumerated type is declared in. This
constant’s type is the enumerated type being declared.

An enumerated constant’s ordinality is determined by its position in the identifier
list it’s declared in. The enumerated type it’s declared in becomes the constant’s
type. The first enumerated constant in a list has an ordinality of zero.

Here’s an example of an enumerated type:

type
 Suit = (Club, Diamond, Heart, Spade);

Given these declarations, Diamond is a constant of type Suit.

When the Ord function is applied to an enumerated type’s value, Ord returns an
integer that shows where the value falls with respect to the other values of the
enumerated type. Given the preceding declarations, Ord(Club) returns zero,
Ord(Diamond) returns 1, and so on.

Subrange types
A subrange type is a range of values from an ordinal type called the host type. The
definition of a subrange type specifies the smallest and the largest value in the
subrange; its syntax follows:

subrange type constant constant..

Both constants must be of the same ordinal type. Subrange types of the form A..B
require that A is less than or equal to B.

These are examples of subrange types:

0..99
-128..127
Club..Heart

A variable of a subrange type has all the properties of variables of the host type, but
its run-time value must be in the specified interval.

One syntactic ambiguity arises from allowing constant expressions where Standard
Pascal only allows simple constants. Consider the following declarations:

const
 X = 50;
 Y = 10;
type
 Color = (Red, Green, Blue);
 Scale = (X - Y) * 2..(X + Y) * 2;

Standard Pascal syntax dictates that, if a type definition starts with a parenthesis,
it’s an enumerated type, such as the Color type in the previous example. The intent
of the declaration of scale is to define a subrange type, however. The solution is to
reorganize the first subrange expression so that it doesn’t start with a parenthesis, or
to set another constant equal to the value of the expression and use that constant in
the type definition:

1 6 O b j e c t P a s c a l L a n g u a g e G u i d e

type
 Scale = 2 * (X - Y)..(X + Y) * 2;

Real types
A real type has a set of values that is a subset of real numbers, which can be
represented in floating-point notation with a fixed number of digits. A value’s
floating-point notation normally comprises three values—M, B, and E—such that M
x BE = N, where B is always 2, and both M and E are integral values within the real
type’s range. These M and E values further prescribe the real type’s range and
precision.

There are five kinds of real types: Real, Single, Double, Extended, and Comp. The real
types differ in the range and precision of values they hold as shown in the following
table:

 Table 3-4 Real data types

Type Range Significant digits Size in bytes
Real 2.9 x 10-39 .. 1.7 x 1038 11-12 6
Single 1.5 x 10-45 .. 3.4 x 1038 7-8 4
Double 5.0 x 10-324 .. 1.7 x 10308 15-16 8
Extended 3.4 x 10-4932 .. 1.1 x 104932 19-20 10
Comp -263+1 .. 263 -1 19-20 8

The Comp type holds only integral values within -263+1 to 263 -1, which is
approximately -9.2 x 1018 to 9.2 x 1018.

Object Pascal supports two models of code generation for performing real-type
operations: software floating point and 80x87 floating point. The $N compiler
directive is used to select the appropriate model.

80x87 floating point
In the {$N+} state, which is selected by default, the generated code performs all real-
type calculations using 80x87 instructions and can use all five real types. For more
details on 80x87 floating-point code generation, refer to Chapter 14, “Using the
80x87.”

Software floating point
In the {$N-} state, the generated code performs all real-type calculations in software
by calling run-time library routines. For reasons of speed and code size, only
operations on variables of type Real are allowed in this state. Any attempt to
compile statements that operate on the Single, Double, Extended, and Comp types
generates an error.

Note The Delphi Visual Class Library requires that you compile your applications in the
{$N+} state. Unless you are compiling an application that doesn't use VCL, you
should refrain from using the {$N–} state.

C h a p t e r 3 , T y p e s 1 7

String types
A string-type value is a sequence of characters with a dynamic length attribute
(depending on the actual character count during program execution), and a constant
size attribute from 1 to 255. A string type declared without a size attribute is given
the default size attribute 255. The length attribute’s current value is returned by the
standard function Length. Operators for the string types are described in the sections
“String operator” and “Relational operators” in Chapter 5.

string type string
[unsigned integer]

The ordering between any two string values is set by the ordering relationship of the
character values in corresponding positions. In two strings of unequal length, each
character in the longer string without a corresponding character in the shorter string
takes on a higher or greater-than value; for example, ‘xs’ is greater than ‘x’. Null
strings can be equal only to other null strings, and they hold the least string values.

Characters in a string can be accessed as components of an array. See “Arrays,
strings, and indexes” on page 32.

The Low and High standard functions can be applied to a string-type identifier and
to a variable reference of a string type. In this case, Low returns zero, and High
returns the size attribute (maximum length) of the given string.

A variable parameter declared using the OpenString identifier, or using the string
keyword in the {$P+} state, is an open string parameter. Open string parameters allow
string variables of varying sizes to be passed to the same procedure or function.
Read about open string parameters on page 78.

Structured types
A structured type, characterized by its structuring method and by its component
type(s), holds more than one value. If a component type is structured, the resulting
structured type has more than one level of structuring. A structured type can have
unlimited levels of structuring, but the maximum permitted size of any structured
type in Object Pascal is 65,520 bytes.

array type

record type

class type

set type

file type

class reference type

structured type

packed

In Standard Pascal, the word packed in a structured type’s declaration tells the
compiler to compress data storage, even at the cost of diminished access to a

1 8 O b j e c t P a s c a l L a n g u a g e G u i d e

component of a variable of this type. In Object Pascal, however, packed has no
effect; instead packing occurs automatically whenever possible.

Class types and class reference types are the cornerstones of object oriented
programming in Object Pascal. They are described in full in Chapter 9, "Classes".

Array types
Arrays have a fixed number of components of one type—the component type. In the
following syntax diagram, the component type follows the word of.
array type

array [index type]
,

of type

index type ordinal type

The index types, one for each dimension of the array, specify the number of
elements. Valid index types are all ordinal types except Longint and subranges of
Longint. The array can be indexed in each dimension by all values of the
corresponding index type; therefore, the number of elements is the product of the
number of values in each index type.

The following is an example of an array type:

array[1..100] of Real

If an array type’s component type is also an array, you can treat the result as an
array of arrays or as a single multidimensional array. For example,

array[Boolean] of array[1..10] of array[Size] of Real

is interpreted the same way by the compiler as

array[Boolean,1..10,Size] of Real

You can also express

packed array[1..10] of packed array[1..8] of Boolean

as

packed array[1..10,1..8] of Boolean

You access an array’s components by supplying the array’s identifier with one or
more indexes in brackets. See “Arrays, strings, and indexes” on page 32.

When applied to an array-type identifier or a variable reference of an array type, the
Low and High standard functions return the low and high bounds of the index type
of the array.

An array type of the form

packed array[M..N] of Char

where M is less than N is called a packed string type (the word packed can be omitted
because it has no effect in Object Pascal). A packed string type has certain properties

C h a p t e r 3 , T y p e s 1 9

not shared by other array types, as explained below. See “Identical and compatible
types” on page 24.

An array type of the form

array[0..X] of Char

where X is a positive nonzero integer is called a zero-based character array. Zero-based
character arrays are used to store null-terminated strings, and when the extended
syntax is enabled (using a {$X+} compiler directive), a zero-based character array is
compatible with a PChar value. For a complete discussion of this topic, read Chapter
15, “Using null-terminated strings,” beginning on page 153.

A parameter declared using the array of T syntax is an open array parameter. Open
array parameters allow arrays of varying sizes to be passed to the same procedure
or function. Read about open array parameters on page 79.

Record types
A record type comprises a set number of components, or fields, that can be of
different types. The record-type declaration specifies the type of each field and the
identifier that names the field.

record type
field list

endrecord

field list

fixed part
; variant part ;

fixed part identifier list : type

;

The fixed part of a record type sets out the list of fixed fields, giving an identifier
and a type for each. Each field contains information that is always retrieved in the
same way.

The following is an example of a record type:

type
 TDateRec = record
 Year: Integer;
 Month: 1..12;
 Day: 1..31;
 end;

The variant part shown in the syntax diagram of a record-type declaration
distributes memory space for more than one list of fields, so the information can be
accessed in more ways than one. Each list of fields is a variant. The variants overlay
the same space in memory, and all fields of all variants can be accessed at all times.

2 0 O b j e c t P a s c a l L a n g u a g e G u i d e

variant part

case
identifier :

tag field type of variant

;

tag field type ordinal type identifier

variant constant

,

: (
field list

)

You can see from the diagram that each variant is identified by at least one constant.
All constants must be distinct and of an ordinal type compatible with the tag field
type. Variant and fixed fields are accessed the same way.

An optional identifier, the tag field identifier, can be placed in the variant part. If a tag
field identifier is present, it becomes the identifier of an additional fixed field—the
tag field—of the record. The program can use the tag field’s value to show which
variant is active at a given time. Without a tag field, the program selects a variant by
another criterion.

Some record types with variants follow:

type
 TPerson = record
 FirstName, LastName: string[40];
 BirthDate: TDate;
 case Citizen: Boolean of
 True: (BirthPlace: string[40]);
 False: (Country: string[20];
 EntryPort: string[20];
 EntryDate: TDate;
 ExitDate: TDate);
 end;

 TPolygon = record
 X, Y: Real;
 case Kind: Figure of
 TRectangle: (Height, Width: Real);
 TTriangle: (Side1, Side2, Angle: Real);
 TCircle: (Radius: Real);
 end;

Set types
A set type’s range of values is the power set of a particular ordinal type (the base
type). The power set is the set of all possible subsets of values of the base type
including the empty set. Therefore, each possible value of a set type is a subset of
the possible values of the base type.

A variable of a set type can hold from none to all the values of the set. Set-type
operators are described in the section “Set operators” in Chapter 5. “Set
constructors” in the same chapter shows how to construct set values.

C h a p t e r 3 , T y p e s 2 1

set type set of ordinal type

The base type must not have more than 256 possible values, and the ordinal values
of the upper and lower bounds of the base type must be within the range 0 to 255.

Every set type can hold the value [], which is called the empty set.

File types
A file type consists of a linear sequence of components of the component type,
which can be of any type except a file type, any structured type with a file-type
component, or an object type. The number of components isn’t set by the file-type
declaration.

file type file of type

If the word of and the component type are omitted, the type denotes an untyped
file. Untyped files are low-level I/O (input/output) channels primarily used for
direct access to any disk file regardless of its internal format.

The standard file type Text signifies a file containing characters organized into lines.
Text files use special I/O procedures, which are discussed in Chapter 13, “Input and
output.”

Pointer types
A pointer type defines a set of values that point to dynamic variables of a specified
type called the base type. A pointer-type variable contains the memory address of a
dynamic variable.

pointer type ^ base type

base type type identifier

If the base type is an undeclared identifier, it must be declared in the same type
declaration part as the pointer type.

You can assign a value to a pointer variable with the New procedure, the @ operator,
the Ptr function, or the GetMem procedure. New allocates a new memory area in the
application heap for a dynamic variable and stores the address of that area in the
pointer variable. The @ operator directs the pointer variable to the memory area
containing any existing variable or procedure or function entry point, including
variables that already have identifiers. Ptr points the pointer variable to a specific
memory address. GetMem creates a new dynamic variable of a specified size, and
puts the address of the block in the pointer variable.

The reserved word denotes a pointer-valued constant that doesn’t point to anything.

2 2 O b j e c t P a s c a l L a n g u a g e G u i d e

Type Pointer
The predefined type Pointer denotes an untyped pointer; that is, a pointer that
doesn’t point to any specific type. Variables of type Pointer can’t be dereferenced;
writing the pointer symbol ^ after such a variable is an error. Generic pointers,
however, can be typecast to allow dereferencing. Like the value denoted by the
word nil, values of type Pointer are compatible with all other pointer types. For the
syntax of referencing the dynamic variable pointed to by a pointer variable, see
Chapter 4’s section entitled “Pointers and dynamic variables” on page 33.

Type PChar
Object Pascal has a predefined type, PChar, to represent a pointer to a null-
terminated string. The System unit declares PChar as

type PChar = ^Char;

Object Pascal supports a set of extended syntax rules to facilitate handling of null-
terminated strings using the PChar type. For a complete discussion of this topic, see
Chapter 15, “Using null-terminated strings.”

Procedural types
Object Pascal allows procedures and functions to be treated as entities that can be
assigned to variables and passed as parameters. Such actions are made possible
through procedural types.

procedural type

procedure
formal parameter list

formal parameter list
function : result

of object

The syntax for a procedural-type declaration is the same as a that of a procedure or
function header, except that the identifier after the procedure or function keyword
is omitted.

There are two categories of procedural types: Global procedure pointers and method
pointers.

Global procedure pointers
A procedural type declared without the of object clause is called a global procedure
pointer. A global procedure pointer can reference a global procedure or function,
and is encoded as a pointer that stores the address of a global procedure or
function. Some examples of global procedure pointer types follow:

type
 TProcedure = procedure;
 TStrProc = procedure(const S: string);

C h a p t e r 3 , T y p e s 2 3

 TMathFunc = function(X: Double): Double;

Method pointers
A procedural type declared with the of object clause is called a method pointer. A
method pointer can reference a procedure or function method of an object, and is
encoded as two pointers. The first pointer stores the address of a method, and the
second pointer stores a reference to the object that the method belongs to. Some
examples of method pointer types follow:

type
 TMethod = procedure of object;
 TNotifyEvent = procedure(Sender: TObject) of object;

Procedural values
A variable of a procedural type can be assigned a procedural value. Procedural values
can be one of the following:

• The value nil
• A variable reference of a procedural type
• A global procedure or function identifier
• A method designator

In the context of procedural values, a global procedure or function identifier denotes
a global procedure pointer value, and a method designator denotes a method
pointer value. For example, given the following declarations:

type
 TMainForm = class(TForm)
 procedure ButtonClick(Sender: TObject);
 ...
 end;

var
 MainForm: TMainForm;
 MathFunc: TMathFunc;
 OnClick: TNotifyEvent;

function Tan(Angle: Double): Double; far;
begin
 Result := Sin(Angle) / Cos(Angle);
end;

The variables MathFunc and OnClick can be assigned values as follows:

MathFunc := Tan;
OnClick := MainForm.ButtonClick;

and calls can be made using MathFunc and OnClick as follows:

X := MathFunc(X); { Equivalent to X := Tan(X) }
OnClick(Self); { Equivalent to MainForm.ButtonClick(Self) }

2 4 O b j e c t P a s c a l L a n g u a g e G u i d e

Using a procedural variable that contains the value nil in a procedure statement or
function call results in an error. The value nil is intended to indicate that a
procedural variable is unassigned, and whenever there is a possibility that a
procedural value is nil, procedure statements or function calls involving that
procedural variable should be guarded by a test:

if Assigned(OnClick) then OnClick(Self);

The Assigned standard function returns True if the given procedural variable has
been assigned a procedural value, or False if the procedural variable contains nil.

Procedural type compatibility
To be considered compatible, procedural types must have the same number of
parameters, and parameters in corresponding positions must be of identical types.
Finally, the result types of functions must be identical. Parameter names have no
significance when determining procedural-type compatibility.

The value nil is compatible with any procedural type.

Global procedure pointer types and method pointer types are always mutually
incompatible. In other words, a global procedure or function cannot be assigned to a
method pointer variable, and a method cannot be assigned to a global procedure
pointer variable.

To be used as procedural values, global procedures and functions must be declared
with a far directive or compiled in the {$F+} state. Also, standard procedures and
functions, nested procedures and functions, and inline procedures and functions
can’t be used as procedural values.

Standard procedures and functions are the ones declared by the System unit, such as
WriteLn, ReadLn, Chr, and Ord. To use a standard procedure or function as a
procedural value, write a “shell” around it. For example, the following function FSin
is assignment-compatible with the TMathFunc type declared above.

function FSin(X: Real): Real; far;
begin
 FSin := Sin(X);
end;

A procedure or function is nested when it’s declared within another procedure or
function. Such nested procedures and functions can’t be used as procedural values.

Identical and compatible types
Two types can be the same, and this sameness (identity) is mandatory in some
contexts. At other times, the two types need only be compatible or merely
assignment-compatible. They are identical when they are declared with, or their
definitions stem from, the same type identifier.

C h a p t e r 3 , T y p e s 2 5

Type identity
Type identity is required only between actual and formal variable parameters in
procedure and function calls.

Two types—say, T1 and T2—are identical if one of the following is true: T1 and T2
are the same type identifier; T1 is declared to be equivalent to a type identical to T2.

The second condition connotes that T1 doesn’t have to be declared directly to be
equivalent to T2. The type declarations

T1 = Integer;
T2 = T1;
T3 = Integer;
T4 = T2;

result in T1, T2, T3, T4, and Integer as identical types. The type declarations

T5 = set of Char;
T6 = set of Char;

don’t make T5 and T6 identical because set of Char isn’t a type identifier. Two
variables declared in the same declaration, for example,

V1, V2: set of Char;

are of identical types—unless the declarations are separate. The declarations

V1: set of Char;
V2: set of Char;
V3: Integer;
V4: Integer;

mean V3 and V4 are of identical type, but not V1 and V2.

Type compatibility
Compatibility between two types is sometimes required, such as in expressions or in
relational operations. Type compatibility is important, however, as a precondition of
assignment compatibility.

Type compatibility exists when at least one of the following conditions is true:

• Both types are the same.

• Both types are real types.

• Both types are integer types.

• One type is a subrange of the other.

• Both types are subranges of the same host type.

• Both types are set types with compatible base types.

• Both types are packed string types with an identical number of components.

2 6 O b j e c t P a s c a l L a n g u a g e G u i d e

• One type is a string type and the other is either a string type, packed string type,
or Char type.

• One type is Pointer and the other is any pointer type.

• Both types are class types or class reference types, and one type is derived from
the other.

• One type is PChar and the other is a zero-based character array of the form
array[0..X] of Char. (This applies only when extended syntax is enabled with the
{$X+} directive.)

• Both types are pointers to identical types. (This applies only when type-checked
pointers are enabled with the {$T+} directive.)

• Both types are procedural types with identical result types, an identical number
of parameters, and a one-to-one identity between parameter types.

Assignment compatibility
Assignment compatibility is necessary when a value is assigned to something, such
as in an assignment statement or in passing value parameters.

A value of type T2 is assignment-compatible with a type T1 (that is, T1 := T2 is
allowed) if any of the following are true:

• T1 and T2 are identical types and neither is a file type or a structured type that
contains a file-type component at any level of structuring.

• T1 and T2 are compatible ordinal types, and the values of type T2 falls within
the range of possible values of T1 .

• T1 and T2 are real types, and the value of type T2 falls within the range of
possible values of T1.

• T1 is a real type, and T2 is an integer type.

• T1 and T2 are string types.

• T1 is a string type, and T2 is a Char type.

• T1 is a string type, and T2 is a packed string type.

• T1 and T2 are compatible, packed string types.

• T1 and T2 are compatible set types, and all the members of the value of type T2
fall within the range of possible values of T1 .

• T1 and T2 are compatible pointer types.

• T1 is a class type and T2 is a class type derived from T1.

• T1 is a class reference type and T2 is a class reference type derived from T1.

• T1 is a PChar and T2 is a string constant. (This applies only when extended
syntax is enabled {$X+}.)

C h a p t e r 3 , T y p e s 2 7

• T1 is a PChar and T2 is a zero-based character array of the form array[0..X] of
Char. (This applies only when extended syntax is enabled {$X+}.)

• T1 and T2 are compatible procedural types.

• T1 is a procedural type, and T2 is a procedure or function with an identical
result type, an identical number of parameters, and a one-to-one identity between
parameter types.

A compile-time error occurs when assignment compatibility is necessary and none
of the items in the preceding list are true.

The type declaration part
Programs, procedures, functions, and methods that declare types have a type
declaration part. This is an example of a type declaration part:

type
 TRange = Integer;
 TNumber = Integer;
 TColor = (Red, Green, Blue);
 TCharVal = Ord('A')..Ord('Z');
 TTestIndex = 1..100;
 TTestValue = -99..99;
 TTestList = array[TTestIndex] of TTestValue;
 PTestList = ^TTestList;
 TDate = class
 Year: Integer;
 Month: 1..12;
 Day: 1..31;
 procedure SetDate(D, M, Y: Integer);
 function ShowDate: String;
 end;
 TMeasureData = record
 When: TDate;
 Count: TTestIndex;
 Data: PTestList;
 end;
 TMeasureList = array[1..50] of TMeasureData;
 TName = string[80];
 TSex = (Male, Female);
 PPersonData = ^TPersonData;
 TPersonData = record
 Name, FirstName: TName;
 Age: Integer;
 Married: Boolean;
 TFather, TChild, TSibling: PPersonData;
 case S: TSex of
 Male: (Bearded: Boolean);
 Female: (Pregnant: Boolean);
 end;

2 8 O b j e c t P a s c a l L a n g u a g e G u i d e

 TPersonBuf = array[0..SizeOf(TPersonData)-1] of Byte;
 TPeople = file of TPersonData;

In the example, TRange, TNumber, and Integer are identical types. TTestIndex is
compatible and assignment-compatible with, but not identical to, the types
TNumber, TRange, and Integer. Notice the use of constant expressions in the
declarations of TCharVal and TPersonBuf.

C h a p t e r 4 , V a r i a b l e s a n d t y p e d c o n s t a n t s 2 9

 C h a p t e r

4
Variables and typed constants

Variable declarations
A variable is an identifier that marks a value that can change. A variable declaration
embodies a list of identifiers that designate new variables and their type.

variable declaration

identifier list : type
absolute clause

;

The type given for the variable(s) can be a type identifier previously declared in a
type declaration part in the same block, in an enclosing block, or in a unit; it can also
be a new type definition.

When an identifier is specified within the identifier list of a variable declaration, that
identifier is a variable identifier for the block in which the declaration occurs. The
variable can then be referred to throughout the block, unless the identifier is
redeclared in an enclosed block. Redeclaration creates a new variable using the
same identifier, without affecting the value of the original variable.

An example of a variable declaration part follows:

var
 X, Y, Z: Double;
 I, J, K: Integer;
 Digit: 0..9;
 C: Color;
 Done, Error: Boolean;
 Operator: (Plus, Minus, Times);
 Hue1, Hue2: set of Color;
 Today: Date;
 Results: MeasureList;
 P1, P2: Person;

3 0 O b j e c t P a s c a l L a n g u a g e G u i d e

 Matrix: array[1..10, 1..10] of Double;

Variables declared outside procedures and functions are called global variables and
they reside in the data segment. Variables declared within procedures and functions
are called local variables and they reside in the stack segment.

The data segment
The maximum size of the data segment is 65,520 bytes. When a program is linked
(this happens automatically at the end of the compilation of a program), the global
variables of all units used by the program, as well as the program’s own global
variables, are placed in the data segment.

If you need more than 65,520 bytes of global data, you should allocate the larger
structures as dynamic variables. For more details on this subject, see “Pointers and
dynamic variables” on page 33.

The stack segment
The size of the stack segment is set through a $M compiler directive—it can be
anywhere from 1,024 to 65,520 bytes. The default stack-segment size is 16,384 bytes
for a Windows application.

Windows places special demands on the data and stack segments of your program,
so the working maximum stack and the data-segment space can be less than the
maximum data and stack segment space mentioned here.

Each time a procedure or function is activated (called), it allocates a set of local
variables on the stack. On exit, the local variables are disposed of. At any time
during the execution of a program, the total size of the local variables allocated by
the active procedures and functions can’t exceed the size of the stack segment.

The $S compiler directive is used to include stack-overflow checks in the code. In
the default {$S+} state, code is generated to check for stack overflow at the
beginning of each procedure and function. In the {$S-} state, no such checks are
performed. A stack overflow can cause a system crash, so don’t turn off stack
checks unless you’re absolutely sure that an overflow will never occur.

Absolute variables
Variables can be declared to reside at specific memory addresses, and are then
called absolute variables. The declaration of such variables must include an absolute
clause following the type:

absolute clause

absolute unsigned integer : unsigned integer

variable identifier

Note The variable declaration’s identifier list can specify only one identifier when an
absolute clause is present.

C h a p t e r 4 , V a r i a b l e s a n d t y p e d c o n s t a n t s 3 1

The first form of the absolute clause specifies the segment and offset at which the
variable is to reside:

CrtMode : Byte absolute $0040:$0049;

The first constant specifies the segment base, and the second specifies the offset
within that segment. Both constants must be within the range $0000 to $FFFF (0 to
65,535).

Note Use the first form of the absolute clause very carefully, if at all. While a program is
running in protected mode, it might not have access rights to memory areas outside
your program. Attempting to access these memory areas will likely crash your
program.

The second form of the absolute clause is used to declare a variable “on top” of
another variable, meaning it declares a variable that resides at the same memory
address as another variable:

var
 Str: string[32];
 StrLen: Byte absolute Str;

This declaration specifies that the variable StrLen should start at the same address as
the variable Str, and because the first byte of a string variable contains the dynamic
length of the string, StrLen contains the length of Str.

This second form of the absolute clause is safe to use in Windows programming.
Memory you are accessing is within your program’s domain.

Variable references
A variable reference signifies one of the following:

• A variable

• A component of a structured- or string-type variable

• A dynamic variable pointed to by a pointer-type variable

This is the syntax of a variable reference:

variable reference variable identifier

variable typecast

expression qualifier

qualifier

Note The syntax for a variable reference allows an expression that computes a pointer
type value. The expression must be followed by a qualifier that dereferences the
pointer value (or indexes the pointer value if the extended syntax is enabled with
the {$X+} directive) to produce an actual variable reference.

3 2 O b j e c t P a s c a l L a n g u a g e G u i d e

Qualifiers
A variable reference can contain zero or more qualifiers that modify the meaning of
the variable reference.

qualifier index

field designator

^

An array identifier with no qualifier, for example, references the entire array:

Results

An array identifier followed by an index denotes a specific component of the
array—in this case, a structured variable:

Results[Current + 1]

With a component that is a record or object, the index can be followed by a field
designator. Here the variable access signifies a specific field within a specific array
component:

Results[Current + 1].Data

The field designator in a pointer field can be followed by the pointer symbol (^) to
differentiate between the pointer field and the dynamic variable it points to:

Results[Current + 1].Data^

If the variable being pointed to is an array, indexes can be added to denote
components of this array:

Results[Current + 1].Data^[J]

Arrays, strings, and indexes
A specific component of an array variable is denoted by a variable reference that
refers to the array variable, followed by an index that specifies the component.

A specific character within a string variable is denoted by a variable reference that
refers to the string variable, followed by an index that specifies the character
position.

index [expression]
,

The index expressions select components in each corresponding dimension of the
array. The number of expressions can’t exceed the number of index types in the
array declaration. Also, each expression’s type must be assignment-compatible with
the corresponding index type.

When indexing a multidimensional array, multiple indexes or multiple expressions
within an index can be used interchangeably. For example,

Matrix[I][J]

C h a p t e r 4 , V a r i a b l e s a n d t y p e d c o n s t a n t s 3 3

is the same as

Matrix[I, J]

You can index a string variable with a single index expression, whose value must be
in the range 0..N, where N is the declared size of the string. This accesses one
character of the string value, with the type Char given to that character value.

The first character of a string variable (at index 0) contains the dynamic length of the
string; that is, Length(S) is the same as Ord(S[0]). If a value is assigned to the length
attribute, the compiler doesn’t check whether this value is less than the declared size
of the string. It’s possible to index a string beyond its current dynamic length. The
characters read are random and assignments beyond the current length don’t affect
the actual value of the string variable.

When the extended syntax is enabled (using the {$X+} compiler directive), a value of
type PChar can be indexed with a single index expression of type Word. The index
expression specifies an offset to add to the character pointer before it’s dereferenced
to produce a Char type variable reference.

Records and field designators
A specific field of a record variable is denoted by a variable reference that refers to
the record variable, followed by a field designator specifying the field.

field designator . field identifier

These are examples of a field designator:

Today.Year
Results[1].Count
Results[1].When.Month

In a statement within a with statement, a field designator doesn’t have to be
preceded by a variable reference to its containing record.

Object component designators
The format of an object component designator is the same as that of a record field
designator; that is, it consists of an instance (a variable reference), followed by a
period and a component identifier. A component designator that designates a
method is called a method designator. A with statement can be applied to an instance
of a class type. In that case, the instance and the period can be omitted in
referencing components of the class type.

The instance and the period can also be omitted within any method block, and when
they are, the effect is the same as if Self and a period were written before the
component reference.

Pointers and dynamic variables
The value of a pointer variable is either nil or the address of a dynamic variable.

The dynamic variable pointed to by a pointer variable is referenced by writing the
pointer symbol (^) after the pointer variable.

3 4 O b j e c t P a s c a l L a n g u a g e G u i d e

You create dynamic variables and their pointer values with the procedures New and
GetMem. You can use the @ (address-of) operator and the function Ptr to create
pointer values that are treated as pointers to dynamic variables.

nil doesn’t point to any variable. The results are undefined if you access a dynamic
variable when the pointer’s value is nil or undefined.

These are examples of references to dynamic variables:

P1^
P1^.Sibling^
Results[1].Data^

Variable typecasts
Variable typecasting changes the variable reference of one type into a variable
reference of another type. The programmer is responsible for determining the
validity of a typecast.

variable typecast

type identifier (variable reference)

When a variable typecast is applied to a variable reference, the variable reference is
treated as an instance of the type specified by the type identifier. The size of the
variable must be the same as the size of the type denoted by the type identifier.

A variable typecast can be followed by one or more qualifiers, as allowed by the
specific type.

Some examples of variable typecasts follow:

type
 TByteRec = record
 Lo, Hi: Byte;
 end;
 TWordRec = record
 Low, High: Word;
 end;
 TPtrRec = record
 Ofs, Seg: Word;
 end;
 PByte = ^Byte;
var
 B: Byte;
 W: Word;
 L: Longint;
 P: Pointer;

begin
 W := $1234;
 B := TByteRec(W).Lo;
 TByteRec(W).Hi := 0;

C h a p t e r 4 , V a r i a b l e s a n d t y p e d c o n s t a n t s 3 5

 L := $01234567;
 W := TWordRec(L).Low;
 B := TByteRec(TWordRec(L).Low).Hi;
 B := PByte(L)^;
 P := Ptr($40,$49);
 W := TPtrRec(P).Seg;
 Inc(TPtrRec(P).Ofs, 4);
end.

Notice the use of the TByteRec type to access the low- and high-order bytes of a
word. This corresponds to the built-in functions Lo and Hi, except that a variable
typecast can also be used on the left side of an assignment. Also, observe the use of
the TWordRec and TPtrRec types to access the low- and high-order words of a long
integer and the offset and segment parts of a pointer.

Object Pascal fully supports variable typecasts involving procedural types. For
example, given the declarations

type
 Func = function(X: Integer): Integer;
var
 F: Func;
 P: Pointer;
 N: Integer;

you can construct the following assignments:

F := Func(P); { Assign procedural value in P to F }
Func(P) := F; { Assign procedural value in F to P }
@F := P; { Assign pointer value in P to F }
P := @F; { Assign pointer value in F to P }
N := F(N); { Call function via F }
N := Func(P)(N); { Call function via P }

In particular, notice that the address operator (@), when applied to a procedural
variable, can be used on the left side of an assignment. Also, notice the typecast on
the last line to call a function via a pointer variable.

Typed constants
Typed constants can be compared to initialized variables—variables whose values
are defined on entry to their block. Unlike an untyped constant, the declaration of a
typed constant specifies both the type and the value of the constant.

typed constant declaration

identifier : type = typed constant

3 6 O b j e c t P a s c a l L a n g u a g e G u i d e

typed constant constant

address constant

array constant

record constant

procedural constant

Typed constants can be used exactly like variables of the same type and they can
appear on the left-hand side in an assignment statement. Note that typed constants
are initialized only once—at the beginning of a program. Therefore, for each entry to
a procedure or function, the locally declared typed constants aren’t reinitialized.

In addition to a normal constant expression, the value of a typed constant can be
specified using a constant-address expression. A constant-address expression is an
expression that involves taking the address, offset, or segment of a global variable, a
typed constant, a procedure, or a function. Constant-address expressions can’t
reference local variables (stack-based) or dynamic (heap-based) variables, because
their addresses can’t be computed at compile time.

Simple-type constants
Declaring a typed constant as a simple type specifies the value of the constant:

const
 Maximum: Integer = 9999;
 Factor: Real = -0.1;
 Breakchar: Char = #3;

As mentioned earlier, the value of a typed constant can be specified using a
constant-address expression, that is, an expression that takes the address, offset, or
segment of a global variable, a typed constant, a procedure, or a function. For
example,

var
 Buffer: array[0..1023] of Byte;
const
 BufferOfs: Word = Ofs(Buffer);
 BufferSeg: Word = Seg(Buffer);

Because a typed constant is actually a variable with a constant value, it can’t be
interchanged with ordinary constants. For example, it can’t be used in the
declaration of other constants or types:

const
 Min: Integer = 0;
 Max: Integer = 99;
type
 Vector = array[Min..Max] of Integer;

The Vector declaration is invalid because Min and Max are typed constants.

C h a p t e r 4 , V a r i a b l e s a n d t y p e d c o n s t a n t s 3 7

String-type constants
The declaration of a typed constant of a string type specifies the maximum length of
the string and its initial value:

const
 Heading: string[7] = 'Section';
 NewLine: string[2] = #13#10;
 TrueStr: string[5] = 'Yes';
 FalseStr: string[5] = 'No';

Structured-type constants
The declaration of a structured-type constant specifies the value of each of the
structure’s components. Object Pascal supports the declaration of array, record, and
set type constants. File type constants and constants of array, and record types that
contain file type components aren’t allowed.

Array-type constants
The declaration of an array-type constant, enclosed in parentheses and separated by
commas, specifies the values of the components.

array constant (typed constant)

,

This is an example of an array-type constant:

type
 TStatus = (Active, Passive, Waiting);
 TStatusMap = array[TStatus] of string[7];
const
 StatStr: TStatusMap = ('Active', 'Passive', 'Waiting');

This example defines the array constant StatStr, which can be used to convert values
of type TStatus into their corresponding string representations. These are the
components of StatStr:

StatStr[Active] = 'Active'
StatStr[Passive] = 'Passive'
StatStr[Waiting] = 'Waiting'

The component type of an array constant can be any type except a file type. Packed
string-type constants (character arrays) can be specified both as single characters
and as strings. The definition

const
 Digits: array[0..9] of Char = ('0', '1', '2', '3', '4', '5',
 '6', '7', '8', '9');

can be expressed more conveniently as

const
 Digits: array[0..9] of Char = '0123456789';

3 8 O b j e c t P a s c a l L a n g u a g e G u i d e

When the extended syntax is enabled (using a {$X+} compiler directive), a zero-
based character array can be initialized with a string that is shorter than the
declared length of the array. For example,

 const
 FileName = array[0..79] of Char = 'TEST.PAS';

In such cases, the remaining characters are set to NULL (#0) and the array
effectively contains a null-terminated string. For more about null-terminated strings,
see Chapter15.

Multidimensional-array constants are defined by enclosing the constants of each
dimension in separate sets of parentheses, separated by commas. The innermost
constants correspond to the rightmost dimensions. The declaration

type
 TCube = array[0..1, 0..1, 0..1] of Integer;
const
 Maze: TCube = (((0, 1), (2, 3)), ((4, 5), (6, 7)));

provides an initialized array Maze with the following values:

Maze[0, 0, 0] = 0
Maze[0, 0, 1] = 1
Maze[0, 1, 0] = 2
Maze[0, 1, 1] = 3
Maze[1, 0, 0] = 4
Maze[1, 0, 1] = 5
Maze[1, 1, 0] = 6
Maze[1, 1, 1] = 7

Record-type constants
The declaration of a record-type constant specifies the identifier and value of each
field, enclosed in parentheses and separated by semicolons.

record constant

(field identifier : typed constant)

;

Some examples of record constants follow:

type
 TPoint = record
 X, Y: Real;
 end;
 TVector = array[0..1] of Point;
 TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,
 Nov, Dec);
 TDate = record
 D: 1..31;
 M: Month;
 Y: 1900..1999;
 end;

C h a p t e r 4 , V a r i a b l e s a n d t y p e d c o n s t a n t s 3 9

const
 Origin: TPoint = (X: 0.0; Y: 0.0);
 Line: TVector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0));
 SomeDay: TDate = (D: 2; M: Dec; Y: 1960);

The fields must be specified in the same order as they appear in the definition of the
record type. If a record contains fields of file types, the constants of that record type
can’t be declared. If a record contains a variant, only fields of the selected variant
can be specified. If the variant contains a tag field, then its value must be specified.

Set-type constants
Just like a simple-type constant, the declaration of a set-type constant specifies the
value of the set using a constant expression. Here are some examples:

type
 TDigits = set of 0..9;
 TLetters = set of 'A'..'Z';
const
 EvenDigits: TDigits = [0, 2, 4, 6, 8];
 Vowels: TLetters = ['A', 'E', 'I', 'O', 'U', 'Y'];
 HexDigits: set of '0'..'z' = ['0'..'9', 'A'..'F', 'a'...f'];

Pointer-type constants
The declaration of a pointer-type constant uses a constant-address expression to
specify the pointer value. Some examples follow:

type
 TDirection = (Left, Right, Up, Down);
 TStringPtr = ^String;
 TNodePtr = ^Node;
 TNode = record
 Next: TNodePtr;
 Symbol: TStringPtr;
 Value: TDirection;
 end;

const
 S1: string[4] = 'DOWN';
 S2: string[2] = 'UP';
 S3: string[5] = 'RIGHT';
 S4: string[4] = 'LEFT';
 N1: TNode = (Next: nil; Symbol: @S1; Value: Down);
 N2: TNode = (Next: @N1; Symbol: @S2; Value: Up);
 N3: TNode = (Next: @N2; Symbol: @S3; Value: Right);
 N4: TNode = (Next: @N3; Symbol: @S4; Value: Left);
 DirectionTable: TNodePtr = @N4;

When the extended syntax is enabled (using a {$X+} compiler directive), a typed
constant of type PChar can be initialized with a string constant. For example,

 const

4 0 O b j e c t P a s c a l L a n g u a g e G u i d e

 Message: PChar = 'Program terminated';
 Prompt: PChar = 'Enter values: ';
 Digits: array[0..9] of PChar = (
 'Zero', 'One', 'Two', 'Three', 'Four',
 'Five', 'Six', 'Seven', 'Eight', 'Nine');

The result is that the pointer now points to an area of memory that contains a zero-
terminated copy of the string literal. See Chapter15, “Using null-terminated strings,”
for more information.

Procedural-type constants
A procedural-type constant must specify the identifier of a procedure or function
that is assignment-compatible with the type of the constant, or it must specify the
value nil.

nil

procedural constant procedure identifier

function identifier

Here’s an example:

type
 TErrorProc = procedure(ErrorCode: Integer);

procedure DefaultError(ErrorCode: Integer); far;
begin
 Writeln('Error ', ErrorCode, '.');
end;

const
 ErrorHandler: TErrorProc = DefaultError;

C h a p t e r 5 , E x p r e s s i o n s 4 1

 C h a p t e r

5
Expressions

Expressions are made up of operators and operands. Most Object Pascal operators are
binary; they take two operands. The rest are unary and take only one operand.
Binary operators use the usual algebraic form (for example, A + B). A unary
operator always precedes its operand (for example, -B).

In more complex expressions, rules of precedence clarify the order in which
operations are performed.

 Table 5-1 Precedence of operators

Operators Precedence Categories
@, not first (high) unary operators
*, /, div, mod, and, shl, shr, as second multiplying operators
+,-, or, xor third adding operators
=, <>, <, >, <=, >=, in, is fourth (low) relational operators

There are three basic rules of precedence:

• An operand between two operators of different precedence is bound to the
operator with higher precedence.

• An operand between two equal operators is bound to the one on its left.

• Expressions within parentheses are evaluated prior to being treated as a single
operand

Operations with equal precedence are normally performed from left to right,
although the compiler may rearrange the operands to generate optimum code.

Expression syntax
The precedence rules follow from the syntax of expressions, which are built from
factors, terms, and simple expressions.

4 2 O b j e c t P a s c a l L a n g u a g e G u i d e

A factor’s syntax follows:

(

not

)

factor

unsigned constant

function call

sign

set constructor

value typecast

address factor

expression

factor

factor

variable reference

A function call activates a function and denotes the value returned by the function.
See “Function calls” on page 50.

A set constructor denotes a value of a set type. See “Set constructors” on page 50.

A value typecast changes the type of a value. See “Value typecasts” on page 51.

An address factor computes the address of a variable, procedure, function, or
method. See “The @ operator” on page 49.

An unsigned constant has the following syntax:

unsigned constant unsigned number

character string

constant identifier

nil

These are some examples of factors:

X { Variable reference }
@X { Pointer to a variable }
15 { Unsigned constant }
(X + Y + Z) { Subexpression }
Sin(X / 2) { Function call }
exit['0'..'9', 'A'..'Z'] { Set constructor }
not Done { Negation of a Boolean }
Char(Digit + 48) { Value typecast }

Terms apply the multiplying operators to factors:

C h a p t e r 5 , E x p r e s s i o n s 4 3

term factor

*

/

div

mod

and

shl

shr

as

Here are some examples of terms:

X * Y
Z / (1 - Z)
Y shl 2
(X <= Y) and (Y < Z)

Simple expressions apply adding operators and signs to terms:

simple expression term

+

-

or

xor

Here are some examples of simple expressions:

X + Y
-X
Hue1 + Hue2
I * J + 1

An expression applies the relational operators to simple expressions:

expression

simple expression
simple expression<

<=

>

>=

=

<>

in

is

Here are some examples of expressions:

X = 1.5

4 4 O b j e c t P a s c a l L a n g u a g e G u i d e

Done <> Error
(I < J) = (J < K)
C in Hue1

Operators
Operators are classified as arithmetic operators, logical operators, string operators,
character-pointer operators, set operators, relational operators, and the @ operator.

Arithmetic operators
The following tables show the types of operands and results for binary and unary
arithmetic operations.

 Table 5-2 Binary arithmetic operations

Operator Operation Operand types Result type
+ addition integer type integer type

real type real type
- subtraction integer type integer type

real type real type
* multiplication integer type integer type

real type real type
/ division integer type real type

real type real type
div integer division integer type integer type
mod remainder integer type integer type

The + operator is also used as a string or set operator, and the +, -, and * operators
are also used as set operators.

 Table 5-3 Unary arithmetic operations

Operator Operation Operand types Result type
+ sign identity integer type integer type

real type real type
- sign negation integer type integer type

real type real type

Any operand whose type is a subrange of an ordinal type is treated as if it were of
the ordinal type.

If both operands of a +, -,*, div, or mod operator are of an integer type, the result
type is of the common type of the two operands. For a definition of common types,
see page 12.

If one or both operands of a +, -, or * operator are of a real type, the type of the
result is Real in the {$N-} state or Extended in the {$N+} state.

If the operand of the sign identity or sign negation operator is of an integer type, the
result is of the same integer type. If the operator is of a real type, the type of the
result is Real or Extended.

C h a p t e r 5 , E x p r e s s i o n s 4 5

The value of X / Y is always of type Real or Extended regardless of the operand types.
A run-time error occurs if Y is zero.

The value of I div J is the mathematical quotient of I / J, rounded in the direction of
zero to an integer-type value. A run-time error occurs if J is zero.

The mod operator returns the remainder obtained by dividing its two operands;
that is,

I mod J = I - (I div J) * J

The sign of the result of mod is the same as the sign of I. A run-time error occurs if J
is zero.

Logical operators
The types of operands and results for logical operations are shown in the following
table.

 Table 5-4 Logical operations

Operator Operation Operand types Result
type

not bitwise negation integer type Boolean
and bitwise and integer type Boolean
or bitwise or integer type Boolean
xor bitwise xor integer type Boolean
shl Operation integer type Boolean
shr Operation integer type Boolean

If the operand of the not operator is of an integer type, the result is of the same
integer type. The not operator is a unary operator.

If both operands of an and, or, or xor operator are of an integer type, the result type
is the common type of the two operands.

The operations I shl J and Ishr J shift the value of I to the left right by J bits. The
result type is the same as the type of I.

Boolean operators
The types of operands and results for Boolean operations are shown in the following
table.

 Table 5-5 Boolean operations

Operator Operation Operand types Result type
not negation Boolean type Boolean
and logical and Boolean type Boolean
or logical or Boolean type Boolean
xor logical xor Boolean type Boolean

Normal Boolean logic governs the results of these operations. For instance, A and B
is True only if both A and B are True.

4 6 O b j e c t P a s c a l L a n g u a g e G u i d e

Object Pascal supports two different models of code generation for the and and or
operators: complete evaluation and short-circuit (partial) evaluation.

Complete evaluation means that every operand of a Boolean expression built from
the and and or operators is guaranteed to be evaluated, even when the result of the
entire expression is already known. This model is convenient when one or more
operands of an expression are functions with side effects that alter the meaning of
the program.

Short-circuit evaluation guarantees strict left-to-right evaluation and that evaluation
stops as soon as the result of the entire expression becomes evident. This model is
convenient in most cases because it guarantees minimum execution time, and
usually minimum code size. Short-circuit evaluation also makes possible the
evaluation of constructs that would not otherwise be legal. For example,

while (I <= Length(S)) and (S[I] <> ' ') do
 Inc(I);
while (P <> nil) and (P^.Value <> 5) do
 P := P^.Next;

In both cases, the second test isn’t evaluated if the first test is False.

The evaluation model is controlled through the $B compiler directive. The default
state is {$B-}, and in this state, the compiler generates short-circuit evaluation code.
In the {$B+} state, the compiler generates complete evaluation.

Because Standard Pascal doesn’t specify which model should be used for Boolean
expression evaluation, programs dependent on either model aren’t truly portable.
You may decide, however, that sacrificing portability is worth the gain in execution
speed and simplicity provided by the short-circuit model.

String operator
The types of operands and results for string operation are shown in the following
table.

 Table 5-6 String operation

Operator Operation Operand types Result type
+ concatenation string type, Char type,

or packed string type
string type

Object Pascal allows the + operator to be used to concatenate two string operands.
The result of the operation S + T, where S and T are of a string type, a Char type, or
a packed string type, is the concatenation of S and T. The result is compatible with
any string type (but not with Char types and packed string types). If the resulting
string is longer than 255 characters, it’s truncated after character 255.

Character-pointer operators
The extended syntax (enabled using a {$X+} compiler directive) supports a number
of character-pointer operations. The plus (+) and minus (-) operators can be used to
increment and decrement the offset part of a pointer value, and the minus operator

C h a p t e r 5 , E x p r e s s i o n s 4 7

can be used to calculate the distance (difference) between the offset parts of two
character pointers. Assuming that P and Q are values of type PChar and I is a value
of type Word, these constructs are allowed:

 Table 5-7 Permitted PChar constructs

Operation Result
P + I Add I to the offset part of P
I + P Add I to the offset part of P
P - I Subtract I from the offset part of P
P - Q Subtract offset part of Q from offset part of P

The operations P + I and I + P adds I to the address given by P, producing a pointer
that points I characters after P. The operation P - I subtracts I from the address given
by P, producing a pointer that points I characters before P.

The operation P- Q computes the distance between Q (the lower address) and P (the
higher address), resulting in a value of type Word that gives the number of
characters between Q and P. This operation assumes that P and Q point within the
same character array. If the two character pointers point into different character
arrays, the result is undefined.

Set operators
The types of operands for set operations are shown in the following table.

 Table 5-8 Set operations

Operator Operation Operand types
+ union compatible set types
- difference compatible set types
* intersection compatible set types

The results of set operations conform to the rules of set logic:

• An ordinal value C is in A + B only if C is in A or B.

• An ordinal value C is in A - B only if C is in A and not in B

• An ordinal value C is in A * B only if C is in both A and B.

If the smallest ordinal value that is a member of the result of a set operation is A and
the largest is B, then the type of the result is set of A..B.

Relational operators
The types of operands and results for relational operations are shown in the
following table.

 Table 5-9 Relational operations

Operator type Operation Operand types Result type
= equal compatible simple, class, class reference,

pointer, set, string, or packed string
Boolean

4 8 O b j e c t P a s c a l L a n g u a g e G u i d e

types
<> not equal compatible simple, class, class reference,

pointer, set, string, or packed string
types

Boolean

< less than compatible simple, string, packed string
types, or PChar

Boolean

> greater than compatible simple, string, packed string
types, or PChar

Boolean

<= less than or equal to compatible simple, string, packed string
types, or PChar

Boolean

>= greater than or
equal to

compatible simple, string, or packed
string types, or PChar

Boolean

<= subset of compatible set types Boolean
>= superset of compatible set types Boolean
in member of left operand, any ordinal type T; right

operand, set whose base is compatible
with T

Boolean

Comparing simple types
When the operands =, <>, <, >, >=, or <= are of simple types, they must be
compatible types; however, if one operand is of a real type, the other can be of an
integer type.

Comparing strings
The relational operators =, <>, <, >>, >=, and <= compare strings according to the
ordering of the extended ASCII character set. Any two string values can be
compared because all string values are compatible.

A character-type value is compatible with a string-type value. When the two are
compared, the character-type value is treated as a string-type value with length 1.
When a packed string-type value with N components is compared with a string-
type value, it’s treated as a string-type value with length N.

Comparing packed strings
The relational operators =, <>, <, >, >=, and <= can also be used to compare two
packed string-type values if both have the same number of components. If the
number of components is N, then the operation corresponds to comparing two
strings, each of length N.

Comparing pointers and references
The operators = and <> can be used on compatible pointer-type, class-type, class-
reference-type operands. Two pointers are equal only if they point to the same
object.

Comparing character pointers
 The extended syntax (enabled using a {$X+} compiler directive) allows the >, <, >=,
and <= operators to be applied to PChar values. Note, however, that these relational
tests assume that the two pointers being compared point within the same character
array, and for that reason, the operators only compare the offset parts of the two

C h a p t e r 5 , E x p r e s s i o n s 4 9

pointer values. If the two character pointers point into different character arrays, the
result is undefined.

Comparing sets
If A and B are set operands, their comparisons produce these results:

• A = B is True only if A and B contain exactly the same members; otherwise, A <>
B.

• A <= B is True only if every member of A is also a member of B.

• A >= B is True only if every member of B is also a member of A.

Testing set membership
The in operator returns True when the value of the ordinal-type operand is a
member of the set-type operand; otherwise, it returns False.

Class operators
Object Pascal defines two operators, is and as, that operate on class and object
references. See Chapter 9, “Class types.”

The @ operator
The @ operator is used in an address factor to compute the address of a variable,
procedure, function, or method.

@address factor variable reference

procedure identifier

function identifier

qualified method identifier

The @ operator returns the address of its operand, that is, it constructs a pointer
value that points to the operand.

@ with a variable
When applied to a variable reference, @ returns a pointer to the variable. The type of
the resulting pointer value is controlled through the $T compiler directive: In the
{$T-} state (the default), the result type is Pointer. In other words, the result is an
untyped pointer, which is compatible with all other pointer types. In the {$T+} state,
the type of the result is ^T, where T is the type of the variable reference. In other
words, the result is of a type that is compatible only with other pointers to the type
of the variable.

Special rules apply to use of the @ operator with a procedural variable. For more
details, see “Procedural types in expressions” on page 52.

5 0 O b j e c t P a s c a l L a n g u a g e G u i d e

@ with a procedure, function, or method
You can apply @ to a procedure, function, or method to produce a pointer to the
routine’s entry point. The type of the resulting pointer is always Pointer, regardless
of the state of the $T compiler directive. In other words, the result is always an
untyped pointer, which is compatible with all other pointer types.

When @ is applied to a method, the method must be specified through a qualified-
method identifier (a class-type identifier, followed by a period, followed by a method
identifier).

Function calls
A function call activates a function specified by a function identifier, a method
designator, a qualified-method designator, or a procedural-type variable reference.
The function call must have a list of actual parameters if the corresponding function
declaration contains a list of formal parameters. Each parameter takes the place of
the corresponding formal parameter according to parameter rules explained in
Chapter 8, “Procedures and functions,” on page 75.

function call

function identifier

method designator

qualified method designator

variable reference

actual parameter list

actual parameter list (actual parameter)

,

actual parameter expression

variable reference

These are some examples of function calls:

Sum(A, 63)
Maximum(147, J)
Sin(X + Y)
Eof(F)
Volume(Radius, Height)

In the extended syntax {$X+} mode, function calls can be used as statements; that is,
the result of a function call can be discarded. See “Method activations” on page 93,
and “Procedural types” on page 22.

Set constructors
A set constructor denotes a set-type value, and is formed by writing expressions
within brackets ([]). Each expression denotes a value of the set.

C h a p t e r 5 , E x p r e s s i o n s 5 1

set constructor [
member group

]

,

member group expression
.. expression

The notation [] denotes the empty set, which is assignment-compatible with every
set type. Any member group X..Y denotes as set members all values in the range
X..Y. If X is greater than Y, then X..Y doesn’t denote any members and [X..Y]
denotes the empty set.

All expression values in member groups in a particular set constructor must be of
the same ordinal type.

These are some examples of set constructors:

[red, C, green]
[1, 5, 10..K mod 12, 23]
['A'..'Z', 'a'..'z', Chr(Digit + 48)]

Value typecasts
The type of an expression can be changed to another type through a value typecast.

()value typecast type identifier expression

The expression type and the specified type must both be either ordinal types or
pointer types. For ordinal types, the resulting value is obtained by converting the
expression. The conversion may involve truncation or extension of the original
value if the size of the specified type is different from that of the expression. In cases
where the value is extended, the sign of the value is always preserved; that is, the
value is sign-extended.

The syntax of a value typecast is almost identical to that of a variable typecast.
Value typecasts operate on values, however, not on variables, and therefore they
can’t participate in variable references; that is, a value typecast can’t be followed by
qualifiers. In particular, value typecasts can’t appear on the left side of an
assignment statement. See “Variable typecasts” on page 34.

These are some examples of value typecasts:

Integer('A')
Char(48)
Boolean(0)
Color(2)
Longint(@Buffer)
BytePtr(Ptr($40, $49))

5 2 O b j e c t P a s c a l L a n g u a g e G u i d e

Procedural types in expressions
Usually, using a procedural variable in a statement or an expression calls the
procedure or function stored in the variable. There is one exception: When the
compiler sees a procedural variable on the left side of an assignment statement, it
knows that the right side has to represent a procedural value. For example, consider
the following program:

type
 IntFunc = function: Integer;

var
 F: IntFunc;
 N: Integer;

function ReadInt: Integer; far;
var
 I: Integer;
begin
 Read(I);
 ReadInt := I;
end;

begin
 F := ReadInt; { Assign procedural value }
 N := ReadInt; { Assign function result }
end.

The first statement in the main program assigns the procedural value (address of)
ReadInt to the procedural variable F, where the second statement calls ReadInt and
assigns the returned value to N. The distinction between getting the procedural
value or calling the function is made by the type of the variable being assigned (F or
N).

Unfortunately, there are situations where the compiler can’t determine the desired
action from the context. For example, in the following statement there is no obvious
way the compiler can know if it should compare the procedural value in F to the
procedural value of ReadInt to determine if F currently points to ReadInt, or if it
should call F and ReadInt and then compare the returned values.

if F = ReadInt then
 Edit1.Text := 'Equal';

Object Pascal syntax, however, specifies that the occurrence of a function identifier
in an expression denotes a call to that function, so the effect of the preceding
statement is to call F and ReadInt, and then compare the returned values. To
compare the procedural value in F to the procedural value of ReadInt, the following
construct must be used:

if @F = @ReadInt then
 Edit1.Text := 'Equal';

When applied to a procedural variable or a procedure or function identifier, the
address (@) operator prevents the compiler from calling the procedure, and at the

C h a p t e r 5 , E x p r e s s i o n s 5 3

same time converts the argument into a pointer. @F converts F into an untyped
pointer variable that contains an address, and @ReadInt returns the address of
ReadInt; the two pointer values can then be compared to determine if F currently
refers to ReadInt.

The @ operator is often used when assigning an untyped pointer value to a
procedural variable. For example, the GetProcAddress function defined by Windows
(in the WinProcs unit) returns the address of an exported function in a DLL as an
untyped pointer value. Using the @ operator, the result of a call to GetProcAddress
can be assigned to a procedural variable:

type
 TStrComp = function(Str1, Str2: Pchar): Integer;
var
 StrComp: TStrComp;

ƒ
begin

ƒ
 @StrComp := GetProcAddress(KernelHandle, 'lstrcmpi');

ƒ
end.

Note To get the memory address of a procedural variable rather than the address stored
in it, use a double address (@@) operator. For example, where @P means convert P
into an untyped pointer variable, @@P means return the physical address of the
variable P.

5 4 O b j e c t P a s c a l L a n g u a g e G u i d e

C h a p t e r 6 , S t a t e m e n t s 5 5

 C h a p t e r

6
Statements

Statements describe algorithmic actions that can be executed. Labels can prefix
statements, and these labels can be referenced by goto statements.
statement

label : simple statement

structured statement

A label is either a digit sequence in the range 0 to 9999 or an identifier.

There are two main types of statements: simple statements and structured
statements.

Simple statements
A simple statement is a statement that doesn’t contain any other statements.

simple statement assignment statement

procedure statement

goto statement

Assignment statements
Assignment statements replace the current value of a variable with a new value
specified by an expression. They can be used to set the return value of the function
also.

assignment statement
variable reference

function identifier

: expression=

5 6 O b j e c t P a s c a l L a n g u a g e G u i d e

The expression must be assignment-compatible with the type of the variable or the
type of the function result. See the section “Type compatibility” on page 25.

Some examples of assignment statements follow:

X := Y + Z;
Done := (I >= 1) and (I < 100);
Hue1 := [Blue, Succ(C)];
I := Sqr(J) - I * K;

Procedure statements
A procedure statement activates a procedure specified by a procedure identifier, a
method designator, a qualified-method designator, or a procedural-type variable
reference. If the corresponding procedure declaration contains a list of formal
parameters, then the procedure statement must have a matching list of (parameters
listed in definitions are formal parameters; in the calling statement, they are actual
parameters). The actual parameters are passed to the formal parameters as part of the
call. For more information, see Chapter 8, “Procedures and functions.”

procedure statement

procedure identifier

method designator

qualified method designator

variable reference

actual parameter list

Some examples of procedure statements follow:

PrintHeading;
Transpose(A, N, M);
Find(Name, Address);

Goto statements
A goto statement transfers program execution to the statement marked by the
specified label. The syntax diagram of a goto statement follows:

goto statement goto label

When using goto statements, observe the following rules:

• The label referenced by a goto statement must be in the same block as the goto
statement. In other words, it’s not possible to jump into or out of a procedure or
function.

• Jumping into a structured statement from outside that structured statement (that
is, jumping to a deeper level of nesting) can have undefined effects, although the
compiler doesn’t indicate an error. For example, you shouldn’t jump into the
middle of a for loop.

C h a p t e r 6 , S t a t e m e n t s 5 7

Good programming practices recommend that you use goto statements as little as
possible.

Structured statements
Structured statements are constructs composed of other statements that are to be
executed in sequentially (compound and with statements), conditionally
(conditional statements), or repeatedly (repetitive statements).

structured statement compound statement

conditional statement

repetitive statement

with statement

exception statement

Compound statements
The compound statement specifies that its component statements are to be executed
in the same sequence as they are written. The component statements are treated as
one statement, crucial in contexts where the Object Pascal syntax only allows one
statement. begin and end bracket the statements, which are separated by
semicolons.

compound statement begin statement end

;

Here’s an example of a compound statement:

begin
 Z := X;
 X := Y;
 Y := Z;
end;

Conditional statements
A conditional statement selects for execution a single one (or none) of its component
statements.

conditional statement if statement

case statement

If statements
The syntax for an if statement reads like this:

5 8 O b j e c t P a s c a l L a n g u a g e G u i d e

if statement

if expression then statement

statementelse

The expression must yield a result of the standard type Boolean. If the expression
produces the value True, then the statement following then is executed.

If the expression produces False and the else part is present, the statement following
else is executed; if the else part isn’t present, execution continues at the next
statement following the if statement.

The syntactic ambiguity arising from the construct

if e1 then if e2 then s1 else s2;

is resolved by interpreting the construct as follows:

Note

No semicolon is allowed preceding an else clause.

if e1 then
begin
 if e2 then
 s1
 else
 s2
end;

Usually, an else is associated with the closest if not already associated with an else.

Two examples of if statements follow:

if X < 1.5 then
 Z := X + Y
else
 Z := 1.5;

if P1 <> nil then
 P1 := P1^.Father;

Case statements
The case statement consists of an expression (the selector) and a list of statements,
each prefixed with one or more constants (called case constants) or with the word
else. The selector must be of a byte-sized or word-sized ordinal type, so string types
and the integer type Longint are invalid selector types. All case constants must be
unique and of an ordinal type compatible with the selector type.

case statement case expression of case

;

end
else part ;

C h a p t e r 6 , S t a t e m e n t s 5 9

case constant .. constant : statement

,

else part else statement

The case statement executes the statement prefixed by a case constant equal to the
value of the selector or a case range containing the value of the selector. If no such
case constant of the case range exists and an else part is present, the statement
following else is executed. If there is no else part, execution continues with the next
statement following the if statement.

These are examples of case statements:

case Operator of
 Plus: X := X + Y;
 Minus: X := X - Y;
 Times: X := X * Y;
end;

case I of
 0, 2, 4, 6, 8: Edit1.Text := 'Even digit';
 1, 3, 5, 7, 9: Edit1.Text := 'Odd digit';
 10..100: Edit1.Text := 'Between 10 and 100';
else
 Edit1.Text := ’Negative or greater than 100';
end;

Ranges in case statements must not overlap. So for example, the following case
statement is not allowed:

case MySelector of
 5: Edit1.Text := 'Special case';
 1..10: Edit1.Text := 'General case';
end;

Repetitive statements
Repetitive statements specify certain statements to be executed repeatedly.

repetitive statement repeat statement

while statement

for statement

If the number of repetitions is known beforehand, the for statement is the
appropriate construct. Otherwise, the while or repeat statement should be used.

The Break and Continue standard procedures can be used to control the flow of
repetitive statements: Break terminates a repetitive statement, and Continue
continues with the next iteration of a repetitive statement. For more details on these
standard procedures, see the Visual Component Library Reference.

6 0 O b j e c t P a s c a l L a n g u a g e G u i d e

Repeat statements
A repeat statement contains an expression that controls the repeated execution of a
statement sequence within that repeat statement.

repeat statement

repeat statement until expression

;

The expression must produce a result of type Boolean. The statements between the
symbols repeat and until are executed in sequence until, at the end of a sequence,
the expression yields True. The sequence is executed at least once because the
expression is evaluated after the execution of each sequence.

These are examples of repeat statements:

repeat
 K := I mod J;
 I := J;
 J := K;
until J = 0;

repeat
 Write('Enter value (0..9): ');
 Readln(I);
until (I >= 0) and (I <= 9);

While statements
A while statement contains an expression that controls the repeated execution of a
statement (which can be a compound statement).

while statement while expression do statement

The expression controlling the repetition must be of type Boolean. It is evaluated
before the contained statement is executed. The contained statement is executed
repeatedly as long as the expression is True. If the expression is False at the
beginning, the statement isn’t executed at all.

These are examples of while statements:

while Data[I] <> X do I := I + 1;

while I > 0 do
begin
 if Odd(I) then Z := Z * X;
 I := I div 2;
 X := Sqr(X);
end;

while not Eof(InFile) do
begin
 Readln(InFile, Line);
 Process(Line);

C h a p t e r 6 , S t a t e m e n t s 6 1

end;

For statements
The for statement causes a statement to be repeatedly executed while a progression
of values is assigned to a control variable. Such a statement can be a compound
statement.

for statement for control variable initial value

to

downto
final value do statement

: =

control variable variable identifier

initial value expression

final value expression

The control variable must be a variable identifier (without any qualifier) that is local
in scope to the block containing the for statement. The control variable must be of an
ordinal type. The initial and final values must be of a type assignment-compatible
with the ordinal type. See Chapter 7 for a discussion of locality and scope.

When a for statement is entered, the initial and final values are determined once for
the remainder of the execution of the for statement.

The statement contained by the for statement is executed once for every value in the
range initial value to final value. The control variable always starts off at initial value.
When a for statement uses to, the value of the control variable is incremented by one
for each repetition. If initial value is greater than final value, the contained statement
isn’t executed. When a for statement uses downto, the value of the control variable
is decremented by one for each repetition. If initial value value is less than final value,
the contained statement isn’t executed.

If the contained statement alters the value of the control variable, your results will
probably not be what you expect. After a for statement is executed, the value of the
control variable value is undefined, unless execution of the for statement was
interrupted by a goto from the for statement.

With these restrictions in mind, the for statement

for V := Expr1 to Expr2 do Body;

is equivalent to

begin
 Temp1 := Expr1;
 Temp2 := Expr2;
 if Temp1 <= Temp2 then
 begin
 V := Temp1;
 Body;
 while V <> Temp2 do

6 2 O b j e c t P a s c a l L a n g u a g e G u i d e

 begin
 V := Succ(V);
 Body;
 end;
 end;
end;

and the for statement

for V := Expr1 downto Expr2 do Body;

is equivalent to

begin
 Temp1 := Expr1;
 Temp2 := Expr2;
 if Temp1 >= Temp2 then
 begin
 V := Temp1;
 Body;
 while V <> Temp2 do
 begin
 V := Pred(V);
 Body;
 end;
 end;
end;

where Temp1 and Temp2 are auxiliary variables of the host type of the variable V
and don’t occur elsewhere in the program.

These are examples of for statements:

for I := 2 to 63 do
 if Data[I] > Max then
 Max := Data[I]

for I := 1 to 10 do
 for J := 1 to 10 do
 begin
 X := 0;
 for K := 1 to 10 do
 X := X + Mat1[I, K] * Mat2[K, J];
 Mat[I, J] := X;
 end;

for C := Red to Blue do Check(C);

With statements
The with statement is shorthand for referencing the fields of a record, and the fields
and methods of an object. Within a with statement, the fields of one or more specific
record variables can be referenced using their field identifiers only. The syntax of a
with statement follows:

C h a p t e r 6 , S t a t e m e n t s 6 3

with statement

with record or object
variable reference do statement

,

record or object
variable reference variable reference

Given this type declaration,

type
 TDate = record
 Day : Integer;
 Month: Integer;
 Year : Integer;
 end;

var OrderDate: TDate;

here is an example of a with statement:

with OrderDate do
 if Month = 12 then
 begin
 Month := 1;
 Year := Year + 1
 end
 else
 Month := Month + 1;

This is equivalent to

if OrderDate.Month = 12 then
begin
 OrderDate.Month := 1;
 OrderDate.Year := TDate.Year + 1
end
else
 OrderDate.Month := TDate.Month + 1;

Within a with statement, each variable reference is first checked to see if it can be
interpreted as a field of the record. If so, it’s always interpreted as such, even if a
variable with the same name is also accessible. Suppose the following declarations
have been made:

type
 TPoint = record
 X, Y: Integer;
 end;
var
 X: TPoint;
 Y: Integer;

In this case, both X and Y can refer to a variable or to a field of the record. In the
statement

6 4 O b j e c t P a s c a l L a n g u a g e G u i d e

with X do
begin
 X := 10;
 Y := 25;
end;

the X between with and do refers to the variable of type TPoint, but in the
compound statement, X and Y refer to X.X and X.Y.

The statement

with V1, V2, ... Vn do S;

is equivalent to

with V1 do
 with V2 do

ƒ
 with Vn do
 S;

In both cases, if Vn is a field of both V1 and V2, it’s interpreted as V2.Vn, not V1.Vn.

If the selection of a record variable involves indexing an array or dereferencing a
pointer, these actions are executed once before the component statement is
executed.

C h a p t e r 7 , B l o c k s , l o c a l i t y , a n d s c o p e 6 5

 C h a p t e r

7
Blocks, locality, and scope

A block is made up of declarations, which are written and combined in any order,
and statements. Each block is part of a procedure declaration, a function
declaration, a method declaration, or a program or unit. All identifiers and labels
declared in the declaration part are local to the block.

Blocks
The overall syntax of any block follows this format:

block declaration part statement part

declaration part
label declaration part

constant declaration part

type declaration part

variable declaration part

procedure/function declaration part

exports clause

Labels that mark statements in the corresponding statement part are declared in the
label declaration part. Each label must mark only one statement.

label declaration part label label

,

;

A label must be an identifier or a digit sequence in the range 0 to 9999.

The constant declaration part consists of constant declarations local to the block.

6 6 O b j e c t P a s c a l L a n g u a g e G u i d e

constant declaration part

const constant declaration

typed constant declaration

The type declaration part includes all type declarations local to the block.

type declaration part type type declaration

The variable declaration part is composed of variable declarations local to the block.

variable declaration part var variable declaration

The procedure and function declarations local to the block make up the procedure
and function declaration part.

procedure/function declaration part

procedure declaration

function declaration

constructor declaration

destructor declaration

The exports clause lists all procedures and functions that are exported by the
current program or dynamic-link library. An exports clause is allowed only in the
outermost declaration part of a program or dynamic-link library—it isn’t allowed in
the declaration part of a procedure, function, or unit. See “The exports clause” on
page 135.

The statement part defines the statements or algorithmic actions to be executed by the
block.

statement part compound statement

Rules of scope
The presence of an identifier or label in a declaration defines the identifier or label.
Each time the identifier or label occurs again, it must be within the scope of this
declaration.

Block scope
The scope of an identifier or label declared in a label, constant, type, variable,
procedure, or function declaration stretches from the point of declaration to the end
of the current block, and includes all blocks enclosed by the current block.

An identifier or label declared in an outer block can be redeclared in an inner block
enclosed by the outer block. Before the point of declaration in the inner block, and

C h a p t e r 7 , B l o c k s , l o c a l i t y , a n d s c o p e 6 7

after the end of the inner block, the identifier or label represents the entity declared
in the outer block.

program Outer; { Start of outer scope }
type
 I = Integer; { define I as type Integer }
var
 T: I; { define T as an Integer variable }

procedure Inner; { Start of inner scope }
type
 T = I; { redefine T as type Integer }
var
 I: T; { redefine I as an Integer variable }
begin
 I := 1;
end; { End of inner scope }

begin
 T := 1;
end. { End of outer scope }

Record scope
The scope of a field identifier declared in a record-type definition extends from the
point of declaration to the end of the record-type definition. Also, the scope of field
identifiers includes field designators and with statements that operate on variable
references of the given record type. See “Record types” on page 19.

Class scope
 The scope of a component identifier declared in a class type extends from the point
of declaration to the end of the class-type definition, and extends over all
descendants of the class type and the blocks of all method declarations of the class
type. Also, the scope of component identifiers includes field, method, and property
designators, and with statements that operate on variables of the given class type.
For more information on classes, see Chapter 9, Class Types.

Unit scope
The scope of identifiers declared in the interface section of a unit follows the rules of
block scope and extends over all clients of the unit. In other words, programs or
units containing uses clauses have access to the identifiers belonging to the interface
parts of the units in those uses clauses.

Each unit in a uses clause imposes a new scope that encloses the remaining units
used and the program or unit containing the uses clause. The first unit in a uses
clause represents the outermost scope, and the last unit represents the innermost
scope. This implies that if two or more units declare the same identifier, an
unqualified reference to the identifier selects the instance declared by the last unit in

6 8 O b j e c t P a s c a l L a n g u a g e G u i d e

the uses clause. If you use a qualified identifier (a unit identifier, followed by a
period, followed by the identifier), every instance of the identifier can be selected.

The identifiers of Object Pascal’s predefined constants, types, variables, procedures,
and functions act as if they were declared in a block enclosing all used units and the
entire program. In fact, these standard objects are defined in a unit called System,
which is used by any program or unit before the units named in the uses clause.
This means that any unit or program can redeclare the standard identifiers, but a
specific reference can still be made through a qualified identifier, for example,
System.Integer or System.Writeln.

C h a p t e r 8 , P r o c e d u r e s a n d f u n c t i o n s 6 9

 C h a p t e r

8
Procedures and functions

Procedures and functions let you nest additional blocks in the main program block.
Each procedure or function declaration has a heading followed by a block. See
Chapter 7, “Blocks, locality, and scope,” for a definition of a block. A procedure is
activated by a procedure statement; a function is activated by the evaluation of an
expression that contains its call and returns a value to that expression.

This chapter discusses the different types of procedure and function declarations
and their parameters.

Procedure declarations
A procedure declaration associates an identifier with a block as a procedure; that
procedure can then be activated by a procedure statement.

; ;
procedure declaration

procedure heading subroutine block

procedure

procedure heading

identifier

qualified method identifier

formal parameter list

7 0 O b j e c t P a s c a l L a n g u a g e G u i d e

near ;

far

export

cdecl
forward

subroutine block

block

external directive

asm block

inline directive

The procedure heading names the procedure’s identifier and specifies the formal
parameters (if any). The syntax for a formal parameter list is shown in the section
“Parameters” on page 75.

A procedure is activated by a procedure statement, which states the procedure’s
identifier and actual parameters, if any. The statements to be executed on activation
are noted in the statement part of the procedure’s block. If the procedure’s identifier
is used in a procedure statement within the procedure’s block, the procedure is
executed recursively (it calls itself while executing).

Here’s an example of a procedure declaration:

procedure NumString(N: Integer; var S: string);
var
 V: Integer;
begin
 V := Abs(N);
 S := '';
 repeat
 S := Chr(N mod 10 + Ord('0')) + S;
 N := N div 10;
 until N = 0;
 if N < 0 then S := '-' + S;
end;

Near and far declarations
Object Pascal supports two procedure and function call models: near and far. In
terms of code size and execution speed, the near call model is the more efficient, but
near procedures and functions can only be called from within the module they are
declared in. On the other hand, far procedures and functions can be called from any
module, but the code for a far call is slightly less efficient.

The compiler automatically selects the correct call model based on a procedure’s or
function’s declaration: Procedures and functions declared in the interface part of a
unit use the far call model—they can be called from other modules. Procedures and
functions declared in a program or in the implementation part of a unit use the near
call model—they can only be called from within that program or unit.

For some purposes, a procedure or function may be required to use the far call
model. For example, if a procedure or function is to be assigned to a procedural
variable, it has to use the far call model. The $F compiler directive can be used to

C h a p t e r 8 , P r o c e d u r e s a n d f u n c t i o n s 7 1

override the compiler’s automatic call model selection. Procedures and functions
compiled in the {$F+} state always use the far call model; in the {$F-} state, the
compiler automatically selects the correct model. The default state is {$F-}.

To force a specific call model, a procedure or function declaration can optionally
specify a near or far directive before the block—if such a directive is present, it
overrides the setting of the $F compiler directive as well as the compiler’s automatic
call model selection.

Export declarations
The export directive makes a procedure or function exportable by forcing the
routine to use the far call model and generating special procedure entry and exit
code.

Procedures and functions must be exportable in these cases:

• Procedures and functions that are exported by a DLL (dynamic-link library)

• Callback procedures and functions in a Windows program

Chapter 12, “Dynamic-link libraries,” discusses how to export procedures and
functions in a DLL. Even though a procedure or function is compiled with an export
directive, the actual exporting of the procedure or function doesn’t occur until the
routine is listed in a library’s exports clause.

Callback procedures and functions are routines in your application that are called
by Windows and not by your application itself. Callback routines must be compiled
with the export directive, but they don’t have to be listed in an exports clause. Here
are some examples of common callback procedures and functions:

• Window procedures

• Dialog procedures

• Enumeration callback procedures

• Memory-notification procedures

• Window-hook procedures (filters)

Object Pascal automatically generates smart callbacks for procedures and functions
that are exported by a Windows program. Smart callbacks alleviate the need to use
the MakeProcInstance and FreeProcInstance Windows API routines when creating
callback routines. See “Entry and exit code” on page 176.

cdecl declarations
The cdecl directive specifies that a procedure or function should use C calling
conventions. C calling conventions differ from Pascal calling conventions in that
parameters are pushed on the stack in reverse order, and that the caller (as opposed
to the callee) is responsible for removing the parameters from the stack after the call.
The cdecl directive is useful for interfacing with dynamic-link libraries written in C

7 2 O b j e c t P a s c a l L a n g u a g e G u i d e

or C++, but for regular (non-imported) procedures and functions, Pascal calling
conventions are more efficient.

Forward declarations
A procedure or function declaration that specifies the directive forward instead of a
block is a forward declaration. Somewhere after this declaration, the procedure
must be defined by a defining declaration. The defining declaration can omit the
formal parameter list and the function result, or it can optionally repeat it. In the
latter case, the defining declaration’s heading must match exactly the order, types,
and names of parameters, and the type of the function result, if any.

No forward declarations are allowed in the interface part of a unit.

The forward declaration and the defining declaration must appear in the same
procedure and function declaration part. Other procedures and functions can be
declared between them, and they can call the forward-declared procedure.
Therefore, mutual recursion is possible.

The forward declaration and the defining declaration constitute a complete
procedure or function declaration. The procedure or function is considered declared
at the forward declaration.

This is an example of a forward declaration:

procedure Walter(M, N: Integer); forward;

procedure Clara(X, Y: Real);
begin

ƒ
 Walter(4, 5);

ƒ
end;

procedure Walter;
begin

ƒ
 Clara(8.3, 2.4);

ƒ
end;

A procedure’s or function’s defining declaration can be an external or assembler
declaration; however, it can’t be a near, far, export, interrupt, or inline declaration
or another forward declaration.

External declarations
With external declarations, you can interface with separately compiled procedures
and functions written in assembly language. They also allow you to import
procedures and functions from DLLs.

C h a p t e r 8 , P r o c e d u r e s a n d f u n c t i o n s 7 3

external

index

name

external directive

string constant
string constant

integer constant

External directives consisting only of the reserved word external are used in
conjunction with {$L filename} directives to link with external procedures and
functions implemented in .OBJ files. For more details about linking with assembly
language, see Chapter 20.

These are examples of external procedure declarations:

procedure MoveWord(var Source, Dest; Count: Word); external;
procedure MoveLong(var Source, Dest; Count: Word); external;

procedure FillWord(var Dest; Data: Integer; Count: Word); external;
procedure FillLong(var Dest; Data: Longint; Count: Word); external;

{$L BLOCK.OBJ}

External directives that specify a dynamic-link library name (and optionally an
import name or an import ordinal number) are used to import procedures and
functions from dynamic-link libraries. For example, this external declaration
imports a function called GlobalAlloc from the DLL called KERNEL (the Windows
kernel):

function GlobalAlloc(Flags: Word; Bytes: Longint): THandle; far;
external 'KERNEL' index 15;

To read more about importing procedures and functions from a DLL, see Chapter
12.

The external directive takes the place of the declaration and statement parts in an
imported procedure or function. Imported procedures and functions must use the
far call model selected by using a far procedure directive or a {$F+} compiler
directive. Aside from this requirement, imported procedures and functions are just
like regular procedures and functions.

Assembler declarations
With assembler declarations, you can write entire procedures and functions in
inline assembly language.

asm block

assembler declaration part; asm statement

For more details on assembler procedures and functions, see Chapter 19.

7 4 O b j e c t P a s c a l L a n g u a g e G u i d e

Inline declarations
The inline directive enables you to write machine code instructions in place of a
block of Object Pascal code.

inline directive inline statement

See the inline statement syntax diagram on page 213.

When a normal procedure or function is called, the compiler generates code that
pushes the procedure’s or function’s parameters onto the stack and then generates a
CALL instruction to call the procedure or function. When you call an inline
procedure or function, the compiler generates code from the inline directive instead
of the CALL. Therefore, an inline procedure or function is expanded every time you
refer to it, just like a macro in assembly language.

Here’s a short example of two inline procedures:

procedure DisableInterrupts; inline($FA); { CLI }
procedure EnableInterrupts; inline($FB); { STI }

Function declarations
A function declaration defines a block that computes and returns a value.

; ;

function declaration

function heading subroutine block

function heading

function

:

identifier

qualified method identifier
formal parameter list

result type

result type type identifier

string

The function heading specifies the identifier for the function, the formal parameters
(if any), and the function result type.

A function is activated by the evaluation of a function call. The function call gives
the function’s identifier and actual parameters, if any, required by the function. A
function call appears as an operand in an expression. When the expression is
evaluated, the function is executed, and the value of the operand becomes the value
returned by the function.

The statement part of the function’s block specifies the statements to be executed
upon activation of the function. The block should contain at least one assignment
statement that assigns a value to the function identifier. The result of the function is
the last value assigned. If no such assignment statement exists or if it isn’t executed,
the value returned by the function is undefined.

C h a p t e r 8 , P r o c e d u r e s a n d f u n c t i o n s 7 5

If the function’s identifier is used in a function call within the function’s block, the
function is executed recursively.

Every function implicitly has a local variable Result of the same type as the
function's return value. Assigning to Result has the same effect as assigning to the
name of the function. In addition, however, you can refer to Result in an expression,
which refers to the current return value rather than generating a recursive function
call.

Functions can return any type, whether simple or complex, standard or user-
defined, except old-style objects (as opposed to classes), and files of type text or file
of. The only way to handle objects as function results is through object pointers.

Following are examples of function declarations:

function Max(A: Vector; N: Integer): Extended;
var
 X: Extended;
 I: Integer;
begin
 X := A[1];
 for I := 2 to N do
 if X < A[I] then X := A[I];
 Max := X;
end;

function Power(X: Extended; Y: Integer): Extended;
var
 I: Integer;
begin
 Result := 1.0; I := Y;
 while I > 0 do
 begin
 if Odd(I) then Result := Result * X;
 I := I div 2;
 X := Sqr(X);
 end;
end;

Like procedures, functions can be declared as near, far, export, forward, external,
assembler, or inline.

Parameters
The declaration of a procedure or function specifies a formal parameter list. Each
parameter declared in a formal parameter list is local to the procedure or function
being declared and can be referred to by its identifier in the block associated with
the procedure or function.

formal parameter list (parameter declaration)

;

7 6 O b j e c t P a s c a l L a n g u a g e G u i d e

parameter declaration

var

const array of

identifier list

parameter type:

There are four kinds of parameters: value, constant, variable, and untyped. These are
characterized as follows:

• A parameter group without a preceding var and followed by a type is a list of
value parameters.

• A parameter group preceded by const and followed by a type is a list of constant
parameters.

• A parameter group preceded by var and followed by a type is a list of variable
parameters.

• A parameter group preceded by var or const and not followed by a type is a list
of untyped parameters.

String and array-type parameters can be open parameters. Open parameters are
described on page 78. A variable parameter declared using the OpenString identifier,
or using the string keyword in the {$P+} state, is an open-string parameter. A value,
constant, or variable parameter declared using the syntax array of T is an open-array
parameter.

Value parameters
A formal value parameter acts like a variable local to the procedure or function,
except it gets its initial value from the corresponding actual parameter upon
activation of the procedure or function. Changes made to a formal value parameter
don’t affect the value of the actual parameter.

A value parameter’s corresponding actual parameter in a procedure statement or
function call must be an expression, and its value must not be of file type or of any
structured type that contains a file type.

The actual parameter must be assignment-compatible with the type of the formal
value parameter. If the parameter type is string, then the formal parameter is given
a size attribute of 255.

Constant parameters
A formal constant parameter acts like a local read-only variable that gets its value
from the corresponding actual parameter upon activation of the procedure or
function. Assignments to a formal constant parameter are not allowed, and likewise
a formal constant parameter can’t be passed as an actual variable parameter to
another procedure or function.

A constant parameter’s corresponding actual parameter in a procedure statement or
function must follow the same rules as an actual value parameter.

C h a p t e r 8 , P r o c e d u r e s a n d f u n c t i o n s 7 7

In cases where a formal parameter never changes its value during the execution of a
procedure or function, a constant parameter should be used instead of a value
parameter. Constant parameters allow the implementor of a procedure or function
to protect against accidental assignments to a formal parameter. Also, for
structured- and string-type parameters, the compiler can generate more efficient
code when constant parameters are used instead of value parameters.

Variable parameters
A variable parameter is used when a value must be passed from a procedure or
function to the caller. The corresponding actual parameter in a procedure statement
or function call must be a variable reference. The formal variable parameter
represents the actual variable during the activation of the procedure or function, so
any changes to the value of the formal variable parameter are reflected in the actual
parameter.

Within the procedure or function, any reference to the formal variable parameter
accesses the actual parameter itself. The type of the actual parameter must be
identical to the type of the formal variable parameter (you can bypass this
restriction through untyped parameters).

Note File types can be passed only as variable parameters.

The $P compiler directive controls the meaning of a variable parameter declared
using the string keyword. In the default {$P+} state, string indicates that the
parameter is an open-string parameter. In the {$P-} state, string corresponds to a
string type with a size attribute of 255. See page 78 for information on open-string
parameters.

If referencing an actual variable parameter involves indexing an array or finding the
object of a pointer, these actions are executed before the activation of the procedure
or function.

Untyped parameters
When a formal parameter is an untyped parameter, the corresponding actual
parameter can be any variable or constant reference, regardless of its type. An
untyped parameter declared using the var keyword can be modified, whereas an
untyped parameter declared using the const keyword is read-only.

Within the procedure or function, the untyped parameter is typeless; that is, it is
incompatible with variables of all other types, unless it is given a specific type
through a variable typecast.

This is an example of untyped parameters:

function Equal(var Source, Dest; Size: Word): Boolean;
type
 TBytes = array[0..65534] of Byte;
var
 N: Word;
begin

7 8 O b j e c t P a s c a l L a n g u a g e G u i d e

 N := 0;
 while (N < Size) and (TBytes(Dest)[N] = TBytes(Source)[N]) do
 Inc(N);
 Equal := N = Size;
end;

This function can be used to compare any two variables of any size. For example,
given these declarations,

type
 TVector = array[1..10] of Integer;
 TPoint = record
 X, Y: Integer;
 end;
var
 Vec1, Vec2: TVector;
 N: Integer;
 P: TPoint;

the function then calls

Equal(Vec1, Vec2, SizeOf(TVector))
Equal(Vec1, Vec2, SizeOf(Integer) * N)
Equal(Vec[1], Vec1[6], SizeOf(Integer) * 5)
Equal(Vec1[1], P, 4)

which compares Vec1 to Vec2, the first N components of Vec1 to the first N
components of Vec2, the first five components of Vec1 to the last five components of
Vec1, and Vec1[1] to P.X and Vec1[2] to P.Y.

While untyped parameters give you greater flexibility, they can be riskier to use.
The compiler can’t verify that operations on untyped variables are valid.

Open parameters
Open parameters allow strings and arrays of varying sizes to be passed to the same
procedure or function.

Open-string parameters
Open-string parameters can be declared in two ways:

• Using the string keyword in the {$P+} state

• Using the OpenString identifier

By default, parameters declared with the string keyword are open-string
parameters. If, for reasons of backward compatibility, a procedure or function is
compiled in the {$P-} state, the OpenString identifier can be used to declare open-
string parameters. OpenString is declared in the System unit and denotes a special
string type that can only be used in the declaration of string parameters. OpenString
is not a reserved word; therefore, OpenString can be redeclared as a user-defined
identifier.

C h a p t e r 8 , P r o c e d u r e s a n d f u n c t i o n s 7 9

For an open-string parameter, the actual parameter can be a variable of any string
type. Within the procedure or function, the size attribute (maximum length) of the
formal parameter will be the same as that of the actual parameter.

Open-string parameters behave exactly as variable parameters of a string type,
except that they can’t be passed as regular variable parameters to other procedures
and functions. They can, however, be passed as open-string parameters again.

In this example, the S parameter of the AssignStr procedure is an open-string
parameter:

procedure AssignStr(var S: OpenString);
begin
 S := '0123456789ABCDEF';
end;

Because S is an open-string parameter, variables of any string type can be passed to
AssignStr:

var
 S1: string[10];
 S2: string[20];
begin
 AssignStr(S1); { S1 = '0123456789' }
 AssignStr(S2); { S2 = '0123456789ABCDEF' }
end;

Within AssignStr, the maximum length of the S parameter is the same as that of the
actual parameter. Therefore, in the first call to AssignStr, the assignment to the S
parameter truncates the string because the declared maximum length of S1 is 10.

When applied to an open-string parameter, the Low standard function returns zero,
the High standard function returns the declared maximum length of the actual
parameter, and the SizeOf function returns the size of the actual parameter.

In the next example, the FillString procedure fills a string to its maximum length
with a given character. Notice the use of the High standard function to obtain the
maximum length of an open-string parameter.

procedure FillString(var S: OpenString; Ch: Char);
begin
 S[0] := Chr(High(S)); { Set string length }
 FillChar(S[1], High(S), Ch); { Set string characters }
end;

Note Value and constant parameters declared using the OpenString identifier or the string
keyword in the {$P+} state are not open-string parameters. Instead, such parameters
behave as if they were declared using a string type with a maximum length of 255
and the High standard function always returns 255 for such parameters.

Open-array parameters
A formal parameter declared using the syntax

array of T

8 0 O b j e c t P a s c a l L a n g u a g e G u i d e

is an open-array parameter. T must be a type identifier, and the actual parameter must
be a variable of type T, or an array variable whose element type is T. Within the
procedure or function, the formal parameter behaves as if it was declared as

array[0..N - 1] of T

where N is the number of elements in the actual parameter. In effect, the index
range of the actual parameter is mapped onto the integers 0 to N - 1. If the actual
parameter is a simple variable of type T, it is treated as an array with one element of
type T.

A formal open-array parameter can be accessed by element only. Assignments to an
entire open array aren’t allowed, and an open array can be passed to other
procedures and functions only as an open-array parameter or as an untyped
variable parameter.

Open-array parameters can be value, constant, and variable parameters and have
the same semantics as regular value, constant, and variable parameters. In
particular, assignments to elements of a formal open array constant parameter are
not allowed, and assignments to elements of a formal open array value parameter
don’t affect the actual parameter.

Note For an open array value parameter, the compiler creates a local copy of the actual
parameter within the procedure or function’s stack frame. Therefore, be careful not
to overflow the stack when passing large arrays as open array value parameters.

When applied to an open-array parameter, the Low standard function returns zero,
the High standard function returns the index of the last element in the actual array
parameter, and the SizeOf function returns the size of the actual array parameter.

The Clear procedure in the next example assigns zero to each element of an array of
Double, and the Sum function computes the sum of all elements in an array of
Double. Because the A parameter in both cases is an open-array parameter, the
subroutines can operate on any array with an element type of Double.

procedure Clear(var A: array of Double);
var
 I: Word;
begin
 for I := 0 to High(A) do A[I] := 0;
end;

function Sum(const A: array of Double): Double;
var
 I: Word;
 S: Double;
begin
 S := 0;
 for I := 0 to High(A) do S := S + A[I];
 Sum := S;
end;

When the element type of an open-array parameter is Char, the actual parameter
may be a string constant. For example, given the procedure declaration,

C h a p t e r 8 , P r o c e d u r e s a n d f u n c t i o n s 8 1

procedure PrintStr(const S: array of Char);
var
 I: Integer;
begin
 for I := 0 to High(S) do
 if S[I] <> #0 then Write(S[I]) else Break;
end;

the following are valid procedure statements:

PrintStr('Hello world');
PrintStr('A');

When passed as an open-character array, an empty string is converted to a string
with one element containing a NULL character, so the statement PrintStr(‘‘) is
identical to the statement PrintStr(#0).

Open-array constructors
Open-array constructors allow open-array parameters to be constructed directly
within procedure and function calls. When a formal parameter of a procedure or
function is an open-array value parameter or an open-array constant parameter, the
corresponding actual parameter in a procedure or function call can be an open-array
constructor.
open array constructor

expression[]

,

An open-array constructor consists of one or more expressions separated by
commas and enclosed in square brackets. Each expression must be assignment
compatible with the element type of the open-array parameter. The use of an open-
array constructor corresponds to creating a temporary array variable, and
initializing the elements of the temporary array with the values given by the list of
expressions. For example, given the declaration of the Sum function above, the
statement

X := Sum([A, 3.14159, B + C]);

corresponds to

Temp[0] := A;
Temp[1] := 3.14159;
Temp[2] := B + C;
X := Sum(Temp);

where Temp is a temporary array variable with three elements of type Double.

8 2 O b j e c t P a s c a l L a n g u a g e G u i d e

Type variant open-array parameters
A type variant open-array parameter allows an open array of expressions of varying
types to be passed to a procedure or function. A type variant open-array parameter
is declared using the syntax

array of const

The array of const syntax is analogous to array of TVarRec. The TVarRec type is a
variant record type which can represent values of integer, boolean, character, real,
string, pointer, class, and class reference types. The TVarRec type is declared in the
System unit as follows

type
 TVarRec = record
 case VType: Byte of
 vtInteger: (VInteger: Longint);
 vtBoolean: (VBoolean: Boolean);
 vtChar: (VChar: Char);
 vtExtended: (VExtended: PExtended);
 vtString: (VString: PString);
 vtPointer: (VPointer: Pointer);
 vtPChar: (VPChar: PChar);
 vtObject: (VObject: TObject);
 vtClass: (VClass: TClass);
 end;

The VType field determines which value field is currently defined. Notice that for
real or string values, the VExtended or VString field contains a pointer to the value
rather than the value itself. The vtXXXX value type constants are also declared in
the System unit:

const
 vtInteger = 0;
 vtBoolean = 1;
 vtChar = 2;
 vtExtended = 3;
 vtString = 4;
 vtPointer = 5;
 vtPChar = 6;
 vtObject = 7;
 vtClass = 8;

The MakeStr function below takes a type variant open-array parameter and returns a
string that is the concatenation of the string representations of the arguments. The
AppendStr, IntToStr, FloatToStr, and StrPas functions used by MakeStr are defined in
the SysUtils unit.

function MakeStr(const Args: array of const): string;
const
 BoolChars: array[Boolean] of Char = ('F', 'T');
var
 I: Integer;
begin

C h a p t e r 8 , P r o c e d u r e s a n d f u n c t i o n s 8 3

 Result := '';
 for I := 0 to High(Args) do
 with Args[I] do
 case VType of
 vtInteger: AppendStr(Result, IntToStr(VInteger));
 vtBoolean: AppendStr(Result, BoolChars[VBoolean]);
 vtChar: AppendStr(Result, VChar);
 vtExtended: AppendStr(Result, FloatToStr(VExtended^));
 vtString: AppendStr(Result, VString^);
 vtPChar: AppendStr(Result, StrPas(VPChar));
 vtObject: AppendStr(Result, VObject.ClassName);
 vtClass: AppendStr(Result, VClass.ClassName);
 end;
end;

When a formal parameter of a procedure or function is a type variant open-array
value parameter or a type variant open-array constant parameter, the corresponding
actual parameter in a procedure or function call can be an open-array constructor.
The use of an open-array constructor for a type variant open-array parameter
creates a temporary array of TVarRec and initializes the elements according to the
type and value of each expression listed in the open-array constructor. For example,
given the above function MakeStr, the statement

S := MakeStr(['Test ', 100, '-', True, '-', 3.14159]);

produces the following string

'Test 100-T-3.14159'

The following table lists the possible expression types in a type variant open-array
constructor, and the corresponding value type codes.

 Table 8-1 Type variant open-array expressions

Type code Expression type
vtInteger Any integer type
vtBoolean Any boolean type
vtChar Any character type
vtExtended Any real type
vtString Any string type
vtPointer Any pointer type except PChar
vtPChar PChar or array[0..X] of Char
vtObject Any class type
vtClass Any class reference type

8 4 O b j e c t P a s c a l L a n g u a g e G u i d e

C h a p t e r 9 , C l a s s t y p e s 8 5

 C h a p t e r

9
Class types

A class type is a structure consisting of a fixed number of components. The possible
components of a class are fields, methods, and properties. Unlike other types, a class
type can be declared only in a type declaration part in the outermost scope of a
program or unit. Therefore, a class type can't be declared in a variable declaration
part or within a procedure, function, or method block.
object type

class
heritage component list

visibility specifier

end

visibility specifier

public

published

protected

private

heritage (object type identifier)

component list

method definition

property definition

field definition

field definition

identifier list : ;type

method definition

method heading ; method directives

8 6 O b j e c t P a s c a l L a n g u a g e G u i d e

method heading

procedure heading

function headingclass

constructor heading

destructor heading

method directives

virtual

message

dynamic

abstractcdecl export

integer constant

;

; ; ;

Instances and references
An instance of a class type is a dynamically allocated block of memory with a layout
defined by the class type. Instances of a class type are also commonly referred to as
objects. Objects are created using constructors, and destroyed using destructors.
Each object of a class type has a unique copy of the fields declared in the class type,
but all share the same methods.

A variable of a class type contains a reference to an object of the class type. The
variable doesn’t contain the object itself, but rather is a pointer to the memory block
that has been allocated for the object. Like pointer variables, multiple class type
variables can refer to the same object. Furthermore, a class type variable can contain
the value nil, indicating that it doesn’t currently reference an object.

Note Unlike a pointer variable, it isn’t necessary to de-reference a class type variable to
gain access to the referenced object. In other words, while it is necessary to write
Ptr^.Field to access a field in a dynamically allocated record, the ^ operator is
implied when accessing a component of an object, and the syntax is simply
Instance.Field.

Throughout this book, the term object reference is used to denote a value of a class
type. For example, a class-type variable contains an object reference, and a
constructor returns an object reference.

In addition, the term class reference is used to denote a value of a class-reference
type. For example, a class-type identifier is a class reference, and a variable of a
class-reference type contains a class reference. Class-reference types are described in
further detail on page 108.

C h a p t e r 9 , C l a s s t y p e s 8 7

Class components
The components of a class are fields, methods, and properties. Class components
are sometimes referred to as members.

Fields
A field declaration in a class defines a data item that exists in each instance of the
class. This is similar to a field of a record.

Methods
A method is a procedure or function that performs an operation on an object. Part of
the call to a method specifies the object the method should operate on.

The declaration of a method within a class type corresponds to a forward
declaration of that method. This means that somewhere after the class-type
declaration, and within the same module, the method must be implemented by a
defining declaration.

Within the implementation of a method, the identifier Self represents an implicit
parameter that references the object for which the method was invoked.

Constructors and destructors are special methods that control construction and
destruction of objects.

A constructor defines the actions associated with creating an object. When invoked,
a constructor acts as a function that returns a reference to a newly allocated and
initialized instance of the class type.

A destructor defines the actions associated with destroying an object. When
invoked, a destructor will deallocate the memory that was allocated for the object.

A class method is a procedure or function that operates on a class reference instead of
an object reference.

Properties
A property declaration in a class defines a named attribute for objects of the class
and the actions associated with reading and writing the attribute. Properties are
described in depth beginning on page 101

Inheritance
A class type can inherit components from another class type. If T2 inherits from T1,
then T2 is a descendant of T1, and T1 is an ancestor of T2. Inheritance is transitive; that
is, if T3 inherits from T2, and T2 inherits from T1, then T3 also inherits from T1. The
domain of a class type consists of itself and all of its descendants.

A descendant class implicitly contains all the components defined by its ancestor
classes. A descendant class can add new components to those it inherits. However,
it can’t remove the definition of a component defined in an ancestor class.

8 8 O b j e c t P a s c a l L a n g u a g e G u i d e

The predefined class type TObject is the ultimate ancestor of all class types. If the
declaration of a class type doesn’t specify an ancestor type (that is, if the heritage
part of the class declaration is omitted), the class type will be derived from TObject.
TObject is declared by the System unit, and defines a number of methods that apply
to all classes. For a description of these methods, see “The TObject and TClass
types” on page 111.

Components and scope
The scope of a component identifier declared in a class type extends from the point
of declaration to the end of the class-type definition, and extends over all
descendants of the class type and the blocks of all method declarations of the class
type. Also, the scope of component identifiers includes field, method, and property
designators, and with statements that operate on variables of the given class type.

A component identifier declared in a class type can be redeclared in the block of a
method declaration of the class type. In that case, the Self parameter can be used to
access the component whose identifier was redeclared.

A component identifier declared in an ancestor class type can be redeclared in a
descendant of the class type. Such redeclaration effectively hides the inherited
component, although the inherited keyword can be used to bring the inherited
component back into scope.

Forward references
The declaration of a class type can specify the reserved word class and nothing else,
in which case the declaration is a forward declaration. A forward declaration must
be resolved by a normal declaration of the class within the same type declaration
part. Forward declarations allow mutually dependent classes to be declared. For
example:

type
 TFigure = class;
 TDrawing = class
 Figure: TFigure;
 :
 end;
 TFigure = class
 Drawing: TDrawing;
 :
 end;

Class type compatibility rules
A class type is assigment-compatible with any ancestor class type; therefore, during
program execution, a class-type variable can reference an instance of that type or an
instance of any descendant type. For example, given the declarations

type

C h a p t e r 9 , C l a s s t y p e s 8 9

 TFigure = class
 :
 end;
 TRectangle = class(TFigure)
 :
 end;
 TRoundRect = class(TRectangle)
 :
 end;
 TEllipse = class(TFigure)
 :
 end;

a value of type TRectangle can be assigned to variables of type TRectangle, TFigure,
and TObject, and during execution of a program, a variable of type TFigure might be
either nil or reference an instance of TFigure, TRectangle, TRoundRect, TEllipse, or any
other instance of a descendant of TFigure.

Component visibility
The visibility of a component identifier is governed by the visibility attribute of the
component section that declares the identifier. The four possible visibility attributes
are published, public, protected, and private.

Component identifiers declared in the component list that immediately follows the
class type heading have the published visibility attribute if the class type is compiled
in the {$M+} state or is derived from a class that was compiled in the {$M+} state.
Otherwise, such component identifiers have the public visibility attribute.

Public components
Component identifiers declared in public sections have no special restrictions on
their visibility.

Published components
The visibility rules for published components are identical to those of public
components. The only difference between published and public components is that
run-time type information is generated for fields and properties that are declared in a
published section. This run-time type information enables an application to
dynamically query the fields and properties of an otherwise unknown class type.

Note The Delphi Visual Component Library uses run-time type information to access the
values of a component's properties when saving a loading form files. Also, the
Delphi development environment uses a component's run-time type information to
determine the list of properties shown in the Object Inspector.

A class type cannot have published sections unless it is compiled in the {$M+} state
or is derived from a class that was compiled in the {$M+} state. The $M compiler
directive controls the generation of run-time type information for a class. For further
details on $M, see Appendix B.

9 0 O b j e c t P a s c a l L a n g u a g e G u i d e

Fields defined in a published section must be of a class type. Fields of all other
types are restricted to public, protected, and private sections.

Properties defined in a published section cannot be array properties. Furthermore,
the type of a property defined in a published section must be an ordinal type, a real
type (Single, Double, Extended, or Comp, but not Real), a string type, a small set type,
a class type, or a method pointer type. A small set type is a set type with a base type
whose lower and upper bounds have ordinal values between 0 and 15. In other
words, a small set type is a set that fits in a byte or a word.

Protected components
When accessing through a class type declared in the current module, the protected
component identifiers of the class and its ancestors are visible. In all other cases,
protected component identifiers are hidden.

Access to protected components of a class is restricted to the implementation of
methods of the class and its descendants. Therefore, components of a class that are
intended for use only in the implementation of derived classes are usually declared
as protected.

Private components
The visibility of a component identifier declared in a private component section is
restricted to the module that contains the class-type declaration. In other words,
private component identifiers act like normal public component identifiers within
the module that contains the class-type declaration, but outside the module, any
private component identifiers are unknown and inaccessible. By placing related
class types in the same module, these class types can gain access to each other's
private components without making the private components known to other
modules.

Static methods
Methods declared in a class type are by default static. When a static method is
called, the declared (compile-time) type of the class or object used in the method call
determines which method implementation to activate. In the following example, the
Draw methods are static:

type
 TFigure = class
 procedure Draw;
 :
 end;
 TRectangle = class(TFigure)
 procedure Draw;
 :
 end;

The following section of code illustrates the effect of calling a static method. Even
though in the second call to Figure.Draw the Figure variable references an object of

C h a p t e r 9 , C l a s s t y p e s 9 1

class TRectangle, the call invokes the implementation of TFigure.Draw because the
declared type of the Figure variable is TFigure.

var
 Figure: TFigure;
 Rectangle: TRectangle;
begin
 Figure := TFigure.Create;
 Figure.Draw; { Invokes TFigure.Draw }
 Figure.Destroy;
 Figure := TRectangle.Create;
 Figure.Draw; { Invokes TFigure.Draw }
 Figure.Destroy;
 Rectangle := TRectangle.Create;
 Rectangle.Draw; { Invokes TRectangle.Draw }
 Rectangle.Destroy;
end;

Virtual methods
A method can be made virtual by including a virtual directive in its declaration.
When a virtual method is called, the actual (run-time) type of the class or object used
in the method call determines which method implementation to activate. The
following is an example of a declaration of a virtual method:

type
 TFigure = class
 procedure Draw; virtual;
 :
 end;

A virtual method can be overridden in a descendant class. When an override
directive is included in the declaration of a method, the method overrides the
inherited implementation of the method. An override of a virtual method must
match exactly the order and types of the parameters, and the function result type (if
any), of the original method.

The only way a virtual method can be overridden is through the override directive.
If a method declaration in a descendant class specifies the same method identifier as
an inherited method, but doesn’t specify an override directive, the new method
declaration will hide the inherited declaration, but not override it.

Assuming the declaration of class TFigure above, the following two descendant
classes override the Draw method:

type
 TRectangle = class(TFigure)
 procedure Draw; override;
 :
 end;
 TEllipse = class(TFigure)
 procedure Draw; override;

9 2 O b j e c t P a s c a l L a n g u a g e G u i d e

 :
 end;

The following section of code illustrates the effect of calling a virtual method
through a class-type variable whose actual type varies at run time:

var
 Figure: TFigure;
begin
 Figure := TRectangle.Create;
 Figure.Draw; { Invokes TRectangle.Draw }
 Figure.Destroy;
 Figure := TEllipse.Create;
 Figure.Draw; { Invokes TEllipse.Draw }
 Figure.Destroy;
end;

Dynamic methods
A method is made dynamic by including a dynamic directive in its declaration.
Dynamic methods are semantically identical to virtual methods. Virtual and
dynamic methods differ only in the implementation of method call dispatching at
run time; for all other purposes, the two types of methods can be considered
equivalent.

In the implementation of virtual methods, the compiler favors speed of call
dispatching over code size. The implementation of dynamic methods on the other
hand favors code size over speed of call dispatching.

In general, virtual methods are the most efficient way to implement polymorphic
behavior. Dynamic methods are useful only in situations where a base class declares
a large number of virtual methods, and an application declares a large number of
descendant classes with few overrides of the inherited virtual methods.

Abstract methods
An abstract method is a virtual or dynamic method whose implementation isn’t
defined in the class declaration in which it appears; its definition is instead deferred
to descendant classes. An abstract method in effect defines an interface, but not the
underlying operation.

A method is abstract if an abstract directive is included in its declaration. A method
can be declared abstract only if it is first declared virtual or dynamic. The following
is an example of a declaration of an abstract method.

type
 TFigure = class
 procedure Draw; virtual; abstract;
 :
 end;

C h a p t e r 9 , C l a s s t y p e s 9 3

An override of an abstract method is identical to an override of a normal virtual or
dynamic method, except that in the implementation of the overriding method, an
inherited method isn’t available to call.

Calling an abstract method through an object that hasn't overridden the method will
generate an exception at run time.

Method activations
A method is activated (or called) through a function call or procedure statement
consisting of a method designator followed by an actual parameter list. This type of
call is known as method activation.
method designator

variable reference
method identifier

.

The variable reference specified in a method designator must denote an object
reference or a class reference, and the method identifier must denote a method of
that class type.

The instance denoted by a method designator becomes an implicit actual parameter
of the method; it corresponds to a formal parameter named Self that possesses the
class type corresponding to the activated method.

Within a with statement that references an object or a class, the variable-reference
part of a method designator can be omitted. In that case, the implicit Self parameter
of the method activation becomes the instance referenced by the with statement.

Method implementations
The declaration of a method within a class type corresponds to a forward
declaration of that method. Somewhere after the class-type declaration, and within
the same module, the method must be implemented by a defining declaration. For
example, given the class-type declaration

type
 TFramedLabel = class(TLabel)
 protected
 procedure Paint; override;
 end;

the Paint method must later be implemented by a defining declaration. For example,

procedure TFramedLabel.Paint;
begin
 inherited Paint;
 with Canvas do
 begin
 Brush.Color := clWindowText;
 Brush.Style := bsSolid;
 FrameRect(ClientRect);

9 4 O b j e c t P a s c a l L a n g u a g e G u i d e

 end;
end;

For procedure and function methods, the defining declaration takes the form of a
normal procedure or function declaration, except that the procedure or function
identifier in the heading is a qualified method identifier. A qualified method identifier
consists of a class-type identifier followed by a period (.) and then by a method
identifier.

For constructors and destructors, the defining declaration takes the form of a
procedure method declaration, except that the procedure reserved word is replaced
by constructor or destructor.

A method's defining declaration can optionally repeat the formal parameter list of
the method heading in the class type. The defining declaration's method heading
must match exactly the order, types, and names of the parameters, and the type of
the function result, if any.

In the defining declaration of a method, there is always an implicit parameter with
the identifier Self, corresponding to a formal parameter of the class type. Within the
method block, Self represents the instance for which the method was activated.

The scope of a component identifier in a class type extends over any procedure,
function, constructor, or destructor block that implements a method of the class
type. The effect is the same as if the entire method block was embedded in a with
statement of the form:

with Self do
begin
 :
 :
end;

Within a method block, the reserved word inherited can be used to access
redeclared and overridden component identifiers. For example, in the
implementation of the TFramedLabel.Paint method above, inherited is used to invoke
the inherited implementation of the Paint method. When an identifier is prefixed
with inherited, the search for the identifier begins with the immediate ancestor of
the enclosing method's class type.

Constructors and destructors
Constructors and destructors are special methods that control construction and
destruction of objects. A class can have zero or more constructors and destructors
for objects of the class type. Each is specified as a component of the class in the same
way as a procedure or function method, except that the reserved words constructor
and destructor begin each declaration instead of procedure and function. Like other
methods, constructors and destructors can be inherited.

C h a p t e r 9 , C l a s s t y p e s 9 5

Constructors
Constructors are used to create and initialize new objects. Typically, the
initialization is based on values passed as parameters to the constructor.

Unlike an ordinary method, which must be invoked on an object reference, a
constructor can be invoked on either a class reference or an object reference.

To create a new object, a constructor must be invoked on a class reference. When a
constructor is invoked on a class reference, the following actions take place:

• Storage for a new object is allocated from the heap.

• The allocated storage is cleared. This causes the ordinal value of all ordinal type
fields to become zero, the value of all pointer and class-type fields to become nil,
and the value of all string fields to become empty.

• The user-specified actions of the constructor are executed.

• A reference to the newly allocated and initialized object is returned from the
constructor. The type of the returned value is the same as the class type specified
in the constructor call.

When a constructor is invoked on an object reference, the constructor acts like a
normal procedure method. This means that a new object is not allocated and
cleared, and that the constructor call does not return an object reference. Instead, the
constructor operates on the specified object reference, and only executes the user
specified actions given in the constructor's statement part. A constructor is typically
invoked on an object reference only in conjunction with the inherited keyword to
execute an inherited constructor.

; ;
constructor declaration

constructor heading subroutine block

constructor

constructor heading

identifier

qualified method identifier

formal parameter list

An example of a class type and its associated constructor follows below:

type
 TShape = class(TGraphicControl)
 private
 FPen: TPen;
 FBrush: TBrush;
 procedure PenChanged(Sender: TObject);
 procedure BrushChanged(Sender: TObject);
 public
 constructor Create(Owner: TComponent); override;
 destructor Destroy; override;
 :
 end;

9 6 O b j e c t P a s c a l L a n g u a g e G u i d e

constructor TShape.Create(Owner: TComponent);
begin
 inherited Create(Owner); { Initialize inherited parts }
 Width := 65; { Change inherited properties }
 Height := 65;
 FPen := TPen.Create; { Initialize new fields }
 FPen.OnChange := PenChanged;
 FBrush := TBrush.Create;
 FBrush.OnChange := BrushChanged;
end;

The first action of a constructor is almost always to call an inherited constructor to
initialize the inherited fields of the object. Following that, the constructor then
initializes the fields of the object that were introduced in the class. Because a
constructor always clears the storage it allocates for a new object, all fields
automatically have a default value of zero (ordinal types), nil (pointer and class
types), or empty (string types). Unless a field's default value is non-zero, there is no
need to initialize the field in a constructor.

If an exception occurs during execution of a constructor that was invoked on a class
reference, the Destroy destructor is automatically called to destroy the unfinished
object. The effect is the same as if the entire statement part of the constructor were
embedded in a try...finally statement of this form:

try
 : { User defined actions }
 :
except { On any exception }
 Destroy; { Destroy unfinished object }
 raise; { Re-raise exception }
end;

Like other methods, constructors can be virtual. When invoked through a class-type
identifier, as is usually the case, a virtual constructor is equivalent to a static
constructor. When combined with class-reference types, however, virtual
constructors allow polymorphic construction of objectsthat is, construction of
objects whose types aren’t known at compile time, as described on page 109.

Destructors
Destructors are used to destroy objects. When a destructor is invoked, the user-
defined actions of the destructor are executed, and then the storage that was
allocated for the object is disposed of. The user-defined actions of a destructor
typically consist of destroying any embedded objects and releasing any resources
that were allocated by the object.

; ;
destructor declaration

destructor heading subroutine block

C h a p t e r 9 , C l a s s t y p e s 9 7

destructor

destructor heading

identifier

qualified method identifier

formal parameter list

The following example shows how the destructor that was declared for the TShape
class in the preceding section might be implemented.

destructor TShape.Destroy;
begin
 FBrush.Free;
 FPen.Free;
 inherited Destroy;
end;

The last action of a destructor is typically to call the inherited destructor to destroy
the inherited fields of the object.

While it is possible to declare multiple destructors for a class, it is recommended
that classes only implement overrides of the inherited Destroy destructor. Destroy is
a parameterless virtual destructor declared in TObject, and because TObject is the
ultimate ancestor of every class, the Destroy destructor always available for any
object.

As described in the preceding section on constructors, if an exception occurs during
the execution of a constructor, the Destroy destructor is invoked to destroy the
unfinished object. This means that destructors must be prepared to handle
destruction of partially constructed objects. Because a constructor sets all fields of a
new object to null values before executing any user defined actions, any class-type
or pointer-type fields in a partially constructed object are always nil. A destructor
should therefore always check for nil values before performing operations on class-
type or pointer-type fields.

Referring to the TShape.Destroy destructor mentioned earlier, note that the Free
method (which is inherited from TObject) is used to destroy the objects referenced
by the FPen and FBrush fields. The implementation of the Free method is

procedure TObject.Free;
begin
 if Self <> nil then Destroy;
end;

The Free method is a convenient way of checking for nil before invoking Destroy on
an object reference. By calling Free instead of Destroy for any class-type fields, a
destructor is automatically prepared to handle partially constructed objects
resulting from constructor exceptions. For that same reason, direct calls to Destroy
aren’t recommended.

9 8 O b j e c t P a s c a l L a n g u a g e G u i d e

Class operators
Object Pascal defines two operators, is and as, that operate on class and object
references.

The is operator
The is operator is used to perform dynamic type checking. Using the is operator, you
can check whether the actual (run-time) type of an object reference belongs to a
particular class. The syntax of the is operator is

ObjectRef is ClassRef

where ObjectRef is an object reference and ClassRef is a class reference. The is
operator returns a boolean value. The result is True if ObjectRef is an instance of the
class denoted by ClassRef or an instance of a class derived from the class denoted by
ClassRef. Otherwise, the result is False. If ObjectRef is nil, the result is always False. If
the declared types of ObjectRef and ClassRef are known not to be relatedthat is if
the declared type of ObjectRef is known not to be an ancestor of, equal to, or a
descendant of ClassRefthe compiler reports a type-mismatch error.

The is operator is often used in conjunction with an if statement to perform a
guarded typecast. For example,

if ActiveControl is TEdit then TEdit(ActiveControl).SelectAll;

Here, if the is test is True, it is safe to typecast ActiveControl to be of class TEdit.

The rules of operator precedence group the is operator with the relational operators
(=, <>, <, >, <=, >=, and in). This means that when combined with other boolean
expressions using the and and or operators, is tests must be enclosed in
parentheses:

if (Sender is TButton) and (TButton(Sender).Tag <> 0) then ...;

The as operator
The as operator is used to perform checked typecasts. The syntax of the as operator is

ObjectRef as ClassRef

where ObjectRef is an object reference and ClassRef is a class reference. The resulting
value is a reference to the same object as ObjectRef, but with the type given by
ClassRef. When evaluated at run time, ObjectRef must be nil, an instance of the class
denoted by ClassRef, or an instance of a class derived from the class denoted by
ClassRef. If none of these conditions are True, an exception is raised. If the declared
types of ObjectRef and ClassRef are known not to be relatedthat is, if the declared
type of ObjectRef is known not to be an ancestor of, equal to, or a descendant of
ClassRefthe compiler reports a type-mismatch error.

The as operator is often used in conjunction with a with statement. For example,

with Sender as TButton do
begin
 Caption := '&Ok';

C h a p t e r 9 , C l a s s t y p e s 9 9

 OnClick := OkClick;
end;

The rules of operator precedence group the as operator with the multiplying
operators (*, /, div, mod, and, shl, and shr). This means that when used in a
variable reference, an as typecast must be enclosed in parentheses:

(Sender as TButton).Caption := '&Ok';

Message handling
Message handler methods are used to implement user-defined responses to
dynamically dispatched messages. Delphi's Visual Class Library uses message handler
methods to implement Windows message handling.

Message handler declarations
A message handler method is defined by including a message directive in the
method declaration.

type
 TTextBox = class(TCustomControl)
 private
 procedure WMChar(var Message: TWMChar); message WM_CHAR;
 ...
 end;

A message handler method must be a procedure that takes a single variable
parameter, and the message keyword must be followed by an integer constant
between 0 and 32767 which specifies the message ID.

Note When declaring a message handler method for a VCL control, the integer constant
specified in the message directive must be a Windows message ID. The Messages
unit defines all Windows message IDs and their corresponding message records.

In contrast to a regular method, a message handler method does not have to specify
an override directive in order to override an inherited message handler. In fact, a
message handler override doesn't even have to specify the same method identifier
and parameter name and type as the method it overrides. The message ID solely
determines which message the method will respond to, and whether or not it is an
override.

Message handler implementations
The implementation of a message handler method corresponds to that of a normal
method. For example, the TTextBox.WMChar message handler method defined
above might be implemented as follows

procedure TTextBox.WMChar(var Message: TWMChar);
begin
 if Chr(Message.CharCode) = #13 then

1 0 0 O b j e c t P a s c a l L a n g u a g e G u i d e

 ProcessEnter
 else
 inherited;
end;

The implementation of a message handler method can call the inherited
implementation using an inherited statement as shown above. The inherited
statement automatically passes the message record as a parameter to the inherited
method. The inherited statement invokes the first message handler with the same
message ID found in the most derived ancestor class (that is, the ancestor class that
is closest to the class in the inheritance hierarchy). If none of the ancestor classes
implement a message handler for the given message ID, the inherited statement
instead calls the DefaultHandler virtual method, which is inherited from TObject and
therefore present in any class.

The effect of the inherited statement is that for a particular message ID, a class does
not need to know whether its parent classes implement a handler for the message–
an inherited implementation always appears to be available.

Message dispatching
Message handler methods are typically not called directly. Instead, messages are
dispatched to an object using the Dispatch method defined in the TObject class.
Dispatch is declared as

procedure TObject.Dispatch(var Message);

The Message parameter passed to Dispatch must be a record, and the first entry in
the record must be a field of type Cardinal which contains the message ID of the
message being dispatched. For example

type
 TMessage = record
 Msg: Cardinal;
 ...
 end;

A message record can contain any number of additional fields that define message
specific information.

A call to Dispatch invokes the most derived implementation of a message handler
for the given message ID. In other words, Dispatch invokes the first message handler
with a matching message ID found by examining the class itself, its ancestor, its
ancestor's ancestor, and so on until TObject is reached. If the class and its ancestors
do not define a handler for the given message ID, Dispatch will instead invoke the
DefaultHandler method.

The DefaultHandler method is declared in TObject as follows

procedure DefaultHandler(var Message); virtual;

The implementation of DefaultHandler in TObject simply returns without performing
any actions. By overriding DefaultHandler, a class can implement default handling of
messages. As described above, DefaultHandler is invoked when Dispatch is called to

C h a p t e r 9 , C l a s s t y p e s 1 0 1

dispatch a message for which the class implements no message handler.
DefaultHandler is also invoked when a message handler method executes an
inherited statement for which no inherited message handler exists.

Note The DefaultHandler method for a VCL control invokes the DefWindowProc default
message handling function defined by Windows.

Properties
A property definition in a class declares a named attribute for objects of the class
and the actions associated with reading and writing the attribute. Examples of
properties are the caption of a form, the size of a font, the name of a database table,
and so on.

Properties are a natural extension of fields in an object. Both can be used to express
attributes of an object, but whereas fields are merely storage locations which can be
examined and modified at will, properties provide greater control over access to
attributes, they provide a mechanism for associating actions with the reading and
writing of attributes, and they allow attributes to be computed.
property definition

identifier

property interface

property property specifiers ;

property interface

index

:

property parameter list

type identifier

integer constant

property parameter list

parameter declaration][

;

property specifiers

default specifierwrite specifier stored specifierread specifier

read specifier

read field or method

write specifier

write field or method

stored specifier

stored field or method

boolean constant

1 0 2 O b j e c t P a s c a l L a n g u a g e G u i d e

default specifier

default constant

nodefault

field or method

field identifier

method identifier

Property definitions
The definition of a property specifies the name and type of the property, and the
actions associated with reading (examining) and writing (modifying) the property.
A property can be of any type except a file type.

The declarations below define an imaginary TCompass control which has a Heading
property that can assume values from 0 to 359 degrees. The definition of the Heading
property further states that its value is read from the FHeading field, and that its
value is written using the SetHeading method.

type
 THeading = 0..359;
 TCompass = class(TControl)
 private
 FHeading: THeading;
 procedure SetHeading(Value: THeading);
 published
 property Heading: THeading read FHeading write SetHeading;
 :
 end;

Property access
When a property is referenced in an expression, its value is read using the field or
method listed in the read specifier, and when a property is referenced in an
assignment statement, its value is written using the field or method listed in the
write specifier. For example, assuming that Compass is an object reference of the
TCompass type defined above, the statements

if Compass.Heading = 180 then GoingSouth;
Compass.Heading := 135;

correspond to

if Compass.FHeading = 180 then GoingSouth;
Compass.SetHeading(135);

In the TCompass class, no action is associated with reading the Heading property. The
read operation simply consists of examining the value stored in the FHeading field.
On the other hand, assigning a value to the Heading property translates into a call to
the SetHeading method, which not only stores the new value in the FHeading field,

C h a p t e r 9 , C l a s s t y p e s 1 0 3

but also performs whatever actions are required to update the user interface of the
compass control. For example, SetHeading might be implemented as this:

procedure TCompass.SetHeading(Value: THeading);
begin
 if FHeading <> Value then
 begin
 FHeading := Value;
 Repaint;
 end;
end;

Note Unlike fields, properties can’t be passed as variable parameters, and it isn’t possible
to take the address of a property using the @ operator. This is true even if the read
and write specifiers both list a field identifier, thereby ensuring that a future
implementation of the property is free to change one or both access specifiers to list
a method.

Access specifiers
The read and write specifiers of a property definition control how a property is
accessed. A property definition must include at least a read or a write specifier, but
isn’t required to include both. If a property definition includes only a read specifer,
then the property is said to be read-only property, and if a property definition
includes only a write specifier, then the property is said to be write-only property. If a
property definition includes both a read and a write specifier, the property is said to
be read-write property. It is an error to assign a value to a read-only property.
Likewise, it is an error to use a write-only property in an expression.

The read or write keyword in an access specifier must be followed by a field
identifier or a method identifier. The field or method can belong to the class type in
which the property is defined, in which case the field or method definition must
precede the property definition, or it can belong to an ancestor class, in which case
the field or method must be visible in the class containing the property definition.

Fields and methods listed in access specifiers are governed by the following rules:

• If an access specifier lists a field identifier, then the field type must be identical to
the property type.

• If a read specifier lists a method identifier, then the method must be a
parameterless function method, and the function result type must be identical to
the property type.

• If a write specifier lists a method identifier, then the method must be a procedure
method that takes a single value or constant parameter of the same type as the
property type.

For example, if a property is defined as

property Color: TColor read GetColor write SetColor;

then preceding the property definition, the GetColor method must be defined as

function GetColor: TColor;

1 0 4 O b j e c t P a s c a l L a n g u a g e G u i d e

and the SetColor method must be defined as one of these:

procedure SetColor(Value: TColor);
procedure SetColor(const Value: TColor);

Array properties
Array properties allow the implementation of indexed properties. Examples of array
properties include the items of a list, the child controls of a control, and the pixels of
a bitmap.

The definition of an array property includes an index parameter list which specifies
the names and types of the indexes of the array property. For example,

property Objects[Index: Integer]: TObject
 read GetObject write SetObject;
property Pixels[X, Y: Integer]: TColor
 read GetPixel write SetPixel;
property Values[const Name: string]: string
 read GetValue write SetValue;

The format of an index parameter list is the same as that of a procedure or function's
formal parameter list, except that the parameter declarations are enclosed in square
brackets instead of parentheses. Note that unlike array types, which can only specify
ordinal type indexes, array properties allow indexes of any type. For example, the
Values property declared previously might represent a lookup table in which a
string index is used to look up a string value.

An access specifier of an array property must list a method identifier. In other
words, the read and write specifiers of an array property aren’t allowed to specify a
field name. The methods listed in array property access specifiers are governed by
the following rules:

• The method listed in the read specifier of an array property must be a function
that takes the same number and types of parameters as are listed in the property's
index parameter list, and the function result type must be identical to the
property type.

• The method listed in the write specifier of an array property must be a procedure
with the same number and types of parameters as are listed in the property's
index parameter list, plus an additional value or constant parameter of the same
type as the property type.

For example, for the array properties declared above, the access methods might be
declared as

function GetObject(Index: Integer): TObject;
function GetPixel(X, Y: Integer): TColor;
function GetValue(const Name: string): string;

procedure SetObject(Index: Integer; Value: TObject);
procedure SetPixel(X, Y: Integer; Value: TColor);
procedure SetValue(const Name, Value: string);

C h a p t e r 9 , C l a s s t y p e s 1 0 5

An array property is accessed by following the property identifier with a list of
actual parameters enclosed in square brackets. For example, the statements

if Collection.Objects[0] = nil then Exit;
Canvas.Pixels[10, 20] := clRed;
Params.Values['PATH'] := 'C:\DELPHI\BIN';

correspond to

if Collection.GetObject(0) = nil then Exit;
Canvas.SetPixel(10, 20, clRed);
Params.SetValue('PATH', 'C:\DELPHI\BIN');

The definition of an array property can be followed by a default directive, in which
case the array property becomes the default array property of the class. For example

type
 TStringArray = class
 public
 property Strings[Index: Integer]: string ...; default;
 :
 end;

If a class has a default array property, then access to the array property of the form
Instance.Property[...] can be abbreviated to Instance[...]. For example, given that
StringArray is an object reference of the TStringArray class defined above, the
construct

StringArray.Strings[Index]

can be abbreviated to

StringArray[Index]

When an object reference is followed by a list of indexes enclosed in square brackets,
the compiler automatically selects the class type's default array property, or issues
an error if the class type has no default array property.

If a class defines a default array property, derived classes automatically inherit the
default array property. It isn’t possible for a derived class to redeclare or hide the
default array property.

Index specifiers
The definition of a property can optionally include an index specifier. Index specifiers
allow a number of properties to share the same access methods. An index specifier
consists of the directive index followed by an integer constant with a value between
–32767 and 32767. For example

type
 TRectangle = class
 private
 FCoordinates: array[0..3] of Longint;
 function GetCoordinate(Index: Integer): Longint;
 procedure SetCoordinate(Index: Integer; Value: Longint);
 public

1 0 6 O b j e c t P a s c a l L a n g u a g e G u i d e

 property Left: Longint index 0
 read GetCoordinate write SetCoordinate;
 property Top: Longint index 1
 read GetCoordinate write SetCoordinate;
 property Right: Longint index 2
 read GetCoordinate write SetCoordinate;
 property Bottom: Longint index 3
 read GetCoordinate write SetCoordinate;
 property Coordinates[Index: Integer]: Longint
 read GetCoordinate write SetCoordinate;
 :
 end;

An access specifier of a property with an index specifier must list a method
identifier. In other words, the read and write specifiers of a property with an index
specifier aren’t allowed to list a field name.

When accessing a property with an index specifier, the integer value specified in the
property definition is automatically passed to the access method as an extra
parameter. For that reason, an access method for a property with an index specifier
must take an extra value parameter of type Integer. For a property read function, the
extra parameter must be the last parameter. For a property write procedure, the
extra parameter must be the second to last parameter, that is it must immediately
precede the parameter that specifies the new property value.

Assuming that Rectangle is an object reference of the TRectangle type defined above,
the statement

Rectangle.Right := Rectangle.Left + 100;

corresponds to

Rectangle.SetCoordinate(2, Rectangle.GetCoordinate(0) + 100);

Storage specifiers
The optional stored, default, and nodefault specifiers of a property definition are
called storage specifiers. They control certain aspects of the run-time type information
that is generated for published properties. Storage specifiers are only supported
for normal (non-array) properties.

Storage specifiers have no semantic effects on a property, that is they do not affect
how a property is used in program code. The Delphi Visual Component Library,
however, uses the information generated by storage specifiers to control filing of a
component's propertiesthe automatic saving and loading of a component's
property values in a form file. The stored directive controls whether a property is
filed, and the default and nodefault properties control the value that is considered a
property's default value.

If present in a property definition, the stored keyword must be followed by a
boolean constant (True or False), the identifier of a field of type Boolean, or the
identifier of a parameterless function method with returns a value of type Boolean. If
a property definition doesn’t include a stored specifier, the results are the same as if
a stored True specifier were included.

C h a p t e r 9 , C l a s s t y p e s 1 0 7

The default and nodefault specifiers are supported only for properties of ordinal
types and small set types. If present in a property definition, the default keyword
must be followed by a constant of the same type as the property. If a property
definition doesn’t (or can’t) include a default or nodefault specifier, the results are
the same as if a nodefault specifier were included.

When saving a component's state, the Delphi Visual Component Library iterates
over all of the component's published properties. For each property, the result of
evaluating the boolean constant, field, or function method of the stored specifier
controls whether the property is saved. If the result is False, the property isn’t saved.
If the result is True, the property's current value is compared to the value given in
the default specifier (if present). If the current value is equal to the default value, the
property isn’t saved. Otherwise, if current value is different from the default value,
or if the property has no default value, the property is saved.

Property overrides
A property definition that doesn’t include a property interface is called a property
override. A property override allows a derived class to change the visibility, access
specifiers, and storage specifiers of an inherited property.

In its simplest form, a property override specifies only the reserved word property
followed by an inherited propery identifier. This form is used to change the
visibility of a property. If, for example, a base class defines a property in a protected
section, a derived class can raise the visibility of the property by declaring a
property override in a public or published section.

A property override can include a read, write, stored, and default or nodefault
specifier. Any such specifier overrides the corresponding inherited specifier. Note
that a property override can change an inherited access specifier or add a missing
access specifier, but it can’t remove an access specifier.

The following declarations illustrate the use of property overrides to change the
visibility, access specifiers, and storage specifiers of inherited properties:

type
 TBase = class
 :
 protected
 property Size: Integer read FSize;
 property Text: string read GetText write SetText;
 property Color: TColor read FColor write SetColor stored False;
 :
 end;

type
 TDerived = class(TBase)
 :
 protected
 property Size write SetSize;
 published
 property Text;
 property Color stored True default clBlue;

1 0 8 O b j e c t P a s c a l L a n g u a g e G u i d e

 :
 end;

The property override of Size adds a write specifier to allow the Size property to be
modified. The property overrides of Text and Color change the visibility of the
properties from protected to published. In addition, the property override of Color
specifies that the property should be filed if its value isn’t clBlue.

Class-reference types
Class-reference types allow operations to be performed directly on classes. This
contrasts with class types, which allow operations to be performed on instances of
classes. Class-reference types are sometimes referred to as metaclasses or metaclass
types.
class reference type

class object type identifierclass of

Class-reference types are useful in the following situations:

• With a virtual constructor to create an object whose actual type is unknown at
compile time

• With a class method to perform an operation on a class whose actual type is
unknown at compile time

• As the right operand of an is operator to perform a dynamic type check with a
type that is unknown at compile time

• As the right operand of an as operator to perform a checked typecast to a type
that is unknown at compile time

The declaration of a class-reference type consists of the reserved words class of
followed by a class-type identifier. For example,

type
 TComponent = class(TPersistent)
 :
 end;
 TComponentClass = class of TComponent;
 TControl = class(TComponent)
 :
 end;
 TControlClass = class of TControl;

var
 ComponentClass: TComponentClass;
 ControlClass: TControlClass;

The previous declarations define TComponentClass as a type that can reference class
TComponent, or any class that derives from TComponent, and TControlClass as a type
that can reference class TControl, or any class that derives from TControl.

C h a p t e r 9 , C l a s s t y p e s 1 0 9

Class-type identifiers function as values of their corresponding class-reference types.
For example, in addition to its other uses, the TComponent identifier functions as a
value of type TComponentClass, and the TControl identifier functions as a value of
type TControlClass.

A class-reference type value is assignment-compatible with any ancestor class-
reference type. Therefore, during program execution, a class-reference type variable
can reference the class it was defined for or any descendant class of the class it was
defined for. Referring to the previous declarations, the assignments

ComponentClass := TComponent; { Valid }
ComponentClass := TControl; { Valid }

are both valid. Of these assignments,

ControlClass := TComponent; { Invalid }
ControlClass := TControl; { Valid }

only the second one is valid, however. The first assignment is an error because
TComponent isn’t a descandant of TControl, and therefore not a value of type
TControlClass.

A class-reference type variable can be nil, which indicates that the variable doesn’t
currently reference a class.

Every class inherits (from TObject) a method function called ClassType, which
returns a reference to the class of an object. The type of the value returned by
ClassType is TClass, which is declared as class of TObject. This means that the value
returned by ClassType may have to be typecast to a more specific descendant type
before it can be used, for example

if Control <> nil then
 ControlClass := TControlClass(Control.ClassType) else
 ControlClass := nil;

Constructors and class references
A constructor can be invoked on a variable reference of a class-reference type. This
allows polymorphic construction of objects, that is construction of objects whose actual
type isn’t known at compile time. For example,

function CreateControl(ControlClass: TControlClass;
 const ControlName: string; X, Y, W, H: Integer): TControl;
begin
 Result := ControlClass.Create(MainForm);
 with Result do
 begin
 Parent := MainForm;
 Name := ControlName;
 SetBounds(X, Y, W, H);
 Visible := True;
 end;
end;

1 1 0 O b j e c t P a s c a l L a n g u a g e G u i d e

The CreateControl function uses a class-reference type parameter to specify which
class of control to create. It subsequently uses the class-reference type parameter to
invoke the Create constructor of the class. Because class-type identifiers also function
as class-reference type values, calls to CreateControl can simply specify the identifier
of the class to create an instance for. For example,

CreateControl(TEdit, 'Edit1', 10, 10, 100, 20);
CreateControl(TButton, 'Button1', 120, 10, 80, 30);

A constructor can be invoked on a variable reference of a class-reference type. This
allows polymorphic construction of objects, that is construction of objects whose actual
type isn’t known at compile time.

Constructors that are invoked through class-reference types are usually virtual. That
way, the constructor implementation that is called depends on the actual (run-time)
class type selected by the class reference.

Class methods
A class method is a method that operates on a class reference instead of an object
reference. The definition of a class method must include the reserved word class
before the procedure or function keyword that starts the definition. For example,

type
 TFigure = class
 public
 class function Supports(Operation: string): Boolean; virtual;
 class procedure GetInfo(var Info: TFigureInfo); virtual;
 :
 end;

The defining declaration of a class method must also start with the reserved word
class. For example,

class procedure TFigure.GetInfo(var Info: TFigureInfo);
begin
 :
end;

In the defining declaration of a class method, the identifier Self represents the class
for which the method was activated. The type of Self in a class method is class of
ClassType, where ClassType is the class type for which the method is implemented.
Because Self doesn’t represent an object reference in a class method, it isn’t possible
to use Self to access fields, properties, and normal methods. It is possible, however,
to call constructors and other class methods through Self.

A class method can be invoked through a class reference or an object reference.
When invoked through an object reference, the class of the given object reference is
passed as the Self parameter.

C h a p t e r 9 , C l a s s t y p e s 1 1 1

The TObject and TClass types
The System unit defines two types, TObject and TClass, which serve as the root types
for all class types and class-reference types. The declarations of the two types are
shown below.

type
 TObject = class;
 TClass = class of TObject;
 TObject = class
 constructor Create;
 destructor Destroy; virtual;
 class function ClassInfo: Pointer;
 class function ClassName: string;
 class function ClassParent: TClass;
 function ClassType: TClass;
 procedure DefaultHandler(var Message); virtual;
 procedure Dispatch(var Message);
 function FieldAddress(const Name: string): Pointer;
 procedure Free;
 procedure FreeInstance; virtual;
 class function InheritsFrom(AClass: TClass): Boolean;
 class procedure InitInstance(Instance: Pointer): TObject;
 class function InstanceSize: Word;
 class function NewInstance: TObject; virtual;
 class function MethodAddress(const Name: string): Pointer;
 class function MethodName(Address: Pointer): string;
 end;

1 1 2 O b j e c t P a s c a l L a n g u a g e G u i d e

C h a p t e r 1 0 , E x c e p t i o n s 1 1 3

 C h a p t e r

10
Exceptions

An exception is generally an error condition or other event that interrupts normal
flow of execution in an application. When an exception is raised, it causes control to
be transferred from the current point of execution to an exception handler. Object
Pascal's exception handling support provides a structured means of separating
normal program logic from error handling logic, greatly increasing the
maintainability and robustness of applications.

Object Pascal uses objects to represent exceptions. This has several advantages, the
key ones of which are

• Exceptions can be grouped into hierarchies using inheritance

• New exceptions can be introduced without affecting existing code

• An exception object can carry information (such as an error message or an error
code) from the point where it was raised to the point where it is handled

Using exception handling
The SysUtils unit implements exception generation and handling for the Object
Pascal run-time library. When an application uses the SysUtils unit, all run-time
errors are automatically converted into exceptions. This means that error conditions
such as out of memory, division by zero, and general protection fault, which would
otherwise terminate an application, can be caught and handled in a structured
fashion.

Note Delphi's Visual Class Library fully supports exception handling. An application that
uses VCL automatically also uses the SysUtils unit, thus enabling exception
handling.

1 1 4 O b j e c t P a s c a l L a n g u a g e G u i d e

Exception declarations
An exception in Object Pascal is simply a class, and the declaration of an exception
is no different than the declaration of an ordinary class. Although it is possible to
use an instance of any class as an exception object, it is recommended that all
exceptions be derived from the Exception class defined in the SysUtils unit. For
example

type
 EMathError = class(Exception);
 EInvalidOp = class(EMathError);
 EZeroDivide = class(EMathError);
 EOverflow = class(EMathError);
 EUnderflow = class(EMathError);

Exceptions are often grouped into families of related exceptions using inheritance.
The above declarations (which were extracted from the SysUtils unit) define a family
of related math error exceptions. Using families, it is possible to handle an entire
group of exceptions under one name. For example, an exception handler for
EMathError will also handle EInvalidOp, EZeroDivide, EOverflow, and EUnderflow
exceptions, and any user-defined exceptions that directly or indirectly derive from
EMathError.

Exception classes sometimes define additional fields, methods, and properties used
to convey additional information about the exception. For example, the EInOutError
class defined in the SysUtils unit introduces an ErrorCode field which contains the
file I/O error code that caused the exception.

type
 EInOutError = class(Exception)
 ErrorCode: Integer;
 end;

The raise statement
An exception is raised using a raise statement.
raise statement

exception instance

address expression

raise

at

The argument to a raise statement must be an object. In other words, the raise
keyword must be followed by an expression of a class type. When an exception is
raised, the exception handling logic takes ownership of the exception object. Once
the exception is handled, the exception object is automatically destroyed through a
call to the object's Destroy destructor. An application should never attempt to
manually destroy a raised exception object.

C h a p t e r 1 0 , E x c e p t i o n s 1 1 5

Note A raise statement raises an object, not a class. The argument to a raise statement is
typically constructed "on the fly" through a call to the Create constructor of the
appropriate exception class.

A raise statement that omits the exception object argument will re-raise the current
exception. This form of a raise statement is allowed only in an exception block, and is
described further in the section entitled "Re-raising exceptions".

Control never returns from a raise statement. Instead, raise transfers control to the
innermost exception handler that can handle exceptions of the given class.
Innermost in this case means the handler whose try...except block was most recently
entered and not yet exited.

The StrToIntRange function below converts a string to an integer, and raises an
ERangeError exception if the resulting value is not within a specified range.

function StrToIntRange(const S: string; Min, Max: Longint): Longint;
begin
 Result := StrToInt(S);
 if (Result < Min) or (Result > Max) then
 raise ERangeError.CreateFmt(
 '%d is not within the valid range of %d..%d',
 [Result, Min, Max]);
end;

The try...except statement
Exceptions are handled using try...except statements.

try statement

statement list exception blocktry except end

statement list

;

statement

exception block

exception handler

except statement list;

statement list

exception handler

class type identifier statement

:

on

identifier

do

A try...except statement executes the statements in the try statement list in sequential
order. If the statements execute without any exceptions being raised, the exception

1 1 6 O b j e c t P a s c a l L a n g u a g e G u i d e

block is ignored, and control is passed to the statement following the end keyword
that ends the try...except statement.

The exception block in the except...end section defines exception handlers for the try
statement list. An exception handler can be invoked only by a raise statement
executed in the try statement list or by a procedure or function called from the try
statement list.

When an exception is raised, control is transferred to the innermost exception
handler that can handle exceptions of the given class. The search for an exception
handler starts with the most recently entered and not yet exited try...except
statement. If that try...except statement cannot handle exceptions of the given class,
the next most recently entered try...except statement is examined. This propagation of
the exception continues until an appropriate handler is found, or there are no more
active try...except statements. In the latter case a run-time error occurs and the
application is terminated.

To determine whether the exception block of a try...except statement can handle a
particular exception, the on...do exception handlers are examined in order of
appearance. The first exception handler that lists the exception class or a base class
of the exception is considered a match. If an exception block contains an else part, and
if none of the on...do exception handlers match the exception, the else part is
considered a match. An exception block that contains only a statement list is
considered a match for any exception.

Once a matching exception handler is found, the stack is "unwound" to the
procedure or function that contains the handler, and control is transferred to the
handler. The unwinding process will discard all procedure and function calls that
occurred since entering the try...except statement containing the exception handler.

Following execution of an exception handler, the exception object is automatically
destroyed through a call to the object's Destroy destructor, and control is passed to
the statement following the end keyword that ends the try...except statement.

In the example below, the first on...do handles division by zero exceptions, the
second on...do handles overflow exceptions, and the final on...do handles all other
math exceptions.

try
 ...
except
 on EZeroDivide do HandleZeroDivide;
 on EOverflow do HandleOverflow;
 on EMathError do HandleMathError;
end;

As described earlier, to locate a handler for a given exception class, the on...do
handlers are processed in order of appearance. This means that handlers for the
most derived classes should be listed first. For example, since EZeroDivide and
EOverflow are both derived from EMathError, a handler for EMathError will also
handle EZeroDivide and EOverflow exceptions. If EMathError was listed before these
exceptions, the more specific handlers would never be invoked.

C h a p t e r 1 0 , E x c e p t i o n s 1 1 7

An on...do exception handler can optionally specify an identifier and a colon before
the exception class identifier. This declares the identifier to represent the exception
object during execution of the statement that follows on...do. For example

try
 ...
except
 on E: Exception do ErrorDialog(E.Message, E.HelpContext);
end;

The scope of an identifier declared in an exception handler is the statement that
follows on...do. The identifier hides any similarly named identifier in an outer
scope.

If a try...except statement specifies an else part, then any exceptions that aren't
handled by the on...do exception handlers will be handled by the else part. For
example

try
 ...
except
 on EZeroDivide do HandleZeroDivide;
 on EOverflow do HandleOverflow;
 on EMathError do HandleMathError;
else
 HandleAllOthers;
end;

Here, the else part will handle any exception that isn't an EMathError.

An exception block that contains no on...do handlers, but instead consists only of a list
of statements, will handle all exceptions.

try
 ...
except
 HandleException;
end;

Here, any exception that occurs as a result of executing the statements between try
and except will be handled by the HandleException procedure.

Re-raising exceptions
In some situations, a procedure or function may need to perform clean-up
operations when an exception occurs, but the procedure or function may not be
prepared to actually handle the exception. For example, consider the GetFileList
function below, which allocates a TStringList object and fills it with the filenames
matching a given search path.

function GetFileList(const Path: string): TStringList;
var
 I: Integer;
 SearchRec: TSearchRec;

1 1 8 O b j e c t P a s c a l L a n g u a g e G u i d e

begin
 Result := TStringList.Create;
 try
 I := FindFirst(Path, 0, SearchRec);
 while I = 0 do
 begin
 Result.Add(SearchRec.Name);
 I := FindNext(SearchRec);
 end;
 except
 Result.Free;
 raise;
 end;
end;

The function first allocates a new TStringList object, and then uses the FindFirst and
FindNext functions (defined in the SysUtils unit) to initialize the string list. If, for any
reason, the initialization of the string list fails, for exampe because the given search
path is invalid, or because there is not enough memory to fill in the string list,
GetFileList needs to dispose the newly allocated string list, since the caller does not
yet know of its existence. For that reason, the initialization of the string list is
performed in a try...except statement. If an exception occurs, the exception handler
part of the try...except statement disposes the string list, and then re-raises the
exception.

Nested exceptions
Code executed in an exception handler can itself raise and handle exceptions. As
long as exceptions raised in an exception handler are also handled within the
exception handler, they do not affect the original exception. However, once an
exception raised in an exception handler propagates beyond that handler, the
original exception is lost. This is illustrated by the Tan function shown below.

type
 ETrigError = class(EMathError);

function Tan(X: Extended): Extended;
begin
 try
 Result := Sin(X) / Cos(X);
 except
 on EMathError do
 raise ETrigError.Create('Invalid argument to Tan');
 end;
end;

If an EMathError is raised in the computation of the tangent of the given angle, such
as the EZeroDivide that would result if Cos(X) is zero, the exception handler raises an
ETrigError exception. Since the Tan function does not provide a handler for the
ETrigError exception that it raises, the ETrigError will propagate beyond the original

C h a p t e r 1 0 , E x c e p t i o n s 1 1 9

exception handler, causing the EMathError exception to be disposed. To the caller,
the result is simply that the Tan function has raised an ETrigError exception.

The try...finally statement
When a section of code acquires a resource, it is often necessary to ensure that the
resource be released again, regardless of whether the code completes normally or is
interrupted by an exception. For example, a section of code that opens and
processes a file will normally want to ensure that the file is closed no matter how the
code terminates. The try...finally statement can be used in such situations.
try statement

statement listtry finally statement list end

statement list

;

statement

A try...finally statement executes the statements in the try statement list in sequential
order. If no exceptions are raised in the try statement list, the finally statement list is
executed. If an exception is raised in the try statement list, control is transferred to
the finally statement list, and once the finally statement list completes execution, the
exception is re-raised. The resulting effect is that the finally statement list is always
executed, regardless of how the try statement list terminates.

The section of code shown below illustrates how a try...finally statement can be
used to ensure that a file that was opened is always closed.

Reset(F);
try
 ProcessFile(F);
finally
 CloseFile(F);
end;

Note In a typical application, try...finally statements such as the one above tend to be
much more common than try...except statements. Applications written using
Delphi's Visual Class Library, for example, normally rely on VCL's default exception
handling mechanisms, thus seldom needing to use try...except statements. Resource
allocations will however often have to be guarded against exceptions, and the use of
try...finally statements will therefore be much more frequent.

If an exception is raised but not handled in the finally statement list, that exception is
propagated out of the try...finally statement, and any original exception is lost.

Note It is strongly recommended that a finally statement list always handle all local
exceptions, so as to not disturb the propagation of an external exception.

1 2 0 O b j e c t P a s c a l L a n g u a g e G u i d e

Exit, Break, and Continue procedures
If a call to one of the Exit, Break, or Continue standard procedures cause control to
leave the try statement list of a try...finally statement, the finally statement list is
automatically executed. Likewise, if one of these standard procedures are used to
leave an exception handler, the exception object is automatically disposed.

Predefined exceptions
The SysUtils unit declares a number of exception classes, including a class named
Exception which serves as the ultimate ancestor of all exception classes. The public
interface of Exception is declared as follows

type
 Exception = class(TObject)
 public
 constructor Create(const Msg: string);
 constructor CreateFmt(const Msg: string; const Args: array of const);
 constructor CreateRes(Ident: Word);
 constructor CreateResFmt(Ident: Word; const Args: array of const);
 constructor CreateHelp(const Msg: string; HelpContext: Longint);
 constructor CreateFmtHelp(const Msg: string; const Args: array of const;
 HelpContext: Longint);
 constructor CreateResHelp(Ident: Word; HelpContext: Longint);
 constructor CreateResFmtHelp(Ident: Word; const Args: array of const;
 HelpContext: Longint);
 destructor Destroy; override;
 property HelpContext: Longint;
 property Message: string;
 end;

The Exception class establishes two properties, Message and HelpContext, that every
exception object inherits. This means that an arbitrary exception object can at least
provide a descriptive message of the exception condition, and possibly a help
context that refers to further on-line help on the topic.

The constructors defined by Exception provide various ways of initializing the
Message and HelpContext properties. In general

• Constructors that don't include "Res" in their names require the exception
message to be specified as a string parameter. Those that do include "Res" in their
names will initialize the Message property from the string resource with the given
ID.

• Constructors that include "Fmt" in their names interpret the specified exception
message as a format string, and require an extra Args parameter which supplies
the format arguments. The initial value of the Message property is constructed
through a call to the Format function in the SysUtils unit.

• Constructors that include "Help" in their names require an extra HelpContext
parameter which supplies the on-line help context for the exception.

C h a p t e r 1 0 , E x c e p t i o n s 1 2 1

The following table lists all exceptions defined by the SysUtils unit, and the
situations in which the exceptions are raised. Unless otherwise noted, the exceptions
are direct descendants of the Exception class.

 Table 10-1 Predefined exception classes

Exception class Description
EAbort The "silent exception" raised by the Abort procedure.
EOutOfMemory Raised if there is not enough memory for a particular operation.
EInOutError Raised if a file I/O operation causes an error. The EInOutError

exception defines an ErrorCode field that contains the I/O error
code, corresponding to the value returned by the IOResult
standard function.

EIntError The ancestor class for all integer arithmetic exceptions.
EDivByZero Derived from EIntError. Raised if an integer divide operation

with a zero divisor is attempted.
ERangeError Derived from EIntError. Raised if a range check operation fails in

a section of code that was compiled in the {$R+} state.
EIntOverflow Derived from EIntError. Raised if an overflow check operation

fails in a section of code that was compiled in the {$Q+} state.
EMathError The ancestor class for all floating-point math exceptions.
EInvalidOp Derived from EMathError. Raised if an invalid math operation is

performed, such as taking the square root of a negative number.
EZeroDivide Derived from EMathError. Raised if a divide operation with a

zero divisor is attempted.
EOverflow Derived from EMathError. Raised if a floating-point operation

produces an overflow.
EUnderflow Derived from EMathError. By default, floating-point operations

that underflow simply produce a zero result. An application must
manually change the control word of the 80x87 co-processor to
enable underflow exceptions.

EInvalidPointer Raised if an application attempts to free an invalid pointer.
EInvalidCast Raised if the object given on the left hand side of an as operator is

not of the class given on the right hand side of the operator.
EConvertError Raised if a conversion function cannot perform the required

conversion. A number of functions in the SysUtils unit, such as
StrToInt, StrToFloat, and StrToDateTime, may raise this exception.

EProcessorException The ancestor class for all hardware exceptions.
EFault Derived from EProcessorException. The ancestor class for all

processor fault exceptions.
EGPFault Derived from EFault. Raised if an application tries to access an

invalid memory address. This exception typically indicates that
the application tried to access an object through an uninitialized
object reference, or tried to dereference an uninitialized pointer.

EStackFault Derived from EFault. Raised if there is not enough stack space to
allocate the local variables for a procedure or function. Stack
overflow checking must be enabled, using a {$S+} directive, for
this exception to occur.

EPageFault Derived from EFault. Raised if the CPU reports a page fault.
EInvalidOpCode Derived from EFault. Raised if the CPU detects an invalid

instruction.
EBreakpoint Derived from EProcessorException. Raised if the CPU encounters a

breakpoint instruction.
ESingleStep Derived from EProcessorException. Raised after the CPU has

executed an instruction in single-step mode.

1 2 2 O b j e c t P a s c a l L a n g u a g e G u i d e

Exception handling support routines
The SysUtils unit defines a number of exception handling support routines. A brief
description of each is presented here. For further information, see the Visual
Component Library Reference.

 Table 10-2 Exception support routines

Routine Description
ExceptObject Returns a reference to the current exception object, that is the object

associated with the currently raised exception. If there is no current
exception, ExceptObject returns nil.

ExceptAddr Returns the address at which the current exception was raised. If there is no
current exception, ExceptAddr returns nil.

ShowException Displays an exception dialog box for a given exception object and exception
address.

Abort Raises an EAbort exception. VCL's standard exception handler treats EAbort
as a "silent exception", and does not display an exception dialog box when it
is handled.

OutOfMemoryError Raises an EOutOfMemory error. OutOfMemoryError uses a pre-allocated
EOutOfMemory exception object, thus avoiding any dynamic memory
allocations as part of raising the exception.

C h a p t e r 1 1 , P r o g r a m s a n d u n i t s 1 2 3

 C h a p t e r

11
Programs and units

Program syntax
A Object Pascal program consists of a program heading, an optional uses clause,
and a block.
program

program heading ;
uses clause

block .

The program heading
The program heading specifies the program’s name and its parameters.

program heading
program identifier

(program parameters)

program parameters identifier list

The program heading, if present, is ignored by the compiler.

The uses clause
The uses clause identifies all units used by the program.

uses clause uses identifier
,

;

1 2 4 O b j e c t P a s c a l L a n g u a g e G u i d e

The System unit is always used automatically. System implements all low-level, run-
time routines to support such features as file input and output (I/O), string
handling, floating point, dynamic memory allocation, and others.

Apart from System, Object Pascal implements many standard units that aren’t used
automatically; you must include them in your uses clause. For example,

uses SysUtils; { Can now use SysUtils }

The order of the units listed in the uses clause determines the order of their
initialization (see “The initialization part” on page 125).

Note To find the unit file containing a compiled unit, the compiler truncates the unit
name listed in the uses clause to the first eight characters and adds the file
extension. The file extension for Delphi units is .DCU.

Unit syntax
Units are the basis of in Object Pascal. They’re used to create libraries you can
include in various programs without making the source code available, and to
divide large programs into logically related modules.

unit

unit heading ; interface part implementation part

initialization part .

The unit heading
The unit heading specifies the unit’s name.

unit heading unit unit identifier

The unit name is used when referring to the unit in a uses clause. The name must be
unique: Two units with the same name can’t be used at the same time.

Note The name of a unit’s source file and binary file must be the same as the unit
identifier, truncated to the first eight characters. If this isn’t the case, the compiler
can’t find the source and/or binary file when compiling a program or unit that uses
the unit.

The interface part
The interface part declares constants, types, variables, procedures, and functions
that are public; that is, available to the host (the program or unit using the unit). The
host can access these entities as if they were declared in a block that encloses the
host.

C h a p t e r 1 1 , P r o g r a m s a n d u n i t s 1 2 5

interface part

interface
uses clause constant declaration part

type declaration part

variable declaration part

procedure and function
heading part

procedure and function
heading part

procedure heading

function heading

;
inline directive ;

Unless a procedure or function is inline, the interface part only lists the procedure
or function heading. The block of the procedure or function follows in the
implementation part.

The implementation part
The implementation part defines the block of all public procedures and functions. In
addition, it declares constants, types, variables, procedures, and functions that are
private; that is, not available to the host.

implementation

implementation part

uses clause
declaration part

In effect, the procedure and function declarations in the interface part are like
forward declarations, although the forward directive isn’t specified. Therefore,
these procedures and functions can be defined and referenced in any sequence in
the implementation part.

Note Procedure and function headings can be duplicated from the interface part. You
don’t have to specify the formal parameter list, but if you do, the compiler will issue
a compile-time error if the interface and implementation declarations don’t match.

The initialization part
The initialization part is the last part of a unit. It consists either of the reserved word
end (in which case the unit has no initialization code) or of the reserved word
initialization, followed by a list of statements which initialize the unit, followed by
the reserved word end.

endinitialization part

statementinitialization

;

1 2 6 O b j e c t P a s c a l L a n g u a g e G u i d e

The initialization parts of units used by a program are executed in the same order
that the units appear in the uses clause.

Indirect unit references
The uses clause in a module (program or unit) need only name the units used
directly by that module. Consider the following:

program Prog;
uses Unit2;
const a = b;
begin
end.

unit Unit2;
interface
uses Unit1;
const b = c;
implementation
end.

unit Unit1;
interface
const c = 1;
implementation
const d = 2;
end.

In the previous example, Unit2 is directly dependent on Unit1 and Prog is directly
dependent on Unit2. Also, Prog is indirectly dependent on Unit1 (through Unit2),
even though none of the identifiers declared in Unit1 are available to Prog.

To compile a module, the compiler must be able to locate all units the module
depends upon, directly or indirectly. So, to compile Prog, the compiler must be able
to locate both Unit1 and Unit2, or else an error occurs.

Note for C and other language users: The uses clauses of an Object Pascal program
provide the “make” logic information traditionally found in make or project files of
other languages. With the uses clause, Object Pascal can build all the dependency
information into the module itself and reduce the chance for error.

When changes are made in the interface part of a unit, other units using the unit
must be recompiled. If you use Make or Build, the compiler does this for you
automatically. If changes are made only to the implementation or the initialization
part, however, other units that use the unit don’t have to be recompiled. In the
previous example, if the interface part of Unit1 is changed (for example, c = 2) Unit2
must be recompiled; changing the implementation part (for example, d = 1) doesn’t
require recompilation of Unit2.

Object Pascal can tell when the interface part of a unit has changed by computing a
unit version number when the unit is compiled. In the preceding example, when Unit2
is compiled, the current version number of Unit1 is saved in the compiled version of

C h a p t e r 1 1 , P r o g r a m s a n d u n i t s 1 2 7

Unit2. When Prog is compiled, the version number of Unit1 is checked against the
version number stored in Unit2. If the version numbers don’t match (indicating that
a change was made in the interface part of Unit1 because Unit2 was compiled), the
compiler reports an error or recompiles Unit2, depending on the mode of
compilation.

Circular unit references
When two or more units reference each other in their uses clauses, the units are said
to be mutually dependent. Any pattern of mutual dependencies is allowed as long
as there are no circular references created by following the uses clauses in the
interface parts of the units. In other words, for any given set of mutually dependent
units, starting with the uses clause of the interface part of any unit it must not be
possible to return to that unit by following references in the uses clauses of the
interface parts. For a pattern of mutual dependencies to be valid, each circular
reference path must lead through the uses clause of the implementation part of at
least one unit.

In the simplest case of two mutually dependent units, the implication of the above
rule is that it is not possible for both units to reference the other in the interface
part. It is however possible for one of the units to reference the other in the interface
part, as long as the other references the first in the implementation part.

When the compiler detects an invalid circular reference path, it reports error 68,
"Circular unit reference". In order to reduce the chances of invalid circular
references occurring, it is recommended that a unit use other units in the
implementation part whenever possible. Only when symbols from another unit are
needed in the interface part should that unit be listed in the interface part uses
clause.

1 2 8 O b j e c t P a s c a l L a n g u a g e G u i d e

C h a p t e r 1 2 , D y n a m i c - l i n k l i b r a r i e s 1 2 9

 C h a p t e r

12
Dynamic-link libraries

Dynamic-link libraries (DLLs) permit several Windows applications to share code
and resources. With Object Pascal, you can use DLLs as well as write your own
DLLs to be used by other applications.

What is a DLL?
A DLL is an executable module containing code or resources for use by other
applications or DLLs. Conceptually, a DLL is similar to a unit—both have the ability
to provide services in the form of procedures and functions to a program. There are,
however, many differences between DLLs and units. In particular, units are
statically linked, whereas DLLs are dynamically linked.

When a program uses a procedure or function from a unit, a copy of that procedure
or function’s code is statically linked into the program’s executable file. If two
programs are running simultaneously and they use the same procedure or function
from a unit, there will be two copies of that routine present in the system. It would
be more efficient if the two programs could share a single copy of the routine. DLLs
provide that ability.

In contrast to a unit, the code in a DLL isn’t linked into a program that uses the
DLL. Instead, a DLL’s code and resources are in a separate executable file with a
.DLL extension. This file must be present when the client program runs. The
procedure and function calls in the program are dynamically linked to their entry
points in the DLLs used by the application.

Another difference between units and DLLs is that units can export types, constants,
data, and objects whereas DLLs can export procedures and functions only.

Note A DLL doesn’t have to be written in Object Pascal for a Object Pascal application to
be able to use it. Also, programs written in other languages can use DLLs written in
Object Pascal. DLLs are therefore ideal for multi-language programming projects.

1 3 0 O b j e c t P a s c a l L a n g u a g e G u i d e

Using DLLs
For a module to use a procedure or function in a DLL, the module must import the
procedure or function using an external declaration. For example, the following
external declaration imports a function called GlobalAlloc from the DLL called
KERNEL (the Windows kernel):

function GlobalAlloc(Flags: Word; Bytes: Longint): THandle; far;
external 'KERNEL' index 15;

In imported procedures and functions, the external directive takes the place of the
declaration and statement parts that would otherwise be present. Imported
procedures and functions must use the far call model selected by using a far
procedure directive or a {$F+} compiler directive, but otherwise they behave no
differently than normal procedures and functions. See “External declarations” on
page 72.

Object Pascal imports procedures and functions in three ways:

• By name

• By new name

• By ordinal

The format of external directives for each of the three methods is demonstrated in
the following examples.

When no index or name clause is specified, the procedure or function is imported
by name. The name used is the same as the procedure or function’s identifier. In this
example, the ImportByName procedure is imported from ‘TESTLIB’ using the name
‘IMPORTBYNAME’.

procedure ImportByName; external 'TESTLIB';

When a name clause is specified, the procedure or function is imported by a
different name than its identifier. Here the ImportByNewName procedure is imported
from ‘TESTLIB’ using the name ‘REALNAME’:

procedure ImportByNewName; external 'TESTLIB' name 'REALNAME';

Finally, when an index clause is present, the procedure or function is imported by
ordinal. Importing by ordinal reduces the module’s load time because the name
doesn’t have to be looked up in the DLL’s name table. In the example, the
ImportByOrdinal procedure is imported as the fifth entry in the ‘TESTLIB’ DLL:

procedure ImportByOrdinal; external 'TESTLIB' index 5;

The DLL name specified after the external keyword and the new name specified in a
name clause don’t have to be string literals. Any constant-string expression is
allowed. Likewise, the ordinal number specified in an index clause can be any
constant-integer expression.

const
 TestLib = 'TESTLIB';
 Ordinal = 5;

C h a p t e r 1 2 , D y n a m i c - l i n k l i b r a r i e s 1 3 1

procedure ImportByName; external TestLib;
procedure ImportByNewName; external TestLib name 'REALNAME';
procedure ImportByOrdinal; external TestLib index Ordinal;

Although a DLL can have variables, it’s not possible to import them in other
modules. Any access to a DLL’s variables must take place through a procedural
interface.

Import units
Declarations of imported procedures and functions can be placed directly in the
program that imports them. Usually, though, they are grouped together in an import
unit that contains declarations for all procedures and functions in a DLL, along with
any constants and types required to interface with the DLL. The WinTypes and
WinProcs units supplied with Delphi are examples of such import units. Import
units aren’t a requirement of the DLL interface, but they do simplify maintenance of
projects that use multiple DLLs.

As an example, consider a DLL called DATETIME.DLL that has four routines to get
and set the date and time, using a record type that contains the day, month, and
year, and another record type that contains the second, minute, and hour. Instead of
specifying the associated procedure, function, and type declarations in every
program that uses the DLL, you can construct an import unit to go along with the
DLL. This code creates a .DCU file, but it doesn’t contribute code or data to the
programs that use it:

unit DateTime;

interface

type
 TTimeRec = record
 Second: Integer;
 Minute: Integer;
 Hour: Integer;
 end;

type
 TDateRec = record
 Day: Integer;
 Month: Integer;
 Year: Integer;
 end;

procedure SetTime(var Time: TTimeRec);
procedure GetTime(var Time: TTimeRec);
procedure SetDate(var Date: TDateRec);
procedure GetDate(var Date: TDateRec);

implementation

1 3 2 O b j e c t P a s c a l L a n g u a g e G u i d e

procedure SetTime; external 'DATETIME' index 1;
procedure GetTime; external 'DATETIME' index 2;
procedure SetDate; external 'DATETIME' index 3;
procedure GetDate; external 'DATETIME' index 4;

end.

Any program that uses DATETIME.DLL can now simply specify DateTime in its
uses clause. Here is a Windows program example:

program ShowTime;

uses WinCrt, DateTime;

var
 Time: TTimeRec;

begin
 GetTime(Time);
 with Time do
 WriteLn('The time is ', Hour, ':', Minute, ':', Second);
end.

Another advantage of an import unit such as DateTime is that when the associated
DATETIME.DLL is modified, only one unit, the DateTime import unit, needs
updating to reflect the changes.

When you compile a program that uses a DLL, the compiler doesn’t look for the
DLL so it need not be present. The DLL must be present when you run the program,
however.

Note If you write your own DLLs, they aren’t automatically compiled when you compile
a program that uses the DLL. Instead, DLLs must be compiled separately.

Static and dynamic imports
The external directive provides the ability to statically import procedures and
functions from a DLL. A statically-imported procedure or function always refers to
the same entry point in the same DLL. Windows also supports dynamic imports,
whereby the DLL name and the name or ordinal number of the imported procedure
or function is specified at run time. The ShowTime program shown here uses
dynamic importing to call the GetTime procedure in DATETIME.DLL. Note the use
of a procedural-type variable to represent the address of the GetTime procedure.

program ShowTime;

uses WinProcs, WinTypes, WinCrt;

type
 TTimeRec = record
 Second: Integer;

C h a p t e r 1 2 , D y n a m i c - l i n k l i b r a r i e s 1 3 3

 Minute: Integer;
 Hour: Integer;
 end;
 TGetTime = procedure(var Time: TTimeRec);

var
 Time: TTimeRec;
 Handle: THandle;
 GetTime: TGetTime;

begin
 Handle := LoadLibrary('DATETIME.DLL');
 if Handle >= 32 then
 begin
 @GetTime := GetProcAddress(Handle, 'GETTIME');
 if @GetTime <> nil then
 begin
 GetTime(Time);
 with Time do
 WriteLn('The time is ', Hour, ':', Minute, ':', Second);
 end;
 FreeLibrary(Handle);
 end;
end;

Writing DLLs
The structure of a Object Pascal DLL is identical to that of a program, except a DLL
starts with a library header instead of a program header. The library header tells
Object Pascal to produce an executable file with the extension .DLL instead of .EXE,
and also ensures that the executable file is marked as being a DLL.

library

library heading
uses clause

block; .

library heading identifierlibrary

The example here implements a very simple DLL with two exported functions, Min
and Max, that calculate the smaller and larger of two integer values.

library MinMax;

function Min(X, Y: Integer): Integer; export;
begin
 if X < Y then Min := X else Min := Y;
end;

function Max(X, Y: Integer): Integer; export;
begin

1 3 4 O b j e c t P a s c a l L a n g u a g e G u i d e

 if X > Y then Max := X else Max := Y;
end;

exports
 Min index 1,
 Max index 2;

begin
end.

Note the use of the export procedure directive to prepare Min and Max for
exporting, and the exports clause to actually export the two routines, supplying an
optional ordinal number for each of them.

Although the preceding example doesn’t demonstrate it, libraries can and often do
consist of several units. In such cases, the library source file itself is frequently
reduced to a uses clause, an exports clause, and the library’s initialization code. For
example,

library Editors;

uses EdInit, EdInOut, EdFormat, EdPrint;

exports
 InitEditors index 1,
 DoneEditors index 2,
 InsertText index 3,
 DeleteSelection index 4,
 FormatSelection index 5,
 PrintSelection index 6,

ƒ
 SetErrorHandler index 53;

begin
 InitLibrary;
end.

The export procedure directive
If procedures and functions are to be exported by a DLL, they must be compiled
with the export procedure directive. The export directive belongs to the same family
of procedure directives as the near, far, and inline directives. This means that an
export directive, if present, must be specified upon the first introduction of
procedure or function—it can’t be supplied in the defining declaration of a forward
declaration.

The export directive makes a procedure or function exportable. It forces the routine
to use the far call model and prepares the routine for export by generating special
procedure entry and exit code. Note, however, that the actual exporting of the
procedure or function doesn’t occur until the routine is listed in a library’s exports
clause. See “Export declarations” on page 71.

C h a p t e r 1 2 , D y n a m i c - l i n k l i b r a r i e s 1 3 5

The exports clause
A procedure or function is exported by a DLL when it’s listed in the library’s
exports clause.

exports clause

exports listexports ;

exports list exports entry

,

exports entry

identifier
integer constantindex

string constantname resident

An exports clause can appear anywhere and any number of times in a program or
library’s declaration part. Each entry in an exports clause specifies the identifier of a
procedure or function to be exported. That procedure or function must be declared
before the exports clause appears, however, and its declaration must contain the
export directive. You can precede the identifier in the exports clause with a unit
identifier and a period; this is known as a fully qualified identifier.

An exports entry can also include an index clause, which consists of the word index
followed by an integer constant between 1 and 32,767. When an index clause is
specified, the procedure or function to be exported uses the specified ordinal
number. If no index clause is present in an exports entry, an ordinal number is
automatically assigned. The quickest way to look up a DLL entry is by index.

An entry can also have a name clause, which consists of the word name followed by
a string constant. When there is a name clause, the procedure or function to be
exported uses the name specified by the string constant. If no name clause is present
in an exports entry, the procedure or function is exported by its identifier and
converted to all uppercase.

Finally, an exports entry can include the resident keyword. When resident is
specified, the export information stays in memory while the DLL is loaded. The
resident option significantly reduces the time it takes to look up a DLL entry by
name, so if client programs that use the DLL are likely to import certain entries by
name, those entries should be exported using the resident keyword.

A program can contain an exports clause, but it seldom does because Windows
doesn’t allow application modules to export functions for use by other applications.

Library initialization code
The statement part of a library constitutes the library’s initialization code. The
initialization code is executed once, when the library is initially loaded. When
subsequent applications that use the library are loaded, the initialization code isn’t
executed again, but the DLL’s use count is incremented.

1 3 6 O b j e c t P a s c a l L a n g u a g e G u i d e

A DLL is kept in memory as long as its use count is greater than zero. When the use
count becomes zero, indicating that all applications that used the DLL have
terminated, the DLL is removed from memory. At that point, the library’s exit
procedures are executed. Exit procedures are registered using the ExitProc variable,
as described in Chapter 17, “Control issues.”

A DLL’s initialization code typically performs tasks like registering window classes
for window procedures contained in the DLL and setting initial values for the DLL’s
global variables. The initialization code of a library can signal an error condition by
setting the ExitCode variable to zero. (ExitCode is declared by the System unit.)
ExitCode defaults to 1, indicating initialization was successful. If the initialization
code sets ExitCode to zero, the DLL is unloaded from system memory and the
calling application is notified of the failure to load the DLL.

When a library’s exit procedures are executed, the ExitCode variable doesn’t contain
a process-termination code, as is the case with a program. Instead, ExitCode contains
one of the values wep_System_Exit or wep_Free_DLL, which are defined in the
WinTypes unit. wep_System_Exit indicates that Windows is shutting down, whereas
wep_Free_DLL indicates that just this single DLL is being unloaded.

Here is an example of a library with initialization code and an exit procedure:

library Test;{$S-}

uses WinTypes, WinProcs;

var
 SaveExit: Pointer;

procedure LibExit; far;
begin
 if ExitCode = wep_System_Exit then
 begin

 ƒ
 { System shutdown in progress }

 ƒ
 end else
 begin

 ƒ
 { DLL is being unloaded }

 ƒ
 end;
 ExitProc := SaveExit;
end;

begin
ƒ

 { Perform DLL initialization }
ƒ

 SaveExit := ExitProc; { Save old exit procedure pointer }
 ExitProc := @LibExit; { Install LibExit exit procedure }
end.

C h a p t e r 1 2 , D y n a m i c - l i n k l i b r a r i e s 1 3 7

When a DLL is unloaded, an exported function called WEP in the DLL is called, if
it’s present. A Object Pascal library automatically exports a WEP function, which
continues to call the address stored in the ExitProc variable until ExitProc becomes
nil. Because this works the same way exit procedures are handled in Object Pascal
programs, you can use the same exit procedure logic in both programs and libraries.

Note Exit procedures in a DLL must be compiled with stack-checking disabled (the {$S-}
state) because the operating system switches to an internal stack when terminating a
DLL. Also, the operating system crashes if a run-time error occurs in a DLL exit
procedure, so you must include sufficient checks in your code to prevent run-time
errors.

Library programming notes
The following sections note important points you should keep in mind while
working with DLLs.

Global variables in a DLL
A DLL has its own data segment and any variables declared in a DLL are private to
that DLL. A DLL can’t access variables declared by modules that call the DLL, and
it’s not possible for a DLL to export its variables for use by other modules. Such
access must take place through a procedural interface.

Global memory and files in a DLL
As a rule, a DLL doesn’t “own” any files that it opens or any global memory blocks
that it allocates from the system. Such objects are owned by the application that
(directly or indirectly) called the DLL.

When an application terminates, any open files owned by it are automatically
closed, and any global memory blocks owned by it are automatically deallocated.
This means that file and global memory-block handles stored in global variables in a
DLL can become invalid at any time without the DLL being notified. For that
reason, DLLs should refrain from making assumptions about the validity of file and
global memory-block handles stored in global variables across calls to the DLL.
Instead, such handles should be made parameters of the procedures and functions
of the DLL, and the calling application should be responsible for maintaining them.

Note Global memory blocks allocated with the gmem_DDEShare attribute (defined in the
WinTypes unit) are owned by the DLL, not by the calling applications. Such memory
blocks remain allocated until they are explicitly deallocated by the DLL, or until the
DLL is unloaded.

DLLs and the System unit
During a DLL’s lifetime, the HInstance variable contains the instance handle of the
DLL. The HPrevInst and CmdShow variables are always zero in a DLL, as is the

1 3 8 O b j e c t P a s c a l L a n g u a g e G u i d e

PrefixSeg variable, because a DLL doesn’t have a Program Segment Prefix (PSP).
PrefixSeg is never zero in an application, so the test PrefixSeg <> 0 returns True if the
current module is an application, and False if the current module is a DLL.

To ensure proper operation of the heap manager contained in the System unit, the
start-up code of a library sets the HeapAllocFlags variable to gmem_Moveable +
gmem_DDEShare. Under Windows, this causes all memory blocks allocated via New
and GetMem to be owned by the DLL instead of the applications that call the DLL.

For details about the heap manager, see Chapter 16.

Run-time errors in DLLs
If a run-time error occurs in a DLL, the application that called the DLL terminates.
The DLL itself isn’t necessarily removed from memory at that time because other
applications might still be using it.

Because a DLL has no way of knowing whether it was called from a Object Pascal
application or an application written in another programming language, it’s not
possible for the DLL to invoke the application’s exit procedures before the
application is terminated. The application is simply aborted and removed from
memory. For this reason, make sure there are sufficient checks in any DLL code so
such errors don’t occur.

If a run-time error does occur in a DLL, the safest thing to do is to exit Windows
entirely. If you simply try to modify and rebuild the faulty DLL code, when you run
your program again, Windows won’t load the new version if the buggy one is still in
memory. Exiting Windows and then restarting Windows and Object Pascal ensures
that your corrected version of the DLL is loaded.

DLLs and stack segments
Unlike an application, a DLL doesn’t have its own stack segment. Instead, it uses the
stack segment of the application that called the DLL. This can create problems in
DLL routines that assume that the DS and SS registers refer to the same segment,
which is the case in a Windows application module.

The Object Pascal compiler never generates code that assumes DS = SS, and none of
the Object Pascal run-time library routines make this assumption. If you write
assembly language code, don’t assume that SS and DS registers contain the same
value.

C h a p t e r 1 3 , I n p u t a n d o u t p u t 1 3 9

 C h a p t e r

13
Input and output

This chapter describes Delphi’s standard (or built-in) input and output ()
procedures and functions. You'll find them in the System unit.

 Table 13-1 Input and output procedures and functions

Procedure or
function

Description

Append Opens an existing text file for appending.
AssignFile Assigns the name of an external file to a file variable.
BlockRead Reads one or more records from an untyped file.
BlockWrite Writes one or more records into an untyped file.
ChDir Changes the current directory.
CloseFile Closes an open file.
Eof Returns the end-of-file status of a file.
Eoln Returns the end-of-line status of a text file.
Erase Erases an external file.
FilePos Returns the current file position of a typed or untyped file.
FileSize Returns the current size of a file; not used for text files.
Flush Flushes the buffer of an output text file.
GetDir Returns the current directory of a specified drive.
IOResult Returns an integer value that is the status of the last I/O function performed.
MkDir Creates a subdirectory.
Read Reads one or more values from a file into one or more variables.
Readln Does what a Read does and then skips to the beginning of the next line in the

text file.
Rename Renames an external file.
Reset Opens an existing file.
Rewrite Creates and opens a new file.
RmDir Removes an empty subdirectory.
Seek Moves the current position of a typed or untyped file to a specified

component. Not used with text files.
SeekEof Returns the end-of-file status of a text file.
SeekEoln Returns the end-of-line status of a text file.

1 4 0 O b j e c t P a s c a l L a n g u a g e G u i d e

SetTextBuf Assigns an I/O buffer to a text file.
Truncate Truncates a typed or untyped file at the current file position.
Write Writes one or more values to a file.
Writeln Does the same as a Write, and then writes an end-of-line marker to the text file.

File input and output
An Object Pascal file variable is any variable whose type is a file type. There are
three classes of Object Pascal files: typed, text, and untyped. The syntax for writing
file types is given on page 21.

Before a file variable can be used, it must be associated with an external file through
a call to the AssignFile procedure. An external file is typically a named disk file, but
it can also be a device, such as the keyboard or the display. The external file stores
the information written to the file or supplies the information read from the file.

Once the association with an external file is established, the file variable must be
"opened" to prepare it for input or output. An existing file can be opened via the
Reset procedure, and a new file can be created and opened via the Rewrite
procedure. Text files opened with Reset are read-only and text files opened with
Rewrite and Append are write-only. Typed files and untyped files always allow both
reading and writing regardless of whether they were opened with Reset or Rewrite.

Every file is a linear sequence of components, each of which has the component type
(or record type) of the file. Each component has a component number. The first
component of a file is considered to be component zero.

Files are normally accessed sequentially; that is, when a component is read using the
standard procedure Read or written using the standard procedure Write, the current
file position moves to the next numerically ordered file component. Typed files and
untyped files can also be accessed randomly, however, using the standard
procedure Seek, which moves the current file position to a specified component. The
standard functions FilePos and FileSize can be used to determine the current file
position and the current file size.

When a program completes processing a file, the file must be closed using the
standard procedure CloseFile. After a file is closed, its associated external file is
updated. The file variable can then be associated with another external file.

By default, all calls to standard I/O procedures and functions are automatically
checked for errors, and if an error occurs an exception is raised (or the program is
terminated if exception handling is not enabled). This automatic checking can be
turned on and off using the {$I+} and {$I-} compiler directives. When I/O checking
is off--that is, when a procedure or function call is compiled in the {$I-} state--an I/O
error doesn't cause an exception to be raised. To check the result of an I/O
operation, you must call the standard function IOResult instead.

You must call the IOResult function to clear whatever error may have occurred,
even if you aren't interested in the error. If you don't and {$I+} is the current state,
the next I/O function call fails with the lingering IOResult error.

C h a p t e r 1 3 , I n p u t a n d o u t p u t 1 4 1

Text files
This section summarizes I/O using file variables of the standard type Text.

When a text file is opened, the external file is interpreted in a special way: It is
considered to represent a sequence of characters formatted into lines, where each
line is terminated by an end-of-line marker (a carriage-return character, possibly
followed by a linefeed character). In Object Pascal, the type Text is distinct from the
type file of Char.

For text files, there are special forms of Read and Write that let you read and write
values that are not of type Char. Such values are automatically translated to and
from their character representation. For example, Read(F, I), where I is a type Integer
variable, reads a sequence of digits, interprets that sequence as a decimal integer,
and stores it in I.

Object Pascal defines two standard text-file variables, Input and Output. The
standard file variable Input is a read-only file associated with the operating system's
standard input file (typically the keyboard). The standard file variable Output is a
write-only file associated with the operating system's standard output file (typically
the display):

AssignFile(Input, '');
Reset(Input);
AssignFile(Output, '');
Rewrite(Output);

Because Windows doesn't directly support text-oriented I/O, the I/O files are
unassigned in a Windows application, and any attempt to read or write to them will
produce an I/O error. If a Windows application uses the WinCrt unit, however,
Input and Output refer to a scrollable text window. WinCrt contains the complete
control logic required to emulate a text screen in the Windows environment, and no
Windows-specific programming is required in an application that uses WinCrt. See
page 142 for more about the WinCrt unit.

Some of the standard I/O routines that work on text files don't need to have a file
variable explicitly given as a parameter. If the file parameter is omitted, Input or
Output is assumed by default, depending on whether the procedure or function is
input- or output-oriented. For example, Read(X) corresponds to Read(Input, X) and
Write(X) corresponds to Write(Output, X).

If you do specify a file when calling one of the input or output routines that work on
text files, the file must be associated with an external file using AssignFile, and
opened using Reset, Rewrite, or Append. An exception is raised if you pass a file that
was opened with Reset to an output-oriented procedure or function. An exception is
also raised if you pass a file that was opened with Rewrite or Append to an input-
oriented procedure or function.

1 4 2 O b j e c t P a s c a l L a n g u a g e G u i d e

Untyped files
Untyped files are low-level I/O channels primarily used for direct access to any disk
file regardless of type and structuring. An untyped file is declared with the word
file and nothing more. For example,

var
 DataFile: file;

For untyped files, the Reset and Rewrite procedures allow an extra parameter to
specify the record size used in data transfers. For historical reasons, the default
record size is 128 bytes. A record size of 1 is the only value that correctly reflects the
exact size of any file (no partial records are possible when the record size is 1).

Except for Read and Write, all typed-file standard procedures and functions are also
allowed on untyped files. Instead of Read and Write, two procedures called
BlockRead and BlockWrite are used for high-speed data transfers.

Input and output with the WinCrt unit
The WinCrt unit implements a terminal-like text screen in a window. With WinCrt,
you can easily create a Windows program that uses the Read, Readln, Write, and
Writeln standard procedures to perform input and output operations. WinCrt
contains the complete control logic required to emulate a text screen in the
Windows environment. You don't need to write "Windows-specific" code if your
program uses WinCrt.

Using the WinCrt unit
To use the WinCrt unit, simply include it in your program's uses clause, just as you
would any other unit:

uses WinCrt;

By default, the Input and Output standard text files defined in the System unit are
unassigned, and any Read, Readln, Write, or Writeln procedure call without a file
variable causes a run-time error. But when a program uses the WinCrt unit, the
initialization code of the unit assigns the Input and Output standard text files to refer
to a window that emulates a text screen. It's as if the following statements are
executed at the beginning of your program:

AssignCrt(Input); Reset(Input);
AssignCrt(Output); Rewrite(Output);

When the first Read, Readln, Write, or Writeln call executes in the program, a CRT
window opens on the Windows desktop. The default title of a CRT window is the
full path of the program's .EXE file. When the program finishes (when control
reaches the final end reserved word), the title of the CRT window is changed to
"(Inactive nnnnn)", where nnnnn is the title of the window in its active state.

C h a p t e r 1 3 , I n p u t a n d o u t p u t 1 4 3

Even though the program has finished, the window stays up so that the user can
examine the program's output. Just like any other Windows application, the
program doesn't completely terminate until the user closes the window.

The InitWinCrt and DoneWinCrt routines give you greater control over the CRT
window's life cycle. A call to InitWinCrt immediately creates the CRT window
rather than waiting for the first call to Read, Readln, Write, or Writeln. Likewise,
calling DoneWinCrt immediately destroys the CRT window instead of when the user
closes it.

The CRT window is a scrollable panning window on a virtual text screen. The
default dimensions of the virtual text screen are 80 columns by 25 lines, but the
actual size of the CRT window may be less. If the size is less, the user can use the
window's scroll bars or the cursor keys to move this panning window over the
larger text screen. This is particularly useful for scrolling back to examine previously
written text. By default, the panning window tracks the text screen cursor. In other
words, the panning window automatically scrolls to ensure that the cursor is always
visible. You can disable the autotracking feature by setting the AutoTracking variable
to False.

The dimensions of the virtual text screen are determined by the ScreenSize variable.
You can change the virtual screen dimensions by assigning new dimensions to
ScreenSize before your program creates the CRT window. When the window is
created, a screen buffer is allocated in dynamic memory. The size of this buffer is
ScreenSize.X multiplied by ScreenSize.Y, and it can't be larger than 65,520 bytes. It's
up to you to ensure that the values you assign to ScreenSize.X and ScreenSize.Y don't
overflow this limit. If, for example, you assign 64 to ScreenSize.X, the largest
allowable value for ScreenSize.Y is 1,023.

At any time while running a program that uses the WinCrt unit, the user can
terminate the application by choosing the Close command on the CRT window's
Control menu, double-clicking the Control-menu box, or pressing Alt+F4. The user
can also press Ctrl+C or Ctrl+Break at any time to halt the application and force the
window into its inactive state; you can disable these features by setting the
CheckBreak variable to False at the beginning of the program.

Special characters
When writing to Output or a file that has been assigned to the CRT window, the
following control characters have special meanings:

 Table 13-2 Special characters in the WinCrt window

Char Name Description
#7 BELL Emits a beep from the internal speaker.
#8 BS Moves the cursor left one column and erases the character at that position. If the

cursor is already at the left edge of the screen, nothing happens.
#10 LF Moves the cursor down one line. If the cursor is already at the bottom of the virtual

screen, the screen is scrolled up one line.
#13 CR Returns the cursor to the left edge of the screen.

1 4 4 O b j e c t P a s c a l L a n g u a g e G u i d e

Line input
When your program reads from Input or a file that has been assigned to the CRT
window, text is input one line at a time. The line is stored in the text file's internal
buffer, and when variables are read, this buffer is used as the input source. When
the buffer empties, a new line is read and stored in the buffer.

When entering lines in the CRT window, the user can use the Backspace key to
delete the last character entered. Pressing Enter terminates the input line and stores
an end-of-line marker (CR/LF) in the buffer. In addition, if the CheckEOF variable is
set to True, a Ctrl+Z also terminates the input line and generates an end-of-file
marker. CheckEOF is False by default.

To test keyboard status and input single characters under program control, use the
KeyPressed and ReadKey functions.

WinCrt procedures and functions
The following tables list the procedures and functions defined by the WinCrt unit.

 Table 13-3 WinCrt procedures and functions

Procedure
or function

Description

AssignCrt Associates a text file with the CRT window.
ClrEol Clears all the characters from the cursor position to the end of the line.
ClrScr Clears the screen and returns cursor to the upper left-hand corner.
CursorTo Moves the cursor to the given coordinates within the virtual screen. The origin

coordinates are 0,0.
DoneWinCrt Destroys the CRT window.
GotoXY Moves the cursor to the given coordinates within the virtual screen. The origin

coordinates are 1,1.
InitWinCrt Creates the CRT window.
KeyPressed Returns True if a key has been pressed on the keyboard.
ReadBuf Inputs a line from the CRT window.
ReadKey Reads a character from the keyboard.
ScrollTo Scrolls the CRT window to show a screen location.
TrackCursor Scrolls the CRT window to keep the cursor visible.
WhereX Returns the x-coordinate of the current cursor location. The origin coordinates are 1,1.
WhereY Returns the y-coordinate of the current cursor location. The origin coordinates are 1,1.
WriteBuf Writes a block of characters to the CRT window.
WriteChar Writes a single character to the CRT window.

WinCrt unit variables
The WinCrt unit declares several variables:

 Table 13-4 WinCrt variables

Variable Description
WindowOrg Determines the initial location of the CRT window.
WindowSize Determines the initial size of the CRT window.

C h a p t e r 1 3 , I n p u t a n d o u t p u t 1 4 5

ScreenSize Determines the width and height in characters of the virtual screen within the CRT
window.

Cursor Contains the current position of the cursor within the virtual screen. Cursor is 0,0 based.
Origin Contains the virtual screen coordinates of the character cell displayed in the upper left

corner of the CRT window. Origin is 0,0 based.
InactiveTitle Points to a null-terminated string to use when constructing the title of an inactive CRT

window.
AutoTracking Enables and disables the automatic scrolling of the window to keep the cursor visible.
CheckEOF Enables and disables the end-of-file character.
CheckBreak Enables and disables user termination of an application.
WindowTitle Determines the title of the CRT window.

Text-file device drivers
Object Pascal lets you define your own text-file device drivers for your Windows
programs. A text-file device driver is a set of four functions that completely
implement an interface between Object Pascal's file system and some device.

The four functions that define each device driver are Open, InOut, Flush, and Close.
The function header of each function is

function DeviceFunc(var F: TTextRec): Integer;

where TTextRec is the text-file record-type defined on page 166. Each function must
be compiled in the {$F+} state to force it to use the far call model. The return value
of a device-interface function becomes the value returned by IOResult. If the return
value is zero, the operation was successful.

To associate the device-interface functions with a specific file, you must write a
customized Assign procedure. The Assign procedure must assign the addresses of
the four device-interface functions to the four function pointers in the text-file
variable. In addition, it should store the fmClosed "magic" constant in the Mode field,
store the size of the text-file buffer in BufSize, store a pointer to the text-file buffer in
BufPtr, and clear the Name string.

Assuming, for example, that the four device-interface functions are called DevOpen,
DevInOut, DevFlush, and DevClose, the Assign procedure might look like this:

procedure AssignDev(var F: Text);
begin
 with TextRec(F) do
 begin
 Mode := fmClosed;
 BufSize := SizeOf(Buffer);
 BufPtr := @Buffer;
 OpenFunc := @DevOpen;
 InOutFunc := @DevInOut;
 FlushFunc := @DevFlush;
 CloseFunc := @DevClose;
 Name[0] := #0;
 end;
end;

1 4 6 O b j e c t P a s c a l L a n g u a g e G u i d e

The device-interface functions can use the UserData field in the file record to store
private information. This field isn't modified by the Delphi file system at any time.

The Open function
The Open function is called by the Reset, Rewrite, and Append standard procedures to
open a text file associated with a device. On entry, the Mode field contains fmInput,
fmOutput, or fmInOut to indicate whether the Open function was called from Reset,
Rewrite, or Append.

The Open function prepares the file for input or output, according to the Mode value.
If Mode specified fmInOut (indicating that Open was called from Append), it must be
changed to fmOutput before Open returns.

Open is always called before any of the other device-interface functions. For that
reason, AssignDev only initializes the OpenFunc field, leaving initialization of the
remaining vectors up to Open. Based on Mode, Open can then install pointers to
either input- or output-oriented functions. This saves the InOut, Flush functions and
the CloseFile from determining the current mode.

The InOut function
The InOut function is called by the Read, Readln, Write, Writeln, Eof, Eoln, SeekEof,
SeekEoln, and CloseFile standard procedures and functions whenever input or output
from the device is required.

When Mode is fmInput, the InOut function reads up to BufSize characters into
BufPtr^, and returns the number of characters read in BufEnd. In addition, it stores
zero in BufPos. If the InOut function returns zero in BufEnd as a result of an input
request, Eof becomes True for the file.

When Mode is fmOutput, the InOut function writes BufPos characters from BufPtr^,
and returns zero in BufPos.

The Flush function
The Flush function is called at the end of each Read, Readln, Write, and Writeln. It can
optionally flush the text-file buffer.

If Mode is fmInput, the Flush function can store zero in BufPos and BufEnd to flush the
remaining (unread) characters in the buffer. This feature is seldom used.

If Mode is fmOutput, the Flush function can write the contents of the buffer exactly
like the InOut function, which ensures that text written to the device appears on the
device immediately. If Flush does nothing, the text doesn't appear on the device
until the buffer becomes full or the file is closed.

The Close function
The Close function is called by the CloseFile standard procedure to close a text file
associated with a device. (The Reset, Rewrite, and Append procedures also call Close if
the file they are opening is already open.) If Mode is fmOutput, then before calling

C h a p t e r 1 3 , I n p u t a n d o u t p u t 1 4 7

Close, Object Pascal's file system calls the InOut function to ensure that all characters
have been written to the device.

1 4 8 O b j e c t P a s c a l L a n g u a g e G u i d e

C h a p t e r 1 4 , U s i n g t h e 8 0 x 8 7 1 4 9

 C h a p t e r

14
Using the 80x87

There are two kinds of numbers you can work with in Object Pascal: integers
(Shortint, Smallint, Longint, Byte, Word, Integer, Cardinal) and reals (Real, Single,
Double, Extended, Comp). Reals are also known as floating-point numbers. The 80x86
family of processors is designed to handle integer values easily, but handling reals is
considerably more difficult. To improve floating-point performance, the 80x86
family of processors has a corresponding family of math coprocessors, the 80x87s.

The 80x87 is a special hardware numeric processor that can be installed in your PC.
It executes floating-point instructions very quickly, so if you use floating point often,
you'll probably want a numeric coprocessor or a 486DX or Pentium processor,
which has a numeric coprocessor built in.

By default, Delphi produces code that uses the 80x87 numeric coprocessor. This
gives you access to all five real types (Real, Single, Double, Extended, and Comp), and
performs all floating-point operations using the full Extended range of 3.4 × 10-4951 to
1.1 × 104932 with 19 to 20 significant digits.

For compatibility with earlier versions of Object Pascal, Delphi provides a $N
compiler switch which allows you to control floating-point code generation. The
default state is {$N+}, and in this state Delphi produces code that uses the 80x87
numeric coprocessor. In the {$N–} state, Delphi supports only the Real type, and
uses a library of software routines to handle floating-point operations. The Real type
provides a range of 2.9 × 10-39 to 1.7 × 1038 with 11 to 12 significant digits.

Note The Delphi Visual Class Library requires that you compile your applications in the
{$N+} state. Unless you are compiling an application that doesn't use VCL, you
should refrain from using the {$N–} state.

To interface with the 80x87 coprocessor, Delphi applications use the WIN87EM.DLL
support library that comes with Windows. If an 80x87 coprocessor isn't present in
your system, WIN87EM.DLL will emulate it in software. Emulation is substantially
slower than the real 80x87 coprocessor, but it does guarantee that an application
using the 80x87 can be run on any machine.

1 5 0 O b j e c t P a s c a l L a n g u a g e G u i d e

The 80x87 data types
 Delphi fully supports the the single, double, and extended precision native floating-
point formats provided by the 80x87 coprocessor. In addition, Delphi supports the
80x87's 64-bit integer format.

• The Single type is the smallest format you can use with floating-point numbers. It
occupies 4 bytes of memory, providing a range of 1.5 × 10-45 to 3.4 × 1038 with 7 to
8 significant digits.

• The Double type occupies 8 bytes of memory, providing a range of 5.0 × 10-324 to
1.7 × 10308 with 15 to 16 significant digits.

• The Extended type is the largest floating-point type supported by the 80x87. It
occupies 10 bytes of memory, providing a range of 3.4 × 10-4932 to 1.1 × 104932 with
19 to 20 significant digits. Any arithmetic involving real-type values is performed
with the range and precision of the Extended type.

• The Comp type stores integral values in 8 bytes, providing a range of -263 +1 to 263 -
1, which is approximately -9.2 × 1018 to 9.2 × 1018. Comp may be compared to a
double-precision Longint, but it's considered a real type because all arithmetic
done with Comp uses the 80x87 coprocessor. Comp is well suited for representing
monetary values as integral values of cents or mils (thousandths) in business
applications.

For backward compatibility, Delphi also provides the Real type, which occupies 6
bytes of memory, providing a range of 2.9 x 10-39 to 1.7 x 1038 with 11 to 12 significant
digits.

Note that 80x87 floating-point operations on variables of type Real are slightly
slower than on other types. Because the 80x87 can't directly process the Real format,
calls must be made to library routines to convert Real values to Extended before
operating on them. If you're concerned with optimum speed you should use the
Single, Double, Extended, and Comp types exclusively.

Extended range arithmetic
The Extended type is the basis of all floating-point computations with the 80x87.
Delphi uses the Extended format to store all non-integer numeric constants and
evaluates all non-integer numeric expressions using extended precision. The entire
right side of the following assignment, for example, is computed in Extended before
being converted to the type on the left side:

var
 X, A, B, C: Double;
begin
 X := (B + Sqrt(B * B - A * C)) / A;
end;

Delphi automatically performs computations using the precision and range of the
Extended type. The added precision means smaller round-off errors, and the
additional range means overflow and underflow are less common.

C h a p t e r 1 4 , U s i n g t h e 8 0 x 8 7 1 5 1

You can go beyond Delphi's automatic Extended capabilities. For example, you can
declare variables used for intermediate results to be of type Extended. The following
example computes a sum of products:

var
 Sum: Single;
 X, Y: array [1..100] of Single;
 I: Integer;
 T: Extended; { For intermediate results }
begin
 T := 0.0;
 for I := 1 to 100 do
 begin
 X[I] := I;
 Y[I[:= I;
 T := T + X[I] * Y[I];
 end;
 Sum := T;
end;

Had T been declared Single, the assignment to T would have caused a round-off
error at the limit of single precision at each loop entry. But because T is Extended, all
round-off errors are at the limit of extended precision, except for the one resulting
from the assignment of T to Sum. Fewer round-off errors mean more accurate
results.

You can also declare formal value parameters and function results to be of type
Extended. This avoids unnecessary conversions between numeric types, which can
result in loss of accuracy. For example,

function Area(Radius: Extended): Extended;
begin
 Area := Pi * Radius * Radius;
end;

Comparing reals
Because real-type values are approximations, the results of comparing values of
different real types aren't always as expected. For example, if X is a variable of type
Single and Y is a variable of type Double, then these statements are False:

X := 1 / 3;
Y := 1 / 3;
Writeln(X = Y);

This is because X is accurate only to 7 to 8 digits, where Y is accurate to 15 to 16
digits, and when both are converted to Extended, they will differ after 7 to 8 digits.
Similarly, these statements,

X := 1 / 3;
Writeln(X = 1 / 3);

1 5 2 O b j e c t P a s c a l L a n g u a g e G u i d e

are False, because the result of 1/3 in the Writeln statement is calculated with 20
significant digits.

The 80x87 evaluation stack
The 80x87 coprocessor has an internal evaluation stack that can be as deep as eight
levels. Accessing a value on the 80x87 stack is much faster than accessing a variable
in memory. To achieve the best possible performance, Delphi uses the 80x87's stack
for storing temporary results.

In theory, very complicated real-type expressions can overflow the 80x87 stack, but
this isn't likely to occur because the expression would need to generate more than
eight temporary results.

Detecting the 80x87
The Windows environment and the WIN87EM.DLL emulator library automatically
detect the presence of an 80x87 chip. If an 80x87 is available in your system, it's
used. If not, WIN87EM.DLL emulates it in software. You can use the GetWinFlags
function (defined in the WinProcs unit) and the wf_80x87 bit mask (defined in the
WinTypes unit) to determine whether an 80x87 processor is present in your system.
For example,

if GetWinFlags and wf_80x87 <> 0 then
 WriteLn('80x87 is present')
else WriteLn('80x87 is not present');

Emulation in assembly language
When linking in object files using {$L filename} directives, make sure that these
object files were compiled with the 80x87 emulation enabled. For example, if you're
using 80x87 instructions in assembly language external procedures, enable
emulation when you assemble the .ASM files into .OBJ files. Otherwise, the 80x87
instructions can't be emulated on machines without an 80x87. Use Turbo
Assembler's /E command-line switch to enable emulation.

Exception statements
The exceptions statements are the raise statement, the try...except statement, and
the try...finally statement. These statements are described in Chapter 10,
Exceptions.

C h a p t e r 1 5 , U s i n g n u l l - t e r m i n a t e d s t r i n g s 1 5 3

 C h a p t e r

15
Using null-terminated strings

Object Pascal supports a class of character strings called null-terminated strings. With
Object Pascal’s extended syntax and the SysUtils unit, your Windows programs can
use null-terminated strings by simply referring to the SysUtils unit with the uses
clause in your program.

What is a null-terminated string?
The compiler stores a traditional Object Pascal string type as a length byte followed
by a sequence of characters. The maximum length of a Pascal string is 255
characters, and a pascal string occupies from 1 to 256 bytes of memory.

A null-terminated string has no length byte; instead, it consists of a sequence of non-
null characters followed by a NULL (#0) character. There is no inherent restriction
on the length of a null-terminated string.

Using null-terminated strings
Null-terminated strings are stored as arrays of characters with a zero-based integer
index type; that is, an array of the form

array[0..X] of Char

where X is a positive nonzero integer. These arrays are called zero-based character
arrays. Here are some examples of declarations of zero-based character arrays that
can be used to store null-terminated strings:

type
 TIdentifier = array[0..15] of Char;
 TFileName = array[0..79] of Char;
 TMemoText = array[0..1023] of Char;

1 5 4 O b j e c t P a s c a l L a n g u a g e G u i d e

The biggest difference between using Pascal strings and null-terminated strings is
the extensive use of pointers in the manipulation of null-terminated strings. Object
Pascal performs operations on these pointers with a set of extended syntax rules.

Character pointers and string literals
When extended syntax is enabled, a string literal is assignment-compatible with the
PChar type. This means that a string literal can be assigned to a variable of type
PChar. For example,

var
 P: PChar;

ƒ
begin
 P := 'Hello world...';
end;

The effect of such an assignment is that the pointer points to an area of memory that
contains a null-terminated copy of the string literal. This example accomplishes the
same thing as the previous example:

const
 TempString: array[0..14] of Char = 'Hello world...'#0;
var
 P: PChar;

ƒ
begin
 P := @TempString;
end;

You can use string literals as actual parameters in procedure and function calls
when the corresponding formal parameter is of type PChar. For example, given a
procedure with the declaration

procedure PrintStr(Str: PChar);

the following procedure calls are valid:

PrintStr('This is a test');
PrintStr(#10#13);

Just as it does with an assignment, the compiler generates a null-terminated copy of
the string literal. The compiler passes a pointer to that memory area in the Str
parameter of the PrintStr procedure.

Finally, you can initialize a typed constant of type PChar with a string constant. You
can do this with structured types as well, such as arrays of PChar and records and
objects with PChar fields.

const
 Message: PChar = 'Program terminated';
 Prompt: PChar = 'Enter values: ';
 Digits: array[0..9] of PChar = (
 'Zero', 'One', 'Two', 'Three', 'Four',

C h a p t e r 1 5 , U s i n g n u l l - t e r m i n a t e d s t r i n g s 1 5 5

 'Five', 'Six', 'Seven', 'Eight', 'Nine');

A string constant expression is always evaluated as a Pascal-style string even if it
initializes a typed constant of type PChar; therefore, a string constant expression is
always limited to 255 characters in length.

Character pointers and character arrays
When the extended syntax is enabled, a zero-based character array is compatible with
the PChar type. This means that whenever a PChar is expected, you can use a zero-
based character array instead. When you use a character array in place of a PChar
value, the compiler converts the character array to a pointer constant whose value
corresponds to the address of the first element of the array. For example,

var
 A: array[0..63] of Char;
 P: PChar;

ƒ
begin
 P := A;
 PrintStr(A);
 PrintStr(P);
end;

Because of this assignment statement, P now points to the first element of A, so
PrintStr is called twice with the same value.

You can initialize a typed constant of a zero-based character array type with a string
literal that is shorter than the declared length of the array. The remaining characters
are set to NULL (#0) and the array effectively contains a null-terminated string.

type
 TFileName = array[0..79] of Char;
const
 FileNameBuf: TFileName = 'TEST.PAS';
 FileNamePtr: PChar = FileNameBuf;

Character pointer indexing
Just as a zero-based character array is compatible with a character pointer, so can a
character pointer be indexed as if it were a zero-based character array:

var
 A: array[0..63] of Char;
 P: PChar;
 Ch: Char;

ƒ
begin
 P := A;
 Ch := A[5];
 Ch := P[5];
end;

1 5 6 O b j e c t P a s c a l L a n g u a g e G u i d e

Both of the last two statements assign Ch the value contained in the sixth character
element of A.

When you index a character pointer, the index specifies an unsigned offset to add to
the pointer before it is dereferenced. Therefore, P[0] is equivalent to P^ and specifies
the character pointed to by P. P[1] specifies the character right after the one pointed
to by P, P[2] specifies the next character, and so on. For purposes of indexing, a
PChar behaves as if it were declared as this:

type
 TCharArray = array[0..65535] of Char;
 PChar = ^TCharArray;

The compiler performs no range checks when indexing a character pointer because
it has no type information available to determine the maximum length of the null-
terminated string pointed to by the character pointer. Your program must perform
any such range checking.

The StrUpper function shown here illustrates the use of character pointer indexing to
convert a null-terminated string to uppercase.

function StrUpper(Str: PChar): PChar;
var
 I: Word;
begin
 I := 0;
 while Str[I] <> #0 do
 begin
 Str[I] := UpCase(Str[I]);
 Inc(I);
 end;
 StrUpper := Str;
end;

Notice that StrUpper is a function, not a procedure, and that it always returns the
value that it was passed as a parameter. Because the extended syntax allows the
result of a function call to be ignored, StrUpper can be treated as if it were a
procedure:

StrUpper(A);
PrintStr(A);

However, as StrUpper always returns the value it was passed, the preceding
statements can be combined into one:

PrintStr(StrUpper(A));

Nesting calls to null-terminated string-handling functions can be very convenient
when you want to indicate a certain interrelationship between a set of sequential
string manipulations.

Note See page 46 for information about PChar operations.

C h a p t e r 1 5 , U s i n g n u l l - t e r m i n a t e d s t r i n g s 1 5 7

Null-terminated strings and standard procedures
Object Pascal’s extended syntax allows the Read, Readln, Str, and Val standard
procedures to be applied to zero-based character arrays, and allows the Write,
Writeln, Val, Assign, and Rename standard procedures to be applied to both zero-
based character arrays and character pointers.

1 5 8 O b j e c t P a s c a l L a n g u a g e G u i d e

C h a p t e r 1 6 , M e m o r y i s s u e s 1 5 9

 C h a p t e r

16
Memory issues

This chapter is about Object Pascal and memory. This chapter explains how
Windows programs use memory, and it also describes the internal data formats
used in Object Pascal.

Windows memory management
This section explains how Delphi applications use memory.

Code segments
Each module (the main program or library and each unit) in a Delphi application or
DLL has its own code segment. The size of a single code segment can't exceed 64K,
but the total size of the code is limited only by the available memory.

Segment attributes
Each code segment has a set of attributes that determine the behavior of the code
segment when it's loaded into memory.

MOVEABLE or FIXED

When a code segment is MOVEABLE, Windows can move the segment around in
physical memory to satisfy other memory allocation requests. When a code segment
is FIXED, it never moves in physical memory. The preferred attribute is
MOVEABLE, and unless it's absolutely necessary to keep a code segment at the
same address in physical memory (such as if it contains an interrupt handler), you
should use the MOVEABLE attribute. When you do need a fixed code segment,
keep that code segment as small as possible.

1 6 0 O b j e c t P a s c a l L a n g u a g e G u i d e

PRELOAD or DEMANDLOAD

A code segment that has the PRELOAD attribute is automatically loaded when the
application or library is activated. The DEMANDLOAD attribute delays the loading
of the segment until a routine in the segment is actually called. Although this takes
longer, it allows an application to execute in less space.

DISCARDABLE or PERMANENT

When a segment is DISCARDABLE, Windows can free the memory occupied by the
segment when it needs to allocate additional memory. When a segment is
PERMANENT, it's kept in memory at all times.

When an application makes a call to a DISCARDABLE segment that's not in
memory, Windows first loads it from the .EXE file. This takes longer than if the
segment were PERMANENT, but it allows an application to execute in less space.

Changing attributes
The default attributes of a code segment are MOVEABLE, DEMANDLOAD, and
DISCARDABLE, but you can change this with a $C compiler directive. For example,

{$C MOVEABLE PRELOAD PERMANENT}

For details about the $C compiler directive, see Appendix B.

There is no need for a separate overlay manager. The Windows memory manager
includes a full set of overlay management services, controlled through code segment
attributes. These services are available to any Windows application.

The automatic data segment
Each application or library has one data segment called the "automatic data
segment," which can be up to 64K in size. The automatic data segment is always
pointed to by the data segment register (DS). It's divided into four sections: the local
heap, the stack, the static data, and the task header.

Local heap

Stack

Task header

Static data

Automatic data segment

The first 16 bytes of the automatic data segment always contain the task header in
which Windows stores various system information.

C h a p t e r 1 6 , M e m o r y i s s u e s 1 6 1

The static data area contains all global variables and typed constants declared by the
application or library.

The stack is used to store local variables allocated by procedures and functions. On
entry to an application, the stack segment register (SS) and the stack pointer (SP) are
loaded so that SS:SP points to the first byte past the stack area in the automatic data
segment. When procedures and functions are called, SP is moved down to allocate
space for parameters, the return address, and local variables. When a routine
returns, the process is reversed by incrementing SP to the value it had before the
call. The default size of the stack area in the automatic data segment is 16K, but this
can be changed with a $M compiler directive.

Unlike an application, a library has no stack area in its automatic data segment.
When a call is made to a procedure or function in a DLL, the DS register points to
the library's automatic data segment, but the SS:SP register pair isn't modified.
Therefore, a library always uses the stack of the calling application.

The last section in the automatic data segment is the local heap. It contains all local
dynamic data that was allocated using the LocalAlloc function in Windows. The
default size of the local heap section is 8K, but this can be changed with a $M
compiler directive.

The local heap is used by Windows for the temporary storage of things such as edit
control and list box buffers. Never set the local heap to zero.

The heap manager
Windows supports dynamic memory allocations on two different heaps: The global
heap and the local heap.

The global heap is a pool of memory available to all applications. Although global
memory blocks of any size can be allocated, the global heap is intended only for
large memory blocks (256 bytes or more). Each global memory block carries an
overhead of at least 20 bytes, and there is a system-wide limit of 8192 global
memory blocks, only some of which are available to any given application.

The local heap is a pool of memory available only to your application or library. It
exists in the upper part of an application's or library's data segment. The total size of
local memory blocks that can be allocated on the local heap is 64K minus the size of
the application's stack and static data. For this reason, the local heap is best suited
for small memory blocks (256 bytes or less). The default size of the local heap is 8K,
but you can change this with the $M compiler directive.

Delphi includes a heap manager which implements the New, Dispose, GetMem, and
FreeMem standard procedures. The heap manager uses the global heap for all
allocations. Because the global heap has a system-wide limit of 8192 memory blocks
(which certainly is less than what some applications might require), Delphi's heap
manager includes a segment sub-allocator algorithm to enhance performance and
allow a substantially larger number of blocks to be allocated.

Note To read more about using the heap manager in a DLL, see Chapter 12.

1 6 2 O b j e c t P a s c a l L a n g u a g e G u i d e

This is how the segment sub-allocator works: When allocating a large block, the
heap manager simply allocates a global memory block using the Windows
GlobalAlloc routine. When allocating a small block, the heap manager allocates a
larger global memory block and then divides (sub-allocates) that block into smaller
blocks as required. Allocations of small blocks reuse all available sub-allocation
space before the heap manager allocates a new global memory block, which, in turn,
is further sub-allocated.

The HeapLimit variable defines the threshold between small and large heap blocks.
The default value is 1024 bytes. The HeapBlock variable defines the size the heap
manager uses when allocating blocks to be assigned to the sub-allocator. The default
value of HeapBlock is 8192 bytes. You should have no reason to change the values of
HeapLimit and HeapBlock, but if you do, make sure that HeapBlock is at least four
times the size of HeapLimit.

The HeapAllocFlags variable defines the attribute flags value passed to GlobalAlloc
when the heap manager allocates global blocks. In a program, the default value is
gmem_Moveable, and in a library the default value is gmem_Moveable +
gmem_DDEShare.

Internal data formats
The next several pages discuss the internal data formats of Object Pascal.

Integer types
The format selected to represent an integer-type variable depends on its minimum
and maximum bounds:

• If both bounds are within the range -128..127 (Shortint), the variable is stored as
a signed byte.

• If both bounds are within the range 0..255 (Byte), the variable is stored as an
unsigned byte.

• If both bounds are within the range -32768..32767 (Smallint), the variable is
stored as a signed word.

• If both bounds are within the range 0..65535 (Word), the variable is stored as an
unsigned word.

• Otherwise, the variable is stored as a signed double word (Longint).

Char types
A Char or a subrange of a Char type is stored as an unsigned byte.

C h a p t e r 1 6 , M e m o r y i s s u e s 1 6 3

Boolean types
A Boolean type is stored as a Byte, a ByteBool is stored as a Byte, a WordBool type is
stored as a Word, and a LongBool is stored as a Longint.

A Boolean can assume the values 0 (False) and 1 (True). ByteBool, WordBool, and
LongBool types can assume the value of 0 (False) or nonzero (True).

Enumerated types
 An enumerated type is stored as an unsigned byte if the enumeration has no more
than 256 values, and if the type was declared in the {$Z-} state (the default). If an
enumerated type has more than 256 values, or if the type was declared in the {$Z+}
state, it is stored as an unsigned word.

Floating-point types
The floating-point types (Real, Single, Double, Extended, and Comp) store the binary
representations of a sign (+or -), an exponent, and a significand. A represented
number has the value

+/- significand * 2
exponent

where the significand has a single bit to the left of the binary decimal point (that is, 0
<= significand < 2).

In the figures that follow, msb means most significant bit and lsb means least
significant bit. The leftmost items are stored at the highest addresses. For example,
for a real-type value, e is stored in the first byte, f in the following five bytes, and s in
the most significant bit of the last byte.

The Real type
A 6-byte (48-bit) Real number is divided into three fields:

s

1

f

39

e

8
width in bits

msb lsb msb lsb

The value v of the number is determined by the following:

if 0 < e <= 255, then v = (-1)
s
 * 2

(e-129)
 * (1.f).

if e = 0, then v = 0.

The Real type can't store denormals, NaNs, and infinities. Denormals become zero
when stored in a Real, and NaNs and infinities produce an overflow error if an
attempt is made to store them in a Real.

1 6 4 O b j e c t P a s c a l L a n g u a g e G u i d e

The Single type
A 4-byte (32-bit) Single number is divided into three fields:

s e

1 8

f

23
width in bits

msb lsb msb lsb

The value v of the number is determined by the following:

if 0 < e < 255, then v = (-1)
s
 * 2

(e-127)
 * (1.f).

if e = 0 and f <> 0, then v = (-1)
s
 * 2

(-126)
 * (0.f).

if e = 0 and f = 0, then v = (-1)
s
 * 0.

if e = 255 and f = 0, then v = (-1)
s
 * Inf.

if e = 255 and f <> 0, then v is a NaN.

The Double type
An 8-byte (64-bit) Double number is divided into three fields:

1 11 52
width in bits

msb lsb msb lsb

fs e

The value v of the number is determined by the following:

if 0 < e < 2047, then v = (-1)
 s
 * 2

(e-1023)
 * (1.f).

if e = 0 and f <> 0, then v = (-1)
 s
 * 2

(-1022)
 * (0.f).

if e = 0 and f = 0, then v = (-1)
 s
 * 0.

if e = 2047 and f = 0, then v = (-1)
 s
 * Inf.

if e = 2047 and f <> 0, then v is a NaN.

The Extended type
A 10-byte (80-bit) Extended number is divided into four fields:

s

1

e

15

i

1 63

f

width in bits

msb lsb msb lsb

The value v of the number is determined by the following:

if 0 <= e < 32767, then v = (-1)
 s
 * 2

(e-16383)
 * (i.f).

if e = 32767 and f = 0, then v = (-1)
 s
 * Inf.

if e = 32767 and f <> 0, then v is a NaN.

C h a p t e r 1 6 , M e m o r y i s s u e s 1 6 5

The Comp type
An 8-byte (64-bit) Comp number is divided into two fields:

1 63
width in bits

msb lsb

ds

The value v of the number is determined by the following:

if s = 1 and d = 0, then v is a NaN

Otherwise, v is the two's complement 64-bit value.

Pointer types
A Pointer type is stored as two words (a double word), with the offset part in the
low word and the segment part in the high word. The pointer value nil is stored as
a double-word zero.

String types
A string occupies as many bytes as its maximum length plus one. The first byte
contains the current dynamic length of the string, and the following bytes contain
the characters of the string.

The length byte and the characters are considered unsigned values. Maximum string
length is 255 characters plus a length byte (string [255]).

Set types
A set is a bit array where each bit indicates whether an element is in the set or not.
The maximum number of elements in a set is 256, so a set never occupies more than
32 bytes. The number of bytes occupied by a particular set is calculated as

ByteSize = (Max div 8) - (Min div 8) + 1

where Min and Max are the lower and upper bounds of the base type of that set.
The byte number of a specific element E is

ByteNumber = (E div 8) - (Min div 8)

and the bit number within that byte is

BitNumber = E mod 8

where E denotes the ordinal value of the element.

1 6 6 O b j e c t P a s c a l L a n g u a g e G u i d e

Array types
An array is stored as a contiguous sequence of variables of the component type of
the array. The components with the lowest indexes are stored at the lowest memory
addresses. A multidimensional array is stored with the rightmost dimension
increasing first.

Record types
The fields of a record are stored as a contiguous sequence of variables. The first field
is stored at the lowest memory address. If the record contains variant parts, then
each variant starts at the same memory address.

File types
File types are represented as records. Typed files and untyped files occupy 128
bytes, which are laid out as follows:

type
 TFileRec = record
 Handle: Word;
 Mode: Word;
 RecSize: Word;
 Private: array [1..26] of Byte;
 UserData: array [1..16] of Byte;
 Name: array [0..79] of Char;
 end;

Text files occupy 256 bytes, which are laid out as follows:

type
 TTextBuf = array [0..127] of Char;
 TTextRec = record
 Handle: Word;
 Mode: Word;
 BufSize: Word;
 Private: Word;
 BufPos: Word;
 BufEnd: Word;
 BufPtr: ^TTextBuf;
 OpenFunc: Pointer;
 InOutFunc: Pointer;
 FlushFunc: Pointer;
 CloseFunc: Pointer;
 UserData: array [1..16] of Byte;
 Name: array [0..79] of Char;
 Buffer: TTextBuf;
 end;

Handle contains the file's handle (when the file is open).

C h a p t e r 1 6 , M e m o r y i s s u e s 1 6 7

The Mode field can assume one of the following values:

const
 fmClosed = $D7B0;
 fmInput = $D7B1;
 fmOutput = $D7B2;
 fmInOut = $D7B3;

fmClosed indicates that the file is closed. fmInput and fmOutput indicate that the file
is a text file that has been reset (fmInput) or rewritten (fmOutput). fmInOut indicates
that the file variable is a typed or an untyped file that has been reset or rewritten.
Any other value indicates that the file variable hasn't been assigned (and thereby not
initialized).

The UserData field is never accessed by Object Pascal and is free for user-written
routines to store data in.

Name contains the file name, which is a sequence of characters terminated by a null
character (#0).

For typed files and untyped files, RecSize contains the record length in bytes, and the
Private field is unused but reserved.

For text files, BufPtr is a pointer to a buffer of BufSize bytes, BufPos is the index of
the next character in the buffer to read or write, and BufEnd is a count of valid
characters in the buffer. OpenFunc, InOutFunc, FlushFunc, and CloseFunc are pointers
to the I/O routines that control the file. The section entitled "Text file device drivers"
in Chapter 13 provides information on that subject.

Procedural types
A global procedure pointer type is stored as a 32-bit pointer to the entry point of a
procedure or function.

A method pointer type is stored as a 32-bit pointer to the entry point of a method,
followed by a 32-bit pointer to an object.

Class types
A class type value is stored as a 32-bit pointer to an instance of the class. An
instance of a class is also known as an object.

The internal data format of an object resembles that of a record. The fields of an
object are stored in order of declaration as a contiguous sequences of variables. Any
fields inherited from an ancestor class are stored before the new fields defined in the
descendant class.

The first four-byte field of every object is a pointer to the virtual method table (VMT)
of the class. There is only one VMT per class (not one per instance), but two distinct
class types never share a VMT, no matter how identical they appear to be. VMTs are
built automatically by the compiler, and are never directly manipulated by a

1 6 8 O b j e c t P a s c a l L a n g u a g e G u i d e

program. Likewise, pointers to VMTs are automatically stored in class instances by
the class type's constructor(s) and are never directly manipulated by a program.

The layout of a VMT is shown in the following table. At positive offsets, a VMT
consists of a list of 32-bit method pointers, one per user-defined virtual method in
the class type, in order of declaration. Each slot contains the address of the
corresponding virtual method's entry point. This layout is compatible with a C++ v-
table, and the OLE Object Model used by Windows Object Linking and Embedding.
At negative offsets, a VMT contains a number of fields that are internal to Object
Pascal's implementation. These fields are listed here for informational purposes
only. An application should use the methods defined in TObject to query this
information, since the layout is likely to change in future implementations of Object
Pascal.

 Table 16-1 Virtual Method Table layout

Offset Type Description
-32 Word Near pointer to type information table (or nil).
-30 Word Near pointer to field definition table (or nil).
-28 Word Near pointer to method definition table (or nil).
-26 Word Near pointer to dynamic method table (or nil).
-24 Word Near pointer to string containing class name.
-22 Word Instance size in bytes.
-20 Pointer Pointer to ancestor class (or nil).
-16 Pointer Entry point of DefaultHandler method.
-12 Pointer Entry point of NewInstance method.
-8 Pointer Entry point of FreeInstance method.
-4 Pointer Entry point of Destroy destructor.
0 Pointer Entry point of first user-defined virtual method.
4 Pointer Entry point of second user-defined virtual method.
...

Class reference types
A class reference type value is stored as a 32-bit pointer to the virtual method table
(VMT) of a class.

Direct memory access
Object Pascal implements three predefined arrays, Mem, MemW, and MemL, which
are used to directly access memory. Each component of Mem is a byte, each
component of MemW is a Word, and each component of MemL is a Longint.

The Mem arrays use a special syntax for indexes: Two expressions of the integer
type Word, separated by a colon, are used to specify the segment base and offset of
the memory location to access. Here are two examples:

Mem[Seg0040:$0049] := 7;
Data := MemW[Seg(V):Ofs(V)];

C h a p t e r 1 6 , M e m o r y i s s u e s 1 6 9

The first statement stores the value 7 in the byte at $0040:$0049. The second
statement moves the Word value stored in the first 2 bytes of the variable V into the
variable Data.

Direct port access
For access to the 80x86 CPU data ports, Object Pascal implements two predefined
arrays, Port and PortW. Both are one-dimensional arrays, and each element
represents a data port, whose port address corresponds to its index. The index type
is the integer type Word. Components of the Port array are of type Byte and
components of the PortW array are of type Word.

When a value is assigned to a component of Port or PortW, the value is output to the
selected port. When a component of Port or PortW is referenced in an expression, its
value is input from the selected port.

Use of the Port and PortW arrays is restricted to assignment and reference in
expressions only; that is, components of Port and PortW can't be used as variable
parameters. Also, references to the entire Port or PortW array (reference without
index) aren't allowed

1 7 0 O b j e c t P a s c a l L a n g u a g e G u i d e

C h a p t e r 1 7 , C o n t r o l i s s u e s 1 7 1

 C h a p t e r

17
Control issues

This chapter describes in detail the various ways that Delphi implements program
control. Included are calling conventions and exit procedures.

Calling conventions
Parameters are transferred to procedures and functions via the stack. Before calling
a procedure or function, the parameters are pushed onto the stack in their order of
declaration. Before returning, the procedure or function removes all parameters
from the stack.

The skeleton code for a procedure or function call looks like this:

PUSH Param1
PUSH Param2
 .
 .
 .
PUSH ParamX
CALL ProcOrFunc

Parameters are passed either by reference or by value. When a parameter is passed by
reference, a pointer that points to the actual storage location is pushed onto the
stack. When a parameter is passed by value, the actual value is pushed onto the
stack.

Variable parameters
Variable parameters (var parameters) are always passed by referencea pointer
that points to the actual storage location.

1 7 2 O b j e c t P a s c a l L a n g u a g e G u i d e

Value and constant parameters
Value parameters are passed by value or by reference depending on the type and
size of the parameter. In general, if the value parameter occupies 1, 2, or 4 bytes, the
value is pushed directly onto the stack. Otherwise a pointer to the value is pushed,
and the procedure or function then copies the value into a local storage location.

The 8086 does not support byte-sized PUSH and POP instructions, so byte-sized
parameters are always transferred onto the stack as words. The low-order byte of
the word contains the value, and the high-order byte is unused (and undefined).

An integer type or parameter is passed as a byte, a word, or a double word, using
the same format as an integer-type variable. (For double words, the high-order
word is pushed before the low-order word so that the low-order word ends up at
the lowest address.)

A Char parameter is passed as an unsigned byte.

A Boolean parameter is passed as a byte with the value 0 or 1.

An enumerated-type parameter is passed as an unsigned byte if the enumeration
has 256 or fewer values; otherwise, it is passed as an unsigned word.

A floating-point type parameter (Real, Single, Double, Extended, and Comp) is passed
as 4, 6, 8, or 10 bytes on the stack. This is an exception to the rule that only 1-, 2-,
and 4-byte values are passed directly on the stack.

A pointer-type, class-type, or class-reference-type parameter is passed as two words
(a double word). The segment part is pushed before the offset part so that the offset
part ends up at the lowest address.

A string-type parameter is passed as a pointer to the value.

For a set type parameter, if the bounds of the element type of the set are both within
the range 0 to 7, the set is passed as a byte. If the bounds are both within the range 0
to 15, the set is passed as a word. Otherwise, the set is passed as a pointer to an
unpacked set that occupies 32 bytes.

Arrays and records with 1, 2, or 4 bytes are passed directly onto the stack. Other
arrays and records are passed as pointers to the value.

A global procedure pointer type is passed as a pointer.

A method pointer type is passed as two pointers. The instance pointer is pushed
before the method pointer so that the method pointer ends up at the lowest address.

Open parameters
Open string parameters are passed by first pushing a pointer to the string and then
pushing a word containing the size attribute (maximum length) of the string.

Open array parameters are passed by first pushing a pointer to the array and then
pushing a word containing the number of elements in the array less one.

C h a p t e r 1 7 , C o n t r o l i s s u e s 1 7 3

When using the built-in assembler, the value that the High standard function returns
for an open parameter can be accessed by loading the word just below the open
parameter. In this example, the FillString procedure, which fills a string to its
maximum length with a given character, demonstrates this.

procedure FillString(var Str: OpenString; Chr: Char); assembler;
asm
 LES DI,Str { ES:DI = @Str }
 MOV CX,Str.Word[-2] { CX = High(Str) }
 MOV AL,CL
 CLD
 STOSB { Set Str[0] }
 MOV AL,Chr
 REP STOSB { Set Str[1..High] }
end;

Function results
Ordinal-type function results are returned in the CPU registers: Bytes are returned
in AL, words are returned in AX, and double words are returned in DX:AX (high-
order word in DX, low-order word in AX).

Real-type function results (type Real) are returned in the DX:BX:AX registers (high-
order word in DX, middle word in BX, low-order word in AX).

80x87-type function results (type Single, Double, Extended, and Comp) are returned in
the 80x87 coprocessor's top-of-stack register (ST(0)).

Pointer-type, class-type, and class-reference-type function results are returned in
DX:AX (segment part in DX, offset part in AX).

For a string-type function result, the caller pushes a pointer to a temporary storage
location before pushing any parameters, and the function returns a string value in
that temporary location. The function must not remove the pointer.

For array, record, and set type function results, if the value occupies one byte, it is
returned in AL, if the value occupies two bytes, it is returned in AX, and if the value
occupies four bytes, it is returned in DX:AX. Otherwise, the caller pushes a pointer
to a temporary storage location of the appropriate size, and the function returns the
result in that temporary location. Upon returning, the function leaves the temporary
pointer on the stack.

A global procedure pointer type is returned in DX:AX.

A method pointer type is returned in BX:CX:DX:AX, where DX:AX contains the
method pointer and BX:CX contains the instance pointer.

NEAR and FAR calls
The 80x86 family of CPUs supports two kinds of call and return instructions: NEAR
and FAR. The NEAR instructions transfer control to another location within the
same code segment, and the FAR instructions allow a change of code segment.

1 7 4 O b j e c t P a s c a l L a n g u a g e G u i d e

A NEAR CALL instruction pushes a 16-bit return address (offset only) onto the
stack, and a FAR CALL instruction pushes a 32-bit return address (both segment
and offset). The corresponding RET instructions pop only an offset or both an offset
and a segment.

Delphi automatically selects the correct call model based on the procedure's
declaration. Procedures declared in the interface section of a unit are farthey can
be called from other units. Procedures declared in a program or in the
implementation section of a unit are nearthey can only be called from within that
program or unit.

For some specific purposes, a procedure can be required to be far. For example, if a
procedure or function is to be assigned to a procedural variable, it must far. The $F
compiler directive is used to override the compiler's automatic call model selection.
Procedures and functions compiled in the {$F+} state are always far; in the {$F-}
state, Delphi automatically selects the correct model. The default state is {$F-}.

Nested procedures and functions
A procedure or function is said to be nested when it is declared within another
procedure or function. By default, nested procedures and functions always use the
near call model, because they are visible only within a specific procedure or function
in the same code segment.

When calling a nested procedure or function, the compiler generates a PUSH BP
instruction just before the CALL, in effect passing the caller's BP as an additional
parameter. Once the called procedure has set up its own BP, the caller's BP is
accessible as a word stored at [BP + 4], or at [BP + 6] if the procedure is far. Using
this link at [BP + 4] or [BP + 6], the called procedure can access the local variables in
the caller's stack frame. If the caller itself is also a nested procedure, it also has a link
at [BP + 4] or [BP + 6], and so on. The following example demonstrates how to
access local variables from an inline statement in a nested procedure:

procedure A; near;
var
 IntA: Integer;

procedure B; far;
var
 IntB: Integer;

procedure C; near;
var
 IntC: Integer;
begin
 asm
 MOV AX,1
 MOV IntC,AX { IntC := 1 }
 MOV BX,[BP+4] { B's stack frame }
 MOV SS:[BX+OFFSET IntB],AX { IntB := 1 }
 MOV BX,[BP+4] { B's stack frame }
 MOV BX,SS:[BX+6] { A's stack frame }

C h a p t e r 1 7 , C o n t r o l i s s u e s 1 7 5

 MOV SS:[BX+OFFSET IntA],AX { IntA := 1 }
 end;
end;

begin C end;

begin B end;

Nested procedures and functions can’t be declared with the external directive, and
they cannot be procedural parameters.

Method calling conventions
Methods use the same calling conventions as ordinary procedures and functions,
except that every method has an additional implicit parameter, Self, which is a
reference to the class or instance for which the method is invoked. The Self
parameter is always passed as the last parameter, and is always a 32-bit pointer. For
regular methods, Self is a class type value (a pointer to an instance). For class
methods, Self is a class reference type value (a pointer to a virtual method table).

For example, given the declarations

type
 TMyObject = class(TObject)
 procedure Test(X, Y: Integer);
 procedure Foo; virtual;
 class procedure Bar; virtual;
 end;
 TMyClass = class of TMyObject;
var
 MyObject: TMyObject;
 MyClass: TMyClass;

the call MyObject.Test(10, 20) generates the following code:

PUSH 10
PUSH 20
LES DI,MyObject
PUSH ES
PUSH DI
CALL MyObject.Test

Upon returning, a method must remove the Self parameter from the stack, just as it
must remove any normal parameters.

Methods always use the far call model, regardless of the setting of the $F compiler
directive.

To call a virtual method, the compiler generates code that loads the VMT pointer
from the object, and then calls via the slot associated with the method. Referring to
the declarations above, the call MyObject.Foo generates the following code:

LES DI,MyObject
PUSH ES
PUSH DI

1 7 6 O b j e c t P a s c a l L a n g u a g e G u i d e

LES DI,ES:[DI]
CALL DWORD PTR ES:[DI]

the call MyObject.Bar generates the following code:

LES DI,MyObject
LES DI,ES:[DI]
PUSH ES
PUSH DI
CALL DWORD PTR ES:[DI+4]

and the call MyClass.Bar generates the following code:

LES DI,MyClass
PUSH ES
PUSH DI
CALL DWORD PTR ES:[DI+4]

Constructors and destructors
Constructors and destructors use the same calling conventions as other methods,
except that an aditional word-sized flag parameter is passed on the stack just before
the Self parameter.

A zero in the flag parameter of a constructor call indicates that the constructor was
called through an instance or using the inherited keyword. In this case, the
constructor behaves like an ordinary method.

A non-zero value in the flag parameter of a constructor call indicates that the
constructor was called through a class reference. In this case, the constructor creates
an instance of the class given by Self, and returns a reference to the newly created
object in DX:AX.

A zero in the flag parameter of a destructor call indicates that the destructor was
called using the inherited keyword. In this case, the destructor behaves like an
ordinary method.

A non-zero value in the flag parameter of a destructor call indicates that the
destructor was called through an instance. In this case, the destructor deallocates
the instance given by Self just before returning.

Entry and exit code
This is the standard entry and exit code for a procedure or function using the near
call model:

PUSH BP ;Save BP
MOV BP,SP ;Set up stack frame
SUB SP,LocalSize ;Allocate locals (if any)
 .
 .
 .
MOV SP,BP ;Deallocate locals (if any)

C h a p t e r 1 7 , C o n t r o l i s s u e s 1 7 7

POP BP ;Restore BP
RETN ParamSize ;Remove parameters and return

For information on using exit procedures in a DLL, see Chapter 12, "Dynamic-link
libraries."

If the routine is compiled in the {$W-} state (the default), the entry and exit code for
a routine using the far call model is the same as that of a routine using the near call
model, except that a far-return instruction (RETF) is used to return from the routine.

In the {$W+} state, this is the entry and exit code for a routine using the far call
model:

INC BP ;Indicate FAR frame
PUSH BP ;Save odd BP
MOV BP,SP ;Set up stack frame
PUSH DS ;Save DS
SUB SP,LocalSize ;Allocate locals (if any)
 .
 .
 .
MOV SP,BP ;Remove locals and saved DS
POP BP ;Restore odd BP
DEC BP ;Adjust BP
RETF ParamSize ;Remove parameters and return

This is the entry and exit code for an exportable routine (a procedure or function
compiled with the export compiler directive):

MOV AX,DS ;Load DS selector into AX
NOP ;Additional space for patching
INC BP ;Indicate FAR frame
PUSH BP ;Save odd BP
MOV BP,SP ;Set up stack frame
PUSH DS ;Save DS
MOV DS,AX ;Initialize DS
SUB SP,LocalSize ;Allocate locals (if any)
PUSH SI ;Save SI
PUSH DI ;Save DI
 .
 .
 .
POP DI ;Restore DI
POP SI ;Restore SI
LEA SP,[BP-2] ;Deallocate locals (if any)
POP DS ;Restore DS
POP BP ;Restore odd BP
DEC BP ;Adjust BP
RETF ParamSize ;Remove parameters and return

For all call models, the instructions required to allocate and deallocate local
variables are omitted if the routine has no local variables.

1 7 8 O b j e c t P a s c a l L a n g u a g e G u i d e

Occasionally you might find {$W+} useful while developing a Windows protected-
mode application. Some non-Borland debugging tools require this state to work
properly.

By default, Delphi automatically generates smart callbacks for procedures and
functions that are exported by an application. When linking an application in the
{$K+} state (the default), the linker looks for a MOV AX,DS instruction followed by
a NOP instruction at every exported entry point and, for each such sequence it
finds, it changes the MOV AX,DS to a MOV AX,SS. This change alleviates the need
to use the Windows MakeProcInstance and FreeProcInstance API routines when
creating callback routines (although it isn't harmful to do so), and also makes it
possible to call exported entry points from within the application itself.

In the {$K-} state or when creating a dynamic-link library, the Delphi linker makes
no modifications to the entry code of exported entry points. Unless a callback
routine in an application is to be called from another application (which isn't
recommended anyway), you shouldn't have to ever select the {$K-} state.

When loading an application or dynamic-link library, Windows looks for a MOV
AX,DS followed by a NOP at each exported entry point. For applications, the
sequence is changed into three NOP instructions to prepare the routine for use with
MakeProcInstance. For libraries, the sequence is changed into a MOV AX,xxxx
instruction, where xxxx is the selector (segment address) of the library's automatic
data segment. Because smart callback entry points start with a MOV AX,SS
instruction, they are left untouched by the Windows program loader.

Register-saving conventions
Procedures and functions should preserve the BP, SP, SS, and DS registers. All other
registers can be modified. In addition, exported routines should preserve the SI and
DI registers.

Exit procedures
By installing an exit procedure, you can gain control over a program's termination
process. This is useful when you want to make sure specific actions are carried out
before a program terminates; a typical example is updating and closing files.

The ExitProc pointer variable allows you to install an exit procedure. The exit
procedure is always called as a part of a program's termination, whether it's a
normal termination, a termination through a call to Halt, or a termination due to a
run-time error.

An exit procedure takes no parameters and must be compiled with a far procedure
directive to force it to use the far call model.

When implemented properly, an exit procedure actually becomes part of a chain of
exit procedures. This chain makes it possible for units as well as programs to install
exit procedures. Some units install an exit procedure as part of their initialization
code and then rely on that specific procedure to be called to clean up after the unit.

C h a p t e r 1 7 , C o n t r o l i s s u e s 1 7 9

Closing files is such an example. The procedures on the exit chain are executed in
reverse order of installation. This ensures that the exit code of one unit isn't
executed before the exit code of any units that depend upon it.

To keep the exit chain intact, you must save the current contents of ExitProc before
changing it to the address of your own exit procedure. Also, the first statement in
your exit procedure must reinstall the saved value of ExitProc. The following code
demonstrates a skeleton method of implementing an exit procedure:

var
 ExitSave: Pointer;

procedure MyExit; far;
begin
 ExitProc := ExitSave; { Always restore old vector first }
 .
 .
 .
end;

begin
 ExitSave := ExitProc;
 ExitProc := @MyExit;
 .
 .
 .
end.

On entry, the code saves the contents of ExitProc in ExitSave, and then installs the
MyExit exit procedure. After having been called as part of the termination process,
the first thing MyExit does is reinstall the previous exit procedure

The termination routine in the run-time library keeps calling exit procedures until
ExitProc becomes nil. To avoid infinite loops, ExitProc is set to nil before every call,
so the next exit procedure is called only if the current exit procedure assigns an
address to ExitProc. If an error occurs in an exit procedure, it won't be called again.

An exit procedure can learn the cause of termination by examining the ExitCode
integer variable and the ErrorAddr pointer variable.

In case of normal termination, ExitCode is zero and ErrorAddr is nil. In case of
termination through a call to Halt, ExitCode contains the value passed to Halt, and
ErrorAddr is nil. Finally, in case of termination due to a run-time error, ExitCode
contains the error code and ErrorAddr contains the address of the statement in error.

The last exit procedure (the one installed by the run-time library) closes the Input
and Output files. If ErrorAddr is not nil, it outputs a run-time error message.

If you wish to present run-time error messages yourself, install an exit procedure
that examines ErrorAddr and outputs a message if it's not nil. In addition, before
returning, make sure to set ErrorAddr to nil, so that the error is not reported again
by other exit procedures.

Once the run-time library has called all exit procedures, it returns to Windows,
passing the value stored in ExitCode as a return code.

1 8 0 O b j e c t P a s c a l L a n g u a g e G u i d e

C h a p t e r 1 8 , O p t i m i z i n g y o u r c o d e 1 8 1

 C h a p t e r

18
Optimizing your code

Delphi performs several different types of code optimizations, ranging from
constant folding and short-circuit Boolean expression evaluation, all the way up to
smart linking. The following sections describe some of the types of optimizations
performed and how you can benefit from them in your programs.

Constant folding
If the operand(s) of an operator are constants, Delphi evaluates the expression at
compile time. For example,

X := 3 + 4 * 2

generates the same code as X := 11 and

S := 'In' + 'Out'

generates the same code as S := 'InOut'.

Likewise, if an operand of an Abs, Chr, Hi, Length, Lo, Odd, Ord, Pred, Ptr, Round,
Succ, Swap, or Trunc function call is a constant, the function is evaluated at compile
time.

If an array index expression is a constant, the address of the component is evaluated
at compile time. For example, accessing Data [5, 5] is just as efficient as accessing a
simple variable.

Constant merging
Using the same string constant two or more times in a statement part generates only
one copy of the constant. For example, two or more Write('Done') statements in the
same statement part references the same copy of the string constant 'Done'.

1 8 2 O b j e c t P a s c a l L a n g u a g e G u i d e

 Short-circuit evaluation
Delphi implements short-circuit Boolean evaluation, which means that evaluation of
a Boolean expression stops as soon as the result of the entire expression becomes
evident. This guarantees minimum execution time and usually minimum code size.
Short-circuit evaluation also makes possible the evaluation of constructs that would
not otherwise be legal. For example,

while (I <= Length(S)) and (S[I] <> ' ') do
 Inc(I);
while (P <> nil) and (P^.Value <> 5) do
 P := P^.Next;

In both cases, the second test isn't evaluated if the first test is False.

The opposite of short-circuit evaluation is complete evaluation, which is selected
through a {$B+} compiler directive. In this state, every operand of a Boolean
expression is guaranteed to be evaluated.

Constant parameters
Whenever possible, you should use constant parameters instead of value
parameters. Constant parameters are at least as efficient as value parameters and, in
many cases, more efficient. In particular, constant parameters generate less code and
execute faster than value parameters for structured and string types.

Constant parameters are more efficient than value parameters because the compiler
doesn't have to generate copies of the actual parameters upon entry to procedures
or functions. Value parameters have to be copied into local variables so that
modifications made to the formal parameters won't modify the actual parameters.
Because constant formal parameters can't be modified, the compiler has no need to
generate copies of the actual parameters and code and stack space is saved. Read
more about constant parameters on page 76.

Redundant pointer-load elimination
In certain situations, Delphi’s code generator can eliminate redundant pointer-load
instructions, shrinking the size of the code and allowing for faster execution. When
the code generator can guarantee that a particular pointer remains constant over a
stretch of linear code (code with no jumps into it), and when that pointer is already
loaded into a register pair (such as ES:DI), the code generator eliminates more
redundant pointer load instructions in that block of code.

A pointer is considered constant if it's obtained from a variable parameter (variable
parameters are always passed as pointers) or from the variable reference of a with
statement. Because of this, using with statements is often more efficient (but never
less efficient) than writing the fully qualified variable for each component reference.

C h a p t e r 1 8 , O p t i m i z i n g y o u r c o d e 1 8 3

Constant set inlining
When the right operand of the in operator is a set constant, the compiler generates
the inclusion test using inline CMP instructions. Such inlined tests are more efficient
than the code that would be generated by a corresponding Boolean expression using
relational operators. For example, the statement

if ((Ch >= 'A') and (Ch <= 'Z')) or
 ((Ch >= 'a') and (Ch <= 'z')) then ... ;

is less readable and also less efficient than

if Ch in ['A'..'Z', 'a'..'z'] then ... ;

Because constant folding applies to set constants as well as to constants of other
types, it's possible to use const declarations without any loss of efficiency:

const
 Upper = ['A'..'Z'];
 Lower = ['a'..'z'];
 Alpha = Upper + Lower;

Given these declarations, this if statement generates the same code as the previous
if statement:

if Ch in Alpha then ... ;

Small sets
The compiler generates very efficient code for operations on small sets. A small set is
a set with a lower bound ordinal value in the range 0..7 and an upper bound ordinal
value in the range 0..15. For example, the following TByteSet and TWordSet are both
small sets.

type
 TByteSet = set of 0..7;
 TWordSet = set of 0..15;

Small set operations, such as union (+), difference (-), intersection (*), and inclusion
tests (in) are generated inline using AND, OR, NOT, and TEST machine code
instructions instead of calls to run-time library routines. Likewise, the Include and
Exclude standard procedures generate inline code when applied to small sets.

Order of evaluation
As permitted by the Pascal standards, operands of an expression are frequently
evaluated differently from the left to right order in which they are written. For
example, the statement

I := F(J) div G(J);

1 8 4 O b j e c t P a s c a l L a n g u a g e G u i d e

where F and G are functions of type Integer, causes G to be evaluated before F,
because this enables the compiler to produce better code. For this reason, it's
important that an expression never depend on any specific order of evaluation of
the embedded functions. Referring to the previous example, if F must be called
before G, use a temporary variable:

T := F(J);
I := T div G(J);

As an exception to this rule, when short-circuit evaluation is enabled (the {$B-}
state), Boolean operands grouped with and or or are always evaluated from left to
right.

Range checking
Assignment of a constant to a variable and use of a constant as a value parameter is
range-checked at compile time; no run-time range-check code is generated. For
example, X := 999, where X is of type Byte, causes a compile-time error.

Shift instead of multiply or divide
The operation X * C, where C is a constant and a power of 2, is coded using a SHL
instruction. The operation X div C, where X is an unsigned integer (Byte or Word)
and C is a constant and a power of 2, is coded using a SHR instruction.

Likewise, when the size of an array's components is a power of 2, a SHL instruction
(not a MUL instruction) is used to scale the index expression.

Automatic word alignment
By default, Delphi aligns all variables and typed constants larger than 1 byte on a
machine-word boundary. On all 16-bit 80x86 CPUs, word alignment means faster
execution, because word-sized items on even addresses are accessed faster than
words on odd addresses.

Data alignment is controlled through the $A compiler directive. In the default {$A+}
state, variables and typed constants are aligned as described above. In the {$A-}
state, no alignment measures are taken.

Eliminating dead code
Statements that never execute don't generate any code. For example, these
constructs don't generate code:

if False then
 statement
while False do

C h a p t e r 1 8 , O p t i m i z i n g y o u r c o d e 1 8 5

 statement

Smart linking
Delphi’s built-in linker automatically removes unused code and data when building
an .EXE file. Procedures, functions, variables, and typed constants that are part of
the compilation, but are never referenced, are removed from the .EXE file. The
removal of unused code takes place on a per procedure basis; the removal of
unused data takes place on a per declaration section basis.

Consider the following program:

program SmartLink;

const
 H: array [0..15] of Char = '0123456789ABCDEF';

var
 I, J: Integer;
 X, Y: Real;

var
 S: string [79];

var
 A: array [1..10000] of Integer;

procedure P1;
begin
 A[1] := 1;
end;

procedure P2;
begin
 I := 1;
end;

procedure P3;
begin
 S := 'Borland Pascal';
 P2;
end;

begin
 P3;
end.

The main program calls P3, which calls P2, so both P2 and P3 are included in the
.EXE file. Because P2 references the first var declaration section, and P3 references
the second var declaration, I, J, X, Y, and S are also included in the .EXE file. No
references are made to P1, however, and none of the included procedures reference
H and A, so these objects are removed.

An example of such a unit is the SysUtils standard unit: It contains a number of
procedures and functions, all of which are seldom used by the same program. If a

1 8 6 O b j e c t P a s c a l L a n g u a g e G u i d e

program uses only one or two procedures from SysUtils, then only these procedures
are included in the final .EXE file, and the remaining ones are removed, greatly
reducing the size of the .EXE file.

C h a p t e r 1 9 , T h e b u i l t - i n a s s e m b l e r 1 8 7

 C h a p t e r

19
The built-in assembler

Delphi's built-in assembler allows you to write 8086/8087 and 80286/80287
assembler code directly inside your Object Pascal programs. Of course, you can still
convert assembler instructions to machine code manually for use in inline
statements, or link in .OBJ files that contain external procedures and functions when
you want to mix Object Pascal and assembler.

The built-in assembler implements a large subset of the syntax supported by Turbo
Assembler and Microsoft's Macro Assembler. The built-in assembler supports all
8086/8087 and 80286/80287 opcodes, and all but a few of Turbo Assembler's
expression operators.

Except for DB, DW, and DD (define byte, word, and double word), none of Turbo
Assembler's directives, such as EQU, PROC, STRUC, SEGMENT, and MACRO, are
supported by the built-in assembler. Operations implemented through Turbo
Assembler directives, however, are largely matched by corresponding Delphi
constructs. For example, most EQU directives correspond to const, var, and type
declarations in Delphi, the PROC directive corresponds to procedure and function
declarations, and the STRUC directive corresponds to Delphi record types. In fact,
Delphi's built-in assembler can be thought of as an assembler language compiler that
uses Object Pascal syntax for all declarations.

The asm statement
The built-in assembler is accessed through asm statements. This is the syntax of an
asm statement:

asm AsmStatement [Separator AsmStatement] end

where AsmStatement is an assembler statement, and Separator is a semicolon, a new-
line, or a Object Pascal comment.

1 8 8 O b j e c t P a s c a l L a n g u a g e G u i d e

Multiple assembler statements can be placed on one line if they are separated by
semicolons. A semicolon isn't required between two assembler statements if the
statements are on separate lines. A semicolon doesn't indicate that the rest of the
line is a comment--comments must be written in Object Pascal style using { and } or
(*and *).

Register use
In general, the rules of register use in an asm statement are the same as those of an
external procedure or function. An asm statement must preserve the BP, SP, SS, and
DS registers, but can freely modify the AX, BX, CX, DX, SI, DI, ES, and Flags
registers. On entry to an asm statement, BP points to the current stack frame, SP
points to the top of the stack, SS contains the segment address of the stack segment,
and DS contains the segment address of the data segment. Except for BP, SP, SS,
and DS, an asm statement can assume nothing about register contents on entry to
the statement.

Assembler statement syntax
This is the syntax of an assembler statement:

[Label ":"] < Prefix > [Opcode [Operand < "," Operand >]]

Label is a label identifier, Prefix is an assembler prefix opcode (operation code),
Opcode is an assembler instruction opcode or directive, and Operand is an assembler
expression.

Comments are allowed between assembler statements, but not within them. For
example, this is allowed:

asm
 MOV AX,1 {Initial value}
 MOV CX,100 {Count}
end;

but this is an error:

asm
 MOV {Initial value} AX,1;
 MOV CX, {Count} 100
end;

Labels
Labels are defined in assembler as they are in Object Pascal--by writing a label
identifier and a colon before a statement. There is no limit to a label length, except
only the first 32 characters of an identifier are significant in the built-in assembler.
And as they are in Object Pascal, labels defined in assembler must be declared in a
label declaration part in the block containing the asm statement. There is one
exception to this rule: local labels.

C h a p t e r 1 9 , T h e b u i l t - i n a s s e m b l e r 1 8 9

Local labels are labels that start with an at-sign (@). Because an at-sign can't be part
of a Object Pascal identifier, such local labels are automatically restricted to use
within asm statements. A local label is known only within the asm statement that
defines it (that is, the scope of a local label extends from the asm keyword to the
end keyword of the asm statement that contains it).

Unlike a normal label, a local label doesn't have to be declared in a label declaration
part before it's used.

The exact composition of a local label identifier is an at-sign (@) followed by one or
more letters (A.. Z), digits (0..9), underscores (_), or at-signs. As with all labels, the
identifier is followed by a colon (:).

Instruction opcodes
The built-in assembler supports all 8086/8087 and 80286/80287 instruction opcodes.
8087 opcodes are available only in the {$N+} state (numeric processor enabled),
80286 opcodes are available only in the {$G+} state (80286 code generation enabled),
and 80287 opcodes are available only in the {$G+,N+} state.

For a complete description of each instruction, refer to your 80x86 and 80x87
reference manuals.

RET instruction sizing
The RET instruction opcode generates a near return or a far return machine code
instruction depending on the call model of the current procedure or function.

procedure NearProc; near;
begin
 asm
 RET { Generates a near return }
 end;
end;

procedure FarProc; far;
begin
 asm
 RET { Generates a far return }
 end;
end;

On the other hand, the RETN and RETF instructions always generate a near return
and a far return, regardless of the call model of the current procedure or function.

Automatic jump sizing
Unless otherwise directed, the built-in assembler optimizes jump instructions by
automatically selecting the shortest, and therefore most efficient form of a jump
instruction. This automatic jump sizing applies to the unconditional jump
instruction (JMP), and all conditional jump instructions, when the target is a label
(not a procedure or function).

1 9 0 O b j e c t P a s c a l L a n g u a g e G u i d e

For an unconditional jump instruction (JMP), the built-in assembler generates a
short jump (one byte opcode followed by a one byte displacement) if the distance to
the target label is within -128 to 127 bytes; otherwise a near jump (one byte opcode
followed by a two byte displacement) is generated.

For a conditional jump instruction, a short jump (1 byte opcode followed by a 1 byte
displacement) is generated if the distance to the target label is within -128 to 127
bytes; otherwise, the built-in assembler generates a short jump with the inverse
condition, which jumps over a near jump to the target label (5 bytes in total). For
example, the assembler statement

JC Stop

where Stop isn't within reach of a short jump is converted to a machine code
sequence that corresponds to this:

JNC Skip
JMP Stop
Skip:

Jumps to the entry points of procedures and functions are always either near or far,
but never short, and conditional jumps to procedures and functions are not allowed.
You can force the built-in assembler to generate an unconditional near jump or far
jump to a label by using a NEAR PTR or FAR PTR construct. For example, the
assembler statements

JMP NEAR PTR Stop
JMP FAR PTR Stop

always generates a near jump and a far jump, respectively, even if Stop is a label
within reach of a short jump.

Assembler directives
Delphi's built-in assembler supports three assembler directives: DB (define byte),
DW (define word), and DD (define double word). They each generate data
corresponding to the comma-separated operands that follow the directive.

The DB directive generates a sequence of bytes. Each operand can be a constant
expression with a value between -128 and 255, or a character string of any length.
Constant expressions generate one byte of code, and strings generate a sequence of
bytes with values corresponding to the ASCII code of each character.

The DW directive generates a sequence of words. Each operand can be a constant
expression with a value between -32,768 and 65,535, or an address expression. For
an address expression, the built-in assembler generates a near pointer, that is, a
word that contains the offset part of the address.

The DD directive generates a sequence of double words. Each operand can be a
constant expression with a value between -2,147,483,648 and 4,294,967,295, or an
address expression. For an address expression, the built-in assembler generates a far
pointer, that is, a word that contains the offset part of the address, followed by a
word that contains the segment part of the address.

C h a p t e r 1 9 , T h e b u i l t - i n a s s e m b l e r 1 9 1

The data generated by the DB, DW, and DD directives is always stored in the code
segment, just like the code generated by other built-in assembler statements. To
generate uninitialized or initialized data in the data segment, you should use Object
Pascal var or const declarations.

Some examples of DB, DW, and DD directives follow:

asm
 DB 0FFH { One byte }
 DB 0,99 { Two bytes }
 DB 'A' { Ord('A') }
 DB 'Hello world...',0DH,0AH { String followed by CR/LF }
 DB 12,"Delphi" { Object Pascal style string }
 DW 0FFFFH { One word }
 DW 0,9999 { Two words }
 DW 'A' { Same as DB 'A',0 }
 DW 'BA' { Same as DB 'A','B' }
 DW MyVar { Offset of MyVar }
 DW MyProc { Offset of MyProc }
 DD 0FFFFFFFFH { One double-word }
 DD 0,999999999 { Two double-words }
 DD 'A' { Same as DB 'A',0,0,0 }
 DD 'DCBA' { Same as DB 'A','B','C','D' }
 DD MyVar { Pointer to MyVar }
 DD MyProc { Pointer to MyProc }
end;

In Turbo Assembler, when an identifier precedes a DB, DW, or DD directive, it
causes the declaration of a byte, word, or double-word sized variable at the location
of the directive. For example, Turbo Assembler allows the following:

ByteVar DB ?
WordVar DW ?
 .
 .
 .
 MOV AL,ByteVar
 MOV BX,WordVar

The built-in assembler doesn't support such variable declarations. In Delphi, the
only kind of symbol that can be defined in an built-in assembler statement is a label.
All variables must be declared using Object Pascal syntax, and the preceding
construct corresponds to this:

var
 ByteVar: Byte;
 WordVar: Word;
 .
 .
 .
asm
 MOV AL,ByteVar
 MOV BX,WordVar

1 9 2 O b j e c t P a s c a l L a n g u a g e G u i d e

end;

Operands
Built-in assembler operands are expressions that consist of a combination of
constants, registers, symbols, and operators. Although built-in assembler
expressions are built using the same basic principles as Object Pascal expressions,
there are a number of important differences, as will be explained later in this
chapter.

Within operands, the following reserved words have a predefined meaning to the
built-in assembler:

 Table 19-1 Built-in assembler reserved words

AH CS LOW SI
AL CX MOD SP
AND DH NEAR SS
AX DI NOT ST
BH DL OFFSET TBYTE
BL DS OR TYPE
BP DWORD PTR WORD
BX DX QWORD XOR
BYTE ES SEG
CH FAR SHL
CL HIGH SHR

The reserved words always take precedence over user-defined identifiers. For
example, the code fragment,

var
 ch: Char;
 .
 .
 .
asm
 MOV CH, 1
end;

loads 1 into the CH register, not into the CH variable. To access a user-defined
symbol with the same name as a reserved word, you must use the ampersand (&)
identifier override operator:

asm
 MOV &ch, 1
end;

It's strongly suggested that you avoid user-defined identifiers with the same names
as built-in assembler reserved words, because such name confusion can easily lead
to obscure and hard-to-find bugs.

C h a p t e r 1 9 , T h e b u i l t - i n a s s e m b l e r 1 9 3

Expressions
The built-in assembler evaluates all expressions as 32-bit integer values. It doesn't
support floating-point and string values, except string constants.

Built-in assembler expressions are built from expression elements and operators, and
each expression has an associated expression class and expression type. These concepts
are explained in the following sections.

Differences between Object Pascal and Assembler expressions
The most important difference between Object Pascal expressions and built-in
assembler expressions is that all built-in assembler expressions must resolve to a
constant value, a value that can be computed at compile time. For example, given
these declarations:

const
 X = 10;
 Y = 20;
var
 Z: Integer;

the following is a valid built-in assembler statement:

asm
 MOV Z,X+Y
end;

Because both X and Y are constants, the expression X + Y is merely a more
convenient way of writing the constant 30, and the resulting instruction becomes a
move immediate of the value 30 into the word-sized variable Z. But if you change X
and Y to be variables,

var
 X, Y: Integer;

the built-in assembler can no longer compute the value of X + Y at compile time.
The correct built-in assembler construct to move the sum of X and Y into Z is this:

asm
 MOV AX,X
 ADD AX,Y
 MOV Z,AX
end;

Another important difference between Object Pascal and built-in assembler
expressions is the way variables are interpreted. In a Object Pascal expression, a
reference to a variable is interpreted as the contents of the variable, but in an built-in
assembler expression, a variable reference denotes the address of the variable. For
example, in Object Pascal, the expression X + 4, where X is a variable, means the
contents of X plus 4, whereas in the built-in assembler, it means the contents of the
word at an address four bytes higher than the address of X. So, even though you're
allowed to write

1 9 4 O b j e c t P a s c a l L a n g u a g e G u i d e

asm
 MOV AX,X+4
end;

the code doesn't load the value of X plus 4 into AX, but it loads the value of a word
stored four bytes beyond X instead. The correct way to add 4 to the contents of X is
like this:

asm
 MOV AX,X
 ADD AX,4
end;

Expression elements
The basic elements of an expression are constants, registers, and symbols.

Constants
The built-in assembler supports two types of constants: numeric constants and string
constants.

Numeric constants

Numeric constants must be integers, and their values must be between -
2,147,483,648 and 4,294,967,295.

By default, numeric constants use decimal (base 10) notation, but the built-in
assembler supports binary (base 2), octal (base 8), and hexadecimal (base 16)
notations as well. Binary notation is selected by writing a B after the number, octal
notation is selected by writing a letter O after the number, and hexadecimal notation
is selected by writing an H after the number or a $ before the number.

The B, O, and H suffixes aren't supported in Object Pascal expressions. Object Pascal
expressions allow only decimal notation (the default) and hexadecimal notation
(using a $ prefix).

Numeric constants must start with one of the digits 0 through 9 or a $ character;
therefore when you write a hexadecimal constant using the H suffix, an extra zero in
front of the number is required if the first significant digit is one of the hexadecimal
digits A through F. For example, 0BAD4H and $BAD4 are hexadecimal constants,
but BAD4H is an identifier because it starts with a letter and not a digit.

String constants

String constants must be enclosed in single or double quotes. Two consecutive
quotes of the same type as the enclosing quotes count as only one character. Here
are some examples of string constants:

'Z'
'Delphi'
"That's all folks"
'"That''s all folks," he said.'

C h a p t e r 1 9 , T h e b u i l t - i n a s s e m b l e r 1 9 5

'100'
'"'
"'"

Notice in the fourth string the use of two consecutive single quotes to denote one
single quote character.

String constants of any length are allowed in DB directives, and cause allocation of a
sequence of bytes containing the ASCII values of the characters in the string. In all
other cases, a string constant can be no longer than four characters, and denotes a
numeric value which can participate in an expression. The numeric value of a string
constant is calculated as

Ord(Ch1) + Ord(Ch2) shl 8 + Ord(Ch3) shl 16 + Ord(Ch4) shl 24

where Ch1 is the rightmost (last) character and Ch4 is the leftmost (first) character. If
the string is shorter than four characters, the leftmost (first) character(s) are
assumed to be zero. Here are some examples of string constants and their
corresponding numeric values:

 Table 19-2 String examples and their values

String Value
'a' 00000061H
'ba' 00006261H
'cba' 00636261H
'dcba' 64636261H
'a ' 00006120H
‘ a' 20202061H
'a' * 2 000000E2H
'a'-'A' 00000020H
not 'a' FFFFFF9EH

Registers

The following reserved symbols denote CPU registers:

 Table 19-3 CPU registers

16-bit general purpose AX BX CX DX
8-bit low registers AL BL CL DL
8-bit high registers AH BH CH DH
16-bit pointer or index SP BP SI DI
16-bit segment registers CS DS SS ES
8087 register stack ST

When an operand consists solely of a register name, it's called a register operand.
All registers can be used as register operands. In addition, some registers can be
used in other contexts.

The base registers (BX and BP) and the index registers (SI and DI) can be written
within square brackets to indicate indexing. Valid base/index register combinations
are [BX], [BP], [SI], [DI], [BX+SI], [BX+DI], [BP+SI], and [BP+DI].

1 9 6 O b j e c t P a s c a l L a n g u a g e G u i d e

The segment registers (ES, CS, SS, and DS) can be used in conjunction with the colon
(:) segment override operator to indicate a different segment than the one the
processor selects by default.

The symbol ST denotes the topmost register on the 8087 floating-point register stack.
Each of the eight floating-point registers can be referred to using ST(x), where x is a
constant between 0 and 7 indicating the distance from the top of the register stack.

Symbols
The built-in assembler allows you to access almost all Object Pascal symbols in
assembler expressions, including labels, constants, types, variables, procedures, and
functions. In addition, the built-in assembler implements the following special
symbols:

@Code @Data @Result

The @Code and @Data symbols represent the current code and data segments. They
should only be used in conjunction with the SEG operator:

asm
 MOV AX,SEG @Data
 MOV DS,AX
end;

The @Result symbol represents the function result variable within the statement part
of a function. For example, in this function,

function Sum(X, Y: Integer): Integer;
begin
 Sum := X + Y;
end;

the statement that assigns a function result value to Sum uses the @Result variable if
it is written in built-in assembler:

function Sum(X, Y: Integer): Integer;
begin
 asm
 MOV AX,X
 ADD AX,Y
 MOV @Result,AX
 end;
end;

The following symbols can't be used in built-in assembler expressions:

• Standard procedures and functions (for example, WriteLn, Chr)

• The Mem, MemW, MemL, Port, and PortW special arrays

• String, floating-point, and set constants

• Procedures and functions declared with the inline directive

• Labels that aren't declared in the current block

C h a p t e r 1 9 , T h e b u i l t - i n a s s e m b l e r 1 9 7

• The @Result symbol outside a function

The following table summarizes the value, class, and type of the different kinds of
symbols that can be used in built-in assembler expressions. (Expression classes and
types are described in a following section.)

 Table 19-4 Values, classes, and types of symbols

Symbol Value Class Type
Label Address of label Memory SHORT
Constant Value of constant Immediate 0
Type 0 Memory Size of type
Field Offset of field Memory Size of type
Variable Address of variable Memory Size of type
Procedure Address of procedure Memory NEAR or FAR
Function Address of function Memory NEAR or FAR
Unit 0 Immediate 0
@Code Code segment address Memory 0FFF0H
@Data Data segment address Memory 0FFF0H
@Result Result var offset Memory Size of type

Local variables (variables declared in procedures and functions) are always
allocated on the stack and accessed relative to SS:BP, and the value of a local
variable symbol is its signed offset from SS:BP. The assembler automatically adds
[BP] in references to local variables. For example, given these declarations,

procedure Test;
var
 Count: Integer;

the instruction

asm
 MOV AX,Count
end;

assembles into MOV AX,[BP-2].

The built-in assembler always treats a var parameter as a 32-bit pointer, and the size
of a var parameter is always 4 (the size of a 32-bit pointer). In Object Pascal, the
syntax for accessing a var parameter and a value parameter is the same--this isn't
the case in code you write for the built-in assembler. Because var parameters are
really pointers, you have to treat them as such. So, to access the contents of a var
parameter, you first have to load the 32-bit pointer and then access the location it
points to. For example, if the X and Y parameters of the above function Sum were
var parameters, the code would look like this:

function Sum(var X, Y: Integer): Integer;
begin
 asm
 LES BX,X
 MOV AX,ES:[BX]
 LES BX,Y
 ADD AX,ES:[BX]

1 9 8 O b j e c t P a s c a l L a n g u a g e G u i d e

 MOV @Result,AX
 end;
end;

Some symbols, such as record types and variables, have a scope that can be accessed
using the period (.) structure member selector operator. For example, given these
declarations,

type
 TPoint = record
 X, Y: Integer;
 end;
 TRect = record
 A, B: TPoint;
 end;
var
 P: TPoint;
 R: TRect;

the following constructs can be used to access fields in the P and R variables:

asm
 MOV AX,P.X
 MOV DX,P.Y
 MOV CX,R.A.X
 MOV BX,R.B.Y
end;

A type identifier can be used to construct variables on the fly. Each of the following
instructions generates the same machine code, which loads the contents of ES:[DI+4]
into AX:

asm
 MOV AX,(TRect PTR ES:[DI]).B.X
 MOV AX,TRect(ES:[DI]).B.X
 MOV AX,ES:TRect[DI].B.X
 MOV AX,TRect[ES:DI].B.X
 MOV AX,ES:[DI].TRect.B.X
end;

A scope is provided by type, field, and variable symbols of a record or object type.
In addition, a unit identifier opens the scope of a particular unit, just like a fully
qualified identifier in Object Pascal.

Expression classes
The built-in assembler divides expressions into three classes: registers, memory
references, and immediate values.

An expression that consists solely of a register name is a register expression.
Examples of register expressions are AX, CL, DI, and ES. Used as operands, register
expressions direct the assembler to generate instructions that operate on the CPU
registers.

C h a p t e r 1 9 , T h e b u i l t - i n a s s e m b l e r 1 9 9

Expressions that denote memory locations are memory references; Object Pascal's
labels, variables, typed constants, procedures, and functions belong to this category.

Expressions that aren't registers and aren't associated with memory locations are
immediate values; this group includes Object Pascal's untyped constants and type
identifiers.

Immediate values and memory references cause different code to be generated
when used as operands. For example,

const
 Start = 10;
var
 Count: Integer;
 .
 .
 .
asm
 MOV AX,Start { MOV AX,xxxx }
 MOV BX,Count { MOV BX,[xxxx] }
 MOV CX,[Start] { MOV CX,[xxxx] }
 MOV DX,OFFSET Count { MOV DX,xxxx }
end;

Because Start is an immediate value, the first MOV is assembled into a move
immediate instruction. The second MOV, however, is translated into a move
memory instruction, as Count is a memory reference. In the third MOV, the square
brackets operator is used to convert Start into a memory reference (in this case, the
word at offset 10 in the data segment), and in the fourth MOV, the OFFSET operator
is used to convert Count into an immediate value (the offset of Count in the data
segment).

As you can see, the square brackets and the OFFSET operators complement each
other. In terms of the resulting machine code, the following asm statement is
identical to the first two lines of the previous asm statement:

asm
 MOV AX,OFFSET [Start]
 MOV BX,[OFFSET Count]
end;

Memory references and immediate values are further classified as either relocatable
expressions or absolute expressions. A relocatable expression denotes a value that
requires relocation at link time, and an absolute expression denotes a value that
requires no such relocation. Typically, an expression that refers to a label, variable,
procedure, or function is relocatable, and an expression that operates solely on
constants is absolute.

Relocation is the process by which the linker assigns absolute addresses to symbols.
At compile time, the compiler doesn't know the final address of a label, variable,
procedure, or function; it doesn't become known until link time, when the linker
assigns a specific absolute address to the symbol.

2 0 0 O b j e c t P a s c a l L a n g u a g e G u i d e

The built-in assembler allows you to carry out any operation on an absolute value,
but it restricts operations on relocatable values to addition and subtraction of
constants.

Expression types
Every built-in assembler expression has an associated type--or more correctly, an
associated size, because the built-in assembler regards the type of an expression
simply as the size of its memory location. For example, the type (size) of an Integer
variable is two, because it occupies 2 bytes.

The built-in assembler performs type checking whenever possible, so in the
instructions

var
 QuitFlag: Boolean;
 OutBufPtr: Word;
 .
 .
 .
asm
 MOV AL,QuitFlag
 MOV BX,OutBufPtr
end;

the built-in assembler checks that the size of QuitFlag is one (a byte), and that the
size of OutBufPtr is two (a word). An error results if the type check fails; for
example, this isn't allowed:

asm
 MOV DL,OutBufPtr
end;

The problem is DL is a byte-sized register and OutBufPtr is a word. The type of a
memory reference can be changed through a typecast; these are correct ways of
writing the previous instruction:

asm
 MOV DL,BYTE PTR OutBufPtr
 MOV DL,Byte(OutBufPtr)
 MOV DL,OutBufPtr.Byte
end;

These MOV instructions all refer to the first (least significant) byte of the OutBufPtr
variable.

In some cases, a memory reference is untyped; that is, it has no associated type. One
example is an immediate value enclosed in square brackets:

asm
 MOV AL,[100H]
 MOV BX,[100H]
end;

C h a p t e r 1 9 , T h e b u i l t - i n a s s e m b l e r 2 0 1

The built-in assembler permits both of these instructions, because the expression
[100H] has no associated type--it just means "the contents of address 100H in the
data segment," and the type can be determined from the first operand (byte for AL,
word for BX). In cases where the type can't be determined from another operand,
the built-in assembler requires an explicit typecast:

asm
 INC BYTE PTR [100H]
 IMUL WORD PTR [100H]
end;

The following table summarizes the predefined type symbols that the built-in
assembler provides in addition to any currently declared Object Pascal types.

 Table 19-5 Predefined type symbols

Symbol Type
BYTE 1
WORD 2
DWORD 4
QWORD 8
TBYTE 10
NEAR 0FFFEH
FAR 0FFFFH

Notice in particular the NEAR and FAR pseudotypes, which are used by procedure
and function symbols to indicate their call model. You can use NEAR and FAR in
typecasts just like other symbols. For example, if FarProc is a FAR procedure,

procedure FarProc; far;

and if you are writing built-in assembler code in the same module as FarProc, you
can use the more efficient NEAR call instruction to call it:

asm
 PUSH CS
 CALL NEAR PTR FarProc
end;

Expression operators
The built-in assembler provides a variety of operators, divided into 12 classes of
precedence. The following table lists the built-in assembler's expression operators in
decreasing order of precedence.

Built-in assembler operator precedence is different from Object Pascal. For example,
in a built-in assembler expression, the AND operator has lower precedence than the
plus (+) and minus (-) operators, whereas in a Object Pascal expression, it has higher
precedence.

 Table 19-6 Summary of built-in asssembler expression operators

Operator(s) Comments
& Identifier override operator

2 0 2 O b j e c t P a s c a l L a n g u a g e G u i d e

(), [],HIGH, LOW Structure member selector
+, - Unary operators
: Segment override operator
OFFSET, SEG, TYPE, PTR,
*, /, MOD, SHL, SHR,+, -

Binary addition/ subtraction operators

NOT, AND, OR, XOR Bitwise operators

 Table 19-7 Definitions of built-in assembler expression operators

Operator Description
& Identifier override. The identifier immediately following the ampersand is treated as a

user-defined symbol, even if the spelling is the same as a built-in assembler reserved
symbol.

 (...) Subexpression. Expressions within parentheses are evaluated completely prior to being
treated as a single expression element. Another expression can optionally precede the
expression within the parentheses; the result in this case becomes the sum of the values
of the two expressions, with the type of the first expression.

 [...] Memory reference. The expression within brackets is evaluated completely prior to
being treated as a single expression element. The expression within brackets can be
combined with the BX, BP, SI, or DI registers using the plus (+) operator, to indicate CPU
register indexing. Another expression can optionally precede the expression within the
brackets; the result in this case becomes the sum of the values of the two expressions,
with the type of the first expression. The result is always a memory reference.

. Structure member selector. The result is the sum of the expression before the period and
the expression after the period, with the type of the expression after the period. Symbols
belonging to the scope identified by the expression before the period can be accessed in
the expression after the period.

HIGH Returns the high-order 8 bits of the word-sized expression following the operator. The
expression must be an absolute immediate value.

LOW Returns the low-order 8 bits of the word-sized expression following the operator. The
expression must be an absolute immediate value.

+ Unary plus. Returns the expression following the plus with no changes. The expression
must be an absolute immediate value.

- Unary minus. Returns the negated value of the expression following the minus. The
expression must be an absolute immediate value.

: Segment override. Instructs the assembler that the expression after the colon belongs to
the segment given by the segment register name (CS, DS, SS, or ES) before the colon. The
result is a memory reference with the value of the expression after the colon. When a
segment override is used in an instruction operand, the instruction will be prefixed by an
appropriate segment override prefix instruction to ensure that the indicated segment is
selected.

OFFSET Returns the offset part (low-order word) of the expression following the operator. The
result is an immediate value.

SEG Returns the segment part (high-order word) of the expression following the operator.
The result is an immediate value.

TYPE Returns the type (size in bytes) of the expression following the operator. The type of an
immediate value is 0.

PTR Typecast operator. The result is a memory reference with the value of the expression
following the operator and the type of the expression in front of the operator.

* Multiplication. Both expressions must be absolute immediate values, and the result is an
absolute immediate value.

/ Integer division. Both expressions must be absolute immediate values, and the result is
an absolute immediate value.

MOD Remainder after integer division. Both expressions must be absolute immediate values,
and the result is an absolute immediate value.

SHL Logical shift left. Both expressions must be absolute immediate values, and the result is
an absolute immediate value.

SHR Logical shift right. Both expressions must be absolute immediate values, and the result

C h a p t e r 1 9 , T h e b u i l t - i n a s s e m b l e r 2 0 3

is an absolute immediate value.
+ Addition. The expressions can be immediate values or memory references, but only one

of the expressions can be a relocatable value. If one of the expressions is a relocatable
value, the result is also a relocatable value. If either of the expressions are memory
references, the result is also a memory reference.

- Subtraction. The first expression can have any class, but the second expression must be
an absolute immediate value. The result has the same class as the first expression.

NOT Bitwise negation. The expression must be an absolute immediate value, and the result is
an absolute immediate value.

AND Bitwise AND. Both expressions must be absolute immediate values, and the result is an
absolute immediate value.

OR Bitwise OR. Both expressions must be absolute immediate values, and the result is an
absolute immediate value.

XOR Bitwise exclusive OR. Both expressions must be absolute immediate values, and the
result is an absolute immediate value.

Assembler procedures and functions
So far, every asm... end construct you've seen has been a statement within a normal
begin... end statement part. Delphi's assembler directive allows you to write
complete procedures and functions in built-in assembler, without the need for a
begin... end statement part. Here's an example of an assembler function:

function LongMul(X, Y: Integer): Longint; assembler;
asm
 MOV AX,X
 IMUL Y
end;

The assembler directive causes Delphi to perform a number of code generation
optimizations:

• The compiler doesn't generate code to copy value parameters into local
variables. This affects all string-type value parameters, and other value
parameters whose size isn't 1, 2, or 4 bytes. Within the procedure or function,
such parameters must be treated as if they were var parameters.

• The compiler doesn't allocate a function result variable, and a reference to the
@Result symbol is an error. String functions, however, are an exception to this
rule--they always have a @Result pointer that is allocated by the caller.

• The compiler generates no stack frame for procedures and functions that aren't
nested and have no parameters and no local variables.

• The automatically generated entry and exit code for an assembler procedure or
function looks like this:

PUSH BP ;Present if Locals <> 0 or Params <> 0
MOV BP,SP ;Present if Locals <> 0 or Params <> 0
SUB SP,Locals ;Present if Locals <> 0
 .
 .
 .
MOV SP,BP ;Present if Locals <> 0

2 0 4 O b j e c t P a s c a l L a n g u a g e G u i d e

POP BP ;Present if Locals <> 0 or Params <> 0
RET Params ;Always present

• Locals is the size of the local variables, and Params is the size of the parameters.
If both Locals and Params are zero, there is no entry code, and the exit code
consists simply of a RET instruction.

Functions using the assembler directive must return their results as follows:

• Ordinal-type function results (integer, boolean, enumerated types, and Char) are
returned in AL (8-bit values), AX (16-bit values), or DX:AX (32-bit values).

• Real-type function results (type Real) are returned in DX:BX:AX.

• 8087-type function results (type Single, Double, Extended, and Comp) are returned
in ST(0) on the 8087 coprocessor's register stack.

• Pointer-type function results are returned in DX:AX.

• String-type function results are returned in the temporary location pointed to by
the @Result function result symbol.

The assembler directive is comparable to the external directive, and assembler
procedures and functions must obey the same rules as external procedures and
functions. The following examples demonstrate some of the differences between
asm statements in Object Pascal functions and assembler functions. The first
example uses an asm statement in a Object Pascal function to convert a string to
upper case. Notice that the value parameter Str in this case refers to a local variable,
because the compiler automatically generates entry code that copies the actual
parameter into local storage.

function UpperCase(Str: String): String;
begin
 asm
 CLD
 LEA SI,Str
 LES DI,@Result
 SEGSS LODSB
 STOSB
 XOR AH,AH
 XCHG AX,CX
 JCXZ @3
 @1:
 SEGSS LODSB
 CMP AL,'a'
 JB @2
 CMP AL,'z'
 JA @2
 SUB AL,20H

 @2:
 STOSB
 LOOP @1
 @3:

C h a p t e r 1 9 , T h e b u i l t - i n a s s e m b l e r 2 0 5

 end;
end;

The second example is an assembler version of the UpperCase function. In this case,
Str isn't copied into local storage, and the function must treat Str as a var parameter.

function UpperCase(Str: String): String; assembler;
asm
 PUSH DS
 CLD
 LDS SI,Str
 LES DI,@Result
 LODSB
 STOSB
 XOR AH,AH
 XCHG AX,CX
 JCXZ @3
@1:
 LODSB
 CMP AL,'a'
 JB @2
 CMP AL,'z'
 JA @2
 SUB AL,20H
@2:
 STOSB
 LOOP @1
@3:
 POP DS
end;

2 0 6 O b j e c t P a s c a l L a n g u a g e G u i d e

C h a p t e r 2 0 , L i n k i n g a s s e m b l e r c o d e 2 0 7

 C h a p t e r

20
Linking assembler code

Procedures and functions written in assembly language can be linked with Delphi
programs or units using the $L compiler directive. The assembly language source
file must be assembled into an object file (extension .OBJ) using an assembler like
Turbo Assembler. Multiple object files can be linked with a program or unit through
multiple $L directives.

Procedures and functions written in assembly language must be declared as
external in the Object Pascal program or unit. For example,

function LoCase(Ch: Char): Char; external;

In the corresponding assembly language source file, all procedures and functions
must be placed in a segment named CODE or CSEG, or in a segment whose name
ends in _TEXT. The names of the external procedures and functions must appear in
PUBLIC directives.

You must ensure that an assembly language procedure or function matches its
Object Pascal definition with respect to call model (near or far), number of
parameters, types of parameters, and result type.

An assembly language source file can declare initialized variables in a segment
named CONST or in a segment whose name ends in _DATA. It can declare
uninitialized variables in a segment named DATA or DSEG, or in a segment whose
name ends in _BSS. Such variables are private to the assembly language source file
and can't be referenced from the Object Pascal program or unit. However, they
reside in the same segment as the Object Pascal globals, and can be accessed
through the DS segment register.

All procedures, functions, and variables declared in the Object Pascal program or
unit, and the ones declared in the interface section of the used units, can be
referenced from the assembly language source file through EXTRN directives.
Again, it's up to you to supply the correct type in the EXTRN definition.

2 0 8 O b j e c t P a s c a l L a n g u a g e G u i d e

When an object file appears in a $L directive, Delphi converts the file from the Intel
relocatable object module format (.OBJ) to its own internal relocatable format. This
conversion is possible only if certain rules are observed:

• All procedures and functions must be placed in a segment named CODE or
CSEG, or in a segment with a name that ends in _TEXT. All initialized private
variables must be placed in a segment named CONST, or in a segment with a
name that ends in _DATA. All uninitialized private variables must be placed in
a segment named DATA or DSEG, or in a segment with a name that ends in
_BSS. All other segments are ignored, and so are GROUP directives. The
segment definitions can specify BYTE or WORD alignment, but when linked,
code segments are always byte aligned, and data segments are always word
aligned. The segment definitions can optionally specify PUBLIC and a class
name, both of which are ignored.

• Delphi ignores any data for segments other than the code segment (CODE,
CSEG, or xxxx_TEXT) and the initialized data segment (CONST or
xxxx_DATA). So, when declaring variables in the uninitialized data segment
(DATA, DSEG, or xxxx_BSS), always use a question mark (?) to specify the
value, for instance:

Count DW ?
Buffer DB 128 DUP(?)

• Byte-sized references to EXTRN symbols aren't allowed. For example, this
means that the assembly language HIGH and LOW operators can't be used with
EXTRN symbols.

Turbo Assembler and Delphi
Turbo Assembler (TASM) makes it easy to program routines in assembly language
and interface them into your Delphi programs. Turbo Assembler provides
simplified segmentation and language support for Object Pascal programmers.

The .MODEL directive specifies the memory model for an assembler module that
uses simplified segmentation. For linking with Object Pascal programs, the .MODEL
syntax looks like this:

.MODEL xxxx, PASCAL

xxxx is the memory model (usually this is large).

Specifying the language PASCAL in the .MODEL directive tells Turbo Assembler
that the arguments were pushed onto the stack from left to right, in the order they
were encountered in the source statement that called the procedure.

The PROC directive lets you define your parameters in the same order as they are
defined in your Object Pascal program. If you are defining a function that returns a
string, notice that the PROC directive has a RETURNS option that lets you access
the temporary string pointer on the stack without affecting the number of parameter
bytes added to the RET statement.

Here's an example coded to use the .MODEL and PROC directives:

C h a p t e r 2 0 , L i n k i n g a s s e m b l e r c o d e 2 0 9

 .MODEL LARGE, PASCAL
 .CODE
MyProc PROC FAR I : BYTE, J : BYTE RETURNS Result : DWORD
 PUBLIC MyProc
 LES DI, Result ;get address of temporary string
 MOV AL, I ;get first parameter I
 MOV BL, J ;get second parameter J
 .
 .
 .
 RET

The Object Pascal function definition would look like this:

function MyProc(I, J: Char): string; external;

For more information about interfacing Turbo Assembler with Delphi, refer to the
Turbo Assembler User's Guide.

Examples of assembly language routines
The following code is an example of a unit that implements two assembly language
string-handling routines. The UpperCase function converts all characters in a string
to uppercase, and the StringOf function returns a string of characters of a specified
length.

unit Stringer;
interface
function UpperCase(S: String): String;
function StringOf(Ch: Char; Count: Byte): String;
implementation
{$L STRS}
function UpperCase; external;
function StringOf; external;
end.

The assembly language file that implements the UpperCase and StringOf routines is
shown next. It must be assembled into a file called STRS.OBJ before the Stringer unit
can be compiled. Note that the routines use the far call model because they are
declared in the interface section of the unit. This example uses standard
segmentation:

 CODE SEGMENT BYTE PUBLIC

 ASSUME CS:CODE
 PUBLIC UpperCase, StringOf ;Make them known

; function UpperCase(S: String): String

UpperRes EQU DWORD PTR [BP + 10]
UpperStr EQU DWORD PTR [BP + 6]

2 1 0 O b j e c t P a s c a l L a n g u a g e G u i d e

UpperCase PROC FAR

 PUSH BP ;Save BP
 MOV BP, SP ;Set up stack frame
 PUSH DS ;Save DS
 LDS SI, Upperstr ;Load string address
 LES DI, Upperres ;Load result address
 CLD ;Forward string-ops
 LODSB ;Load string length
 STOSB ;Copy to result
 MOV CL, AL ;String length to CX
 XOR CH, CH
 JCXZ U3 ;Skip if empty string
U1: LODSB ;Load character
 CMP AL, 'a' ;Skip if not 'a'..'z'
 JB U2
 CMP AL, 'z'
 JA U2
 SUB AL, 'a'-'A' ;Convert to uppercase
U2: STOSB ;Store in result
 LOOP U1 ;Loop for all characters
U3: POP DS ;Restore DS
 POP BP ;Restore BP
 RET 4 ;Remove parameter and return

UpperCase ENDP

; procedure StringOf(var S: String; Ch: Char; Count: Byte)

StrOfS EQU DWORD PTR [BP + 10]
StrOfChar EQU BYTE PTR [BP + 8]
StrOfCount EQU BYTE PTR [BP + 6]

StringOf PROC FAR

 PUSH BP ;Save BP
 MOV BP, SP ;Set up stack frame
 LES DI, StrOfRes ;Load result address
 MOV AL, StrOfCount ;Load count
 CLD ;Forward string-ops
 STOSB ;Store length
 MOV CL, AL ;Count to CX
 XOR CH, CH
 MOV AL, StrOfChar ;Load character
 REP STOSB ;Store string of characters
 POP BP ;Restore BP
 RET 8 ;Remove parameters and return

StringOf ENDP

CODE ENDS

C h a p t e r 2 0 , L i n k i n g a s s e m b l e r c o d e 2 1 1

 END

To assemble the example and compile the unit, use the following commands:

TASM STRS
BPC stringer

Assembly language methods
Method implementations written in assembly language can be linked with Delphi
programs using the $L compiler directive and the external reserved word. The
declaration of an external method in an object type is no different than that of a
normal method; however, the implementation of the method lists only the method
header followed by the reserved word external.

In an assembly language source text, an @ is used instead of a period (.) to write
qualified identifiers (the period already has a different meaning in assembly
language and can't be part of an identifier). For example, the Object Pascal identifier
Rect. Init is written as Rect@Init in assembly language. The @ syntax can be used to
declare both PUBLIC and EXTRN identifiers.

Inline machine code
For very short assembly language subroutines, Delphi's inline statements and
directives are very convenient. They let you insert machine code instructions
directly into the program or unit text instead of through an object file.

Inline statements
An inline statement consists of the reserved word inline followed by one or more
inline elements, separated by slashes and enclosed in parentheses:

inline (10/$2345/Count + 1/Data - Offset);

Here's the syntax of an inline statement:

Each inline element consists of an optional size specifier, < or >, and a constant or a
variable identifier, followed by zero or more offset specifiers (see the syntax that
follows). An offset specifier consists of a + or a - followed by a constant.

2 1 2 O b j e c t P a s c a l L a n g u a g e G u i d e

Each inline element generates 1 byte or 1 word of code. The value is computed from
the value of the first constant or the offset of the variable identifier, to which is
added or subtracted the value of each of the constants that follow it.

An inline element generates 1 byte of code if it consists of constants only and if its
value is within the 8-bit range (0..255). If the value is outside the 8-bit range or if the
inline element refers to a variable, 1 word of code is generated (least-significant byte
first).

The < and > operators can be used to override the automatic size selection we
described earlier. If an inline element starts with a < operator, only the least-
significant byte of the value is coded, even if it's a 16-bit value. If an inline element
starts with a > operator, a word is always coded, even though the most-significant
byte is 0. For example, the statement

inline (<$1234/>$44);

generates 3 bytes of code: $34, $44, $00.

The value of a variable identifier in an inline element is the offset address of the
variable within its base segment. The base segment of global variables--variables
declared at the outermost level in a program or a unit--and typed constants is the
data segment, which is accessible through the DS register. The base segment of local
variables--variables declared within the current subprogram--is the stack segment.
In this case the variable offset is relative to the BP register, which automatically
causes the stack segment to be selected. Registers BP, SP, SS, and DS must be
preserved by inline statements; all other registers can be modified.

The following example of an inline statement generates machine code for storing a
specified number of words of data in a specified variable. When called, procedure
FillWord stores Count words of the value Data in memory, starting at the first byte
occupied by Dest.

C h a p t e r 2 0 , L i n k i n g a s s e m b l e r c o d e 2 1 3

procedure FillWord(var Dest; Count, Data: Word);
begin
 inline (
 $C4/$BE/Dest/ { LES DI,Dest[BP] }
 $8B/$8E/Count/ { MOV CX,Count[BP] }
 $8B/$86/Data/ { MOV AX,Data[BP] }
 $FC/ { CLD }
 $F3/$AB); { REP STOSW }
end;

Inline statements can be freely mixed with other statements throughout the
statement part of a block.

Inline directives
With inline directives, you can write procedures and functions that expand into a
given sequence of machine code instructions whenever they are called. These are
comparable to macros in assembly language. The syntax for an inline directive is
the same as that of an inline statement:

When a normal procedure or function is called (including one that contains inline
statements), the compiler generates code that pushes the parameters (if any) onto
the stack, and then generates a CALL instruction to call the procedure or function.
However, when you call an inline procedure or function, the compiler generates
code from the inline directive instead of the CALL. Here's a short example of two
inline procedures:

procedure DisableInterrupts; inline ($FA); { CLI }
procedure EnableInterrupts; inline ($FB); { STI }

When DisableInterrupts is called, it generates 1 byte of code--a CLI instruction.

Procedures and functions declared with inline directives can have parameters;
however, the parameters can't be referred to symbolically in the inline directive
(other variables can, though). Also, because such procedures and functions are in
fact macros, there is no automatic entry and exit code, nor should there be any
return instruction.

The following function multiplies two Integer values, producing a Longint result:

function LongMul(X, Y: Integer): Longint;
inline (
 $5A/ { POP AX ;Pop X }
 $58/ { POP DX ;Pop Y }
 $F7/$EA); { IMUL DX ;DX : AX = X * Y }

Note the lack of entry and exit code and the missing return instruction. These aren't
required, because the 4 bytes are inserted into the instruction stream when LongMul
is called.

2 1 4 O b j e c t P a s c a l L a n g u a g e G u i d e

Inline directives are intended for very short procedures and functions only (less
than 10 bytes).

Because of the macro-like nature of inline procedures and functions, they can't be
used as arguments to the @ operator and the Addr, Ofs, and Seg functions.

A p p e n d i x A , T h e c o m m a n d - l i n e c o m p i l e r 2 1 5

 A p p e n d i x

A
The command-line compiler

Delphi's command-line compiler (DCC.EXE) lets you invoke all the functions of the
IDE compiler (DELPHI.EXE) from the DOS command line. You run the command-
line compiler from the DOS prompt using the following syntax:

DCC [options] filename [options]

options are zero or more optional parameters that provide additional information to
the compiler. filename is the name of the source file to compile. If you type DCC
alone, it displays a help screen of command-line options and syntax.

If filename does not have an extension, the command-line compiler assumes .PAS. If
you don't want the file you're compiling to have an extension, you must append a
period (.) to the end of the filename.

If the source text contained in filename is a program, the compiler creates an
executable file named filename.EXE, and if filename contains a library, the compiler
creates a file named filename.DLL. If filename contains a unit, the compiler creates a
unit file named filename.DCU.

You can specify a number of options for the command-line compiler. An option
consists of a slash (/) immediately followed by an option letter. In some cases, the
option letter is followed by additional information, such as a number, a symbol, or a
directory name. Options can be given in any order and can come before and/or
after the file name.

Command-line compiler options
The IDE lets you set various options through the menus; the command-line
compiler gives you access to these options using the slash (/) delimiter. You can also
precede options with a hyphen (-) instead of a slash (/), but those options that start
with a hyphen must be separated by blanks. For example, the following two
command lines are equivalent and legal:

2 1 6 O b j e c t P a s c a l L a n g u a g e G u i d e

DCC -IC:\DELPHI -DDEBUG SORTNAME -$S- -$F+
DCC /IC:\DELPHI/DDEBUG SORTNAME /$S-/$F+

The first command line uses hyphens with at least one blank separating options; the
second uses slashes and no separation is needed.

The following table lists the command-line options.

 Table A-1 Command-line options

Option Description
/$A+ Align data on word boundaries
/$A- Align data on byte boundaries
/$B+ Complete Boolean evaluation
/$B- Short circuit Boolean evaluation
/$D+ Debugging information on
/$D- Debugging information off
/$E+ 80x87 emulation on
/$E- 80x87 emulation off
/$F+ Force far calls on
/$F- Force far calls off
/$G+ 286 code generation on
/$G- 286 code generation off
/$I+ I/O checking on
/$I- I/O checking off
/$K+ Smart callbacks on
/$K- Smart callbacks off
/$L+ Local debug symbols on
/$L- Local debug symbols off
/$M Memory sizes
/$M+ Run-time type information on
/$M- Run-time type information off
/$N+ Numeric coprocessor on
/$N- Numeric coprocessor off
/$P+ Open parameters on
/$P- Open parameters off
/$Q+ Overflow checking on
/$Q- Overflow checking off
/$R+ Range checking on
/$R- Range checking off
/$S+ Stack checking on
/$S- Stack checking off
/$T+ Type-checked pointers on
/$T- Type-checked pointers off
/$U+ Pentium safe FDIV on
/$U- Pentium safe FDIV off
/$V+ Strict var-string checking
/$V- Relaxed var-string checking
/$W+ Windows stack frames on
/$W- Windows stack frames off
/$X+ Extended syntax support on

A p p e n d i x A , T h e c o m m a n d - l i n e c o m p i l e r 2 1 7

/$X- Extended syntax support off
/$Y+ Symbol reference information on
/$Y- Symbol reference information off
/$Z+ Word-sized enumerations
/$Z- Byte-sized enumerations
/B Build all units
/Ddefines Define conditional symbol
/Epath EXE and DCU directory
/Fsegment: offset Find run-time error
/GS Map file with segments
/GP Map file with publics
/GD Detailed map file
/Ipath Include directories
/L Link buffer on disk
/M Make modified units
/Opath Object directories
/Q Quiet compile
/Rpath Resource directories
/Tpath DSL and CFG directory
/Upath Unit directories
/V EXE debug information

If you type DCC alone at the command line, a list of command-line compiler options
appears on your screen.

Compiler directive options
Delphi supports several compiler directives, all described in Appendix B, "Compiler
directives." The /$ and /D command-line options allow you to change the default
states of most compiler directives. Using /$ and /D on the command line is
equivalent to inserting the corresponding compiler directive at the beginning of each
source file compiled.

The switch directive option
The /$ option lets you change the default state of all of the switch directives. The
syntax of a switch directive option is /$ followed by the directive letter, followed by
a plus (+) or a minus (-). For example,

DCC MYSTUFF /$R-

compiles MYSTUFF.PAS with range-checking turned off, while

DCC MYSTUFF /$R+

compiles it with range checking turned on. Note that if a {$R+} or {$R-} compiler
directive appears in the source text, it overrides the /$R command-line option.

You can repeat the /$ option in order to specify multiple compiler directives:

DCC MYSTUFF /$R-/$I-/$V-/$F+

2 1 8 O b j e c t P a s c a l L a n g u a g e G u i d e

Alternately, the command-line compiler lets you write a list of directives (except for
$M), separated by commas:

DCC MYSTUFF /$R-,I-,V-,F+

Note that only one dollar sign ($) is needed.

In addition to changing switch directives, /$ also lets you specify a program's
memory allocation parameters using the following format:

/$Mstacksize,heapsize

where stacksize is the stack size and heapsize is the size of the Windows local heap
area in the data segment. The values are in bytes, and each is a decimal number
unless it is preceded by a dollar sign ($), in which case it is assumed to be
hexadecimal. So, for example, the following command lines are equivalent:

DCC MYSTUFF /$M16384,4096
DCC MYSTUFF /M4000,$1000

Note that, because of its format, you cannot use the $M option in a list of directives
separated by commas.

The conditional defines option
The /D option lets you define conditional symbols, corresponding to the {$DEFINE
symbol} compiler directive. The /D option must be followed by one or more
conditional symbols separated by semicolons (;). For example, the following
command line

DCC MYSTUFF /DIOCHECK;DEBUG;LIST

defines three conditional symbols, iocheck, debug, and list, for the compilation of
MYSTUFF.PAS. This is equivalent to inserting

{$DEFINE IOCHECK}
{$DEFINE DEBUG}
{$DEFINE LIST}

at the beginning of MYSTUFF.PAS. If you specify multiple /D directives, you can
concatenate the symbol lists. Therefore,

DCC MYSTUFF /DIOCHECK/DDEBUG/DLIST

is equivalent to the first example.

Compiler mode options
A few options affect how the compiler itself functions. These are /M (Make), /B
(Build), /F (Find Error), /L (Link Buffer) and /Q (Quiet). As with the other options,
you can use the hyphen format. Remember to separate the options with at least one
blank.

A p p e n d i x A , T h e c o m m a n d - l i n e c o m p i l e r 2 1 9

The make (/M) option
The command-line compiler has a built-in MAKE utility to aid in project
maintenance. The /M option instructs command-line compiler to check all units
upon which the file being compiled depends.

A unit will be recompiled if

• The source file for that unit has been modified since the unit file was created.

• Any file included with the $I directive, any .OBJ file linked in by the $L directive,
or any .RES file referenced by the $R directive, is newer than the unit file.

• The interface section of a unit referenced in a uses statement has changed.

Units in DELPHI.DSL are excluded from this process.

If you were applying this option to the previous example, the command would be

DCC MYSTUFF /M

The build all (/B) option
Instead of relying on the /M option to determine what needs to be updated, you can
tell command-line compiler to update all units upon which your program depends
using the /B option. You can't use /M and /B at the same time.

If you were using this option in the previous example, the command would be

DCC MYSTUFF /B

The find error (/F) option
When a program terminates due to a run-time error, it displays an error code and
the logical segment address, (segment: offset) at which the error occurred. By
specifying that address in a /Fsegment: offset option, you can locate the statement in
the source text that caused the error, provided your program and units were
compiled with debug information enabled (via the $D compiler directive).

In order for the command-line compiler to find the run-time error with /F, you must
compile the program with all the same command-line parameters you used the first
time you compiled it.

As mentioned previously, you must compile your program and units with debug
information enabled for the command-line compiler to be able to find run-time
errors. By default, all programs and units are compiled with debug information
enabled, but if you turn it off, using a {$D-} compiler directive or a /$D- option, the
command-line compiler will not be able to locate run-time errors.

The link buffer (/L) option
The /L option disables buffering in memory when unit files are linked to create an
.EXE file. Delphi's built-in linker makes two passes. In the first pass through the unit
files, the linker marks every procedure called by other procedures. In the second

2 2 0 O b j e c t P a s c a l L a n g u a g e G u i d e

pass, it generates an .EXE file by extracting the marked procedures from the unit
files.

By default, the unit files are kept in memory between the two passes; however, if the
/L option is specified, they are read again from disk during the second pass. The
default method is faster but requires more memory; for very large programs, you
may have to specify /L to link successfully.

The quiet (/Q) option
The quiet mode option suppresses the printing of file names and line numbers
during compilation. When the command-line compiler is invoked with the quiet
mode option

DCC MYSTUFF /Q

its output is limited to the sign-on message and the usual statistics at the end of
compilation. If an error occurs, it will be reported.

Directory options
The command-line compiler supports several options that allow you to specify the
six directory lists used by the command-line compiler: DSL & CFG, EXE & DCU,
Include, Unit, Resource, and Object.

Excluding the EXE and DCU directory option, you can specify one or multiple
directories for each command-line directory option. If you specify multiple
directories, separate them with semicolons (;). For example, this command line tells
the command-line compiler to search for Include files in C:\DELPHI\INCLUDE
and D:\INC after searching the current directory:

DCC MYSTUFF /IC:\DELPHI\INCLUDE;D:\INC

If you specify multiple directives, the directory lists are concatenated. Therefore,

DCC MYSTUFF /IC:\DELPHI\INCLUDE /ID:\INC

is equivalent to the first example.

The DSL & CFG Directory (/T) option
DCC looks for two files when it is executed: DCC.CFG, the configuration file, and
DELPHI.DSL, the resident library file. The command-line compiler automatically
searches the current directory and the directory containing .EXE file. The /T option
lets you specify other directories in which to search. For example, you could say

DCC /TC:\DELPHI\BIN MYSTUFF

If you want the /T option to affect the search for the .CFG file, it must be the very
first command-line argument, as in the previous example.

A p p e n d i x A , T h e c o m m a n d - l i n e c o m p i l e r 2 2 1

The EXE & DCU directory (/E) option
This option lets you tell the command-line compiler where to put the .EXE and unit
files it creates. It takes a directory path as its argument:

DCC MYSTUFF /EC:\DELPHI\BIN

You can specify only one EXE and DCU directory.

If no such option is given, the command-line compiler creates the .EXE and unit files
in the same directories as their corresponding source files.

The include directories (/I) option
Delphi supports include files through the {$I filename} compiler directive. The /I
option lets you specify a list of directories in which to search for include files.

The unit directories (/U) option
When you compile a program that uses units, the command-line compiler first
attempts to find the units in the DELPHI.DSL file. If they cannot be found there, the
command-line compiler searches for unit files in the current directory. The /U
option lets you specify additional directories in which to search for units.

The resource directories (/R) option
DCC searches for resource files in the current directory. The /R option lets you
indicate additional directories where DCC should look for resource files.

The object files directories (/O) option
Using {$L filename} compiler directives, Delphi lets you link in .OBJ files containing
external assembly language routines, as explained in Chapter 20, "Linking assembler
code." The /O option lets you specify a list of directories in which to search for such
.OBJ files.

Debug options
The command-line compiler has two command-line options that enable you to
generate debugging information: the map file option and the debugging option.

The map file (/G) option
The /G option instructs the command-line compiler to generate a .MAP file that
shows the layout of the .EXE file. Unlike the binary format of .EXE and .DCU files, a
.MAP file is a legible text file that can be output on a printer or loaded into the
editor. The /G option must be followed by the letter S, P, or D to indicate the
desired level of information in the .MAP file. A .MAP file is divided into three
sections:

• Segment

2 2 2 O b j e c t P a s c a l L a n g u a g e G u i d e

• Publics
• Line Numbers

The /GS option outputs only the Segment section, /GP outputs the Segment and
Publics section, and /GD outputs all three sections.

For modules (program and units) compiled in the {$D+,L+} state (the default), the
Publics section shows all global variables, procedures, and functions, and the Line
Numbers section shows line numbers for all procedures and functions in the
module. In the {$D+,L-} state, only symbols defined in a unit's interface part are
listed in the Publics section. For modules compiled in the {$D-} state, there are no
entries in the Line Numbers section.

The debugging (/V) option
When you specify the /V option on the command line, the command-line compiler
appends Turbo Debugger-compatible debug information at the end of the .EXE file.
Turbo Debugger includes both source- and machine-level debugging and powerful
breakpoints including breakpoints with conditionals or expressions attached to
them.

Even though the debug information generated by /V makes the resulting .EXE file
larger, it does not affect the actual code in the .EXE file, and if it is included, the
.EXE file does not require additional memory.

The extent of debug information appended to the .EXE file depends on the setting of
the $D and $L compiler directives in each of the modules (program and units) that
make up the application. For modules compiled in the {$D+,L+} state, which is the
default, all constant, variable, type, procedure, and function symbols become known
to the debugger. In the {$D+,L-} state, only symbols defined in a unit's interface
section become known to the debugger. In the {$D-} state, no line-number records
are generated, so the debugger cannot display source lines when you debug the
application.

The DCC.CFG file
You can set up a list of options in a configuration file called DCC.CFG, which will
then be used in addition to the options entered on the command line. Each line in
configuration file corresponds to an extra command-line argument inserted before
the actual command-line arguments. Thus, by creating a configuration file, you can
change the default setting of any command-line option.

The command-line compiler lets you enter the same command-line option several
times, ignoring all but the last occurrence. This way, even though you've changed
some settings with a configuration file, you can still override them on the command
line.

When DCC starts, it looks for DCC.CFG in the current directory. If the file isn't
found there, DCC looks in the directory where DCC.EXE resides. To force DCC to
look in a specific list of directories (in addition to the current directory), specify a /T
option as the first option on the command-line.

A p p e n d i x A , T h e c o m m a n d - l i n e c o m p i l e r 2 2 3

If DCC.CFG contains a line that does not start with a slash (/) or a hyphen (-), that
line defines a default file name to compile. In that case, starting DCC with an empty
command line (or with a command line consisting of command-line options only
and no file name) will cause it to compile the default file name, instead of displaying
a syntax summary.

Here's an example DCC.CFG file, defining some default directories for include,
object, and unit files, and changing the default states of the $F and $S compiler
directives:

/IC:\DELPHI\INC;C:\DELPHI\SRC
/OC:\DELPHI\ASM
/UC:\DELPHI\UNITS
/$F+
/$S-

Now, if you type

DCC MYSTUFF

at the system prompt, DCC acts as if you had typed in the following:

DCC /IC:\DELPHI\INC;C:\DELPHI\SRC /OC:\DELPHI\ASM /UC:\DELPHI\UNITS /$F+ /$S- MYSTUFF

2 2 4 O b j e c t P a s c a l L a n g u a g e G u i d e

A p p e n d i x B , C o m p i l e r d i r e c t i v e s 2 2 5

 A p p e n d i x

B
Compiler directives

This appendix describes the compiler directives you can use to control the features
of the Delphi compiler. They are listed alphabetically. Each compiler directive is
classified as either a switch, parameter, or conditional compilation directive.
Following the list of compiler directives is a brief discussion of how to use the
conditional compilation directives. This reference section describes how to use
conditional constructs and symbols to produce different code from the same source
text.

A compiler directive is a comment with a special syntax. Delphi allows compiler
directives wherever comments are allowed. A compiler directive starts with a $ as
the first character after the opening comment delimiter, immediately followed by a
name (one or more letters) that designates the particular directive. You can include
comments after the directive and any necessary parameters.

Three types of directives are described in this appendix:

• Switch directives turn particular compiler features on or off by specifying + or -
immediately after the directive name. Switch directives are either global or local.

| Global directives affect the entire compilation and must appear before the
declaration part of the program or the unit being compiled.

| Local directives affect only the part of the compilation that extends from the
directive until the next occurrence of the same directive. They can appear
anywhere.

| Switch directives can be grouped in a single compiler directive comment by
separating them with commas with no intervening spaces. For example,

{$B+,R-,S-}

• Parameter directives. These directives specify parameters that affect the
compilation, such as file names and memory sizes.

2 2 6 O b j e c t P a s c a l L a n g u a g e G u i d e

• Conditional directives. These directives control conditional compilation of parts
of the source text, based on user-definable conditional symbols. See page 242 for
information about using conditional directives.

All directives, except switch directives, must have at least one blank between the
directive name and the parameters. Here are some examples of compiler directives:

{$B+}
{$R- Turn off range checking}
{$I TYPES.INC}
{$M 32768,4096}
{$DEFINE Debug}
{$IFDEF Debug}
{$ENDIF}

You can insert compiler directives directly into your source code. You can also
change the default directives for both the command-line compiler (DCC.EXE) and
the IDE (DELPHI.EXE). The Options|Project|Compiler dialog box contains many of
the compiler directives; any changes you make to the settings there will affect all
subsequent compilations.

When using the command-line compiler, you can specify compiler directives on the
command line (for example, DCC /$R+ MYPROG), or you can place directives in a
configuration file (see page 222). Compiler directives in the source code always
override the default values in both the command-line compiler and the IDE.

If you are working in the Delphi editor and want a quick way to see what compiler
directives are in effect, press Ctrl+O O. Delphi will insert the current settings in the
edit window at the top of your file.

Align data
Type Switch

Syntax {$A+} or {$A-}

Default {$A+}

Scope Global

Remarks

The $A directive switches between byte and word alignment of variables and typed
constants. On all 80x86 CPUs, word alignment means faster execution because
word-sized items on even addresses are accessed in one memory cycle rather than
two memory cycles for words on odd addresses.

In the {$A+} state, all variables and typed constants larger than one byte are aligned
on a machine-word boundary (an even-numbered address). If required, unused
bytes are inserted between variables to achieve word alignment. The {$A+} directive
does not affect byte-sized variables, nor does it affect fields of record structures and
elements of arrays. A field in a record will align on a word boundary only if the

A p p e n d i x B , C o m p i l e r d i r e c t i v e s 2 2 7

total size of all fields before it is even. For every element of an array to align on a
word boundary, the size of the elements must be even.

In the {$A-} state, no alignment measures are taken. Variables and typed constants
are simply placed at the next available address, regardless of their size.

Regardless of the state of the $A directive, each global var and const declaration
section always starts at a word boundary. The compiler always keeps the stack
pointer (SP) word aligned by allocating an extra unused byte in a procedure's stack
frame if required.

Boolean evaluation
Type Switch

Syntax {$B+} or {$B-}

Default {$B-}

Scope Local

Remarks

The $B directive switches between the two different models of code generation for
the and and or Boolean operators.

In the {$B+} state, the compiler generates code for complete Boolean expression
evaluation. This means that every operand of a Boolean expression built from the
and and or operators is guaranteed to be evaluated, even when the result of the
entire expression is already known.

In the {$B-} state, the compiler generates code for short-circuit Boolean expression
evaluation, which means that evaluation stops as soon as the result of the entire
expression becomes evident.

For further details, see the section "Boolean operators" in Chapter 5, "Expressions."

Code segment attribute
Type Parameter

Syntax {$C attribute attribute ...}

Default {$C MOVEABLE DEMANDLOAD DISCARDABLE}

Scope Global

Remarks

The $C directive is used to control the attributes of a code segment. Every code
segment in an application or library has a set of attributes that determine the
behavior of the code segment when it is loaded into memory. For example, you can
specify that a code segment is moveable, which means Windows can move the code

2 2 8 O b j e c t P a s c a l L a n g u a g e G u i d e

segment around in memory as needed, or you can specify that a code segment is
fixed, which means the location of the code segment in memory cannot change.

A $C directive affects only the code segment of the module (unit, program, or
library) in which it is placed. For more information, see "Code Segments" in Chapter
16. In the following table, the code-segment attribute options occur in groups of
two; each option has an opposite toggle. Here are the grouped options:

MOVEABLE The system can change location of code segment in linear
memory.

FIXED The system can't change location of code segment in linear
memory.

DEMANDLOAD Code segment loads only when it is needed.

PRELOAD Code segment loads when the program begins executing.

DISCARDABLE Code segment can be unloaded when it's no longer needed.

PERMANENT Code segment remains in memory once it is loaded.

The first option of each group is the default. You may specify multiple code segment
attributes using the $C directive. If both options of a group in a $C directive are
specified, only the last one will take effect. For example,

{$C FIXED MOVEABLE DISCARDABLE }

will make the code segment moveable, and it can be discarded when it is no longer
needed.

Debug information
Type Switch

Syntax {$D+} or {$D-}

Default {$D+}

Scope Global

Remarks

The $D directive enables or disables the generation of debug information. This
information consists of a line-number table for each procedure, which maps object-
code addresses into source text line numbers.

For units, the debug information is recorded in the unit file along with the unit's
object code. Debug information increases the size of unit file and takes up additional
room when compiling programs that use the unit, but it does not affect the size or
speed of the executable program.

A p p e n d i x B , C o m p i l e r d i r e c t i v e s 2 2 9

When a program or unit is compiled in the {$D+} state, Delphi's integrated
debugger lets you single-step and set breakpoints in that module.

The TDW Debug Info (Options|Project) and Map File (Options|Project) options
produce complete line information for a given module only if you've compiled that
module in the {$D+} state.

The $D switch is usually used in conjunction with the $L switch, which enables and
disables the generation of local symbol information for debugging.

If you want to use Turbo Debugger to debug your program, choose
Options|Project, and check the TDW Debug Info option.

DEFINE directive
Type Conditional compilation

Syntax {$DEFINE name}

Remarks

Defines a conditional symbol with the given name. The symbol is recognized for the
remainder of the compilation of the current module in which the symbol is declared,
or until it appears in an {$UNDEF name} directive. The {$DEFINE name} directive
has no effect if name is already defined.

Description
Type Parameter

Syntax {$D text}

Scope Global

Remarks

The $D directive inserts the text you specify into the module description entry in the
header of a .EXE or .DLL.Traditionally the text is a name and version number, but
you may specify any text of your choosing. For example,

{$D My Application version 12.5}

ELSE directive
Type Conditional compilation

Syntax {$ELSE}

2 3 0 O b j e c t P a s c a l L a n g u a g e G u i d e

Remarks

Switches between compiling and ignoring the source text delimited by the last
{$IFxxx} and the next {$ENDIF}.

ENDIF directive
Type Conditional compilation

Syntax {$ENDIF}

Remarks

Ends the conditional compilation initiated by the last {$IFxxx} directive.

Extended syntax
Type Switch

Syntax {$X+} or {$X-}

Default {$X+}

Scope Global

Remarks

The $X directive enables or disables Delphi's extended syntax:

• Function statements. In the {$X+} mode, function calls can be used as procedure
calls; that is, the result of a function call can be discarded. Generally, the
computations performed by a function are represented through its result, so
discarding the result makes little sense. However, in certain cases a function can
carry out multiple operations based on its parameters and some of those cases
might not produce a useful result. When that happens, the {$X+} extensions allow
the function to be treated as a procedure.

• Null-terminated strings. A {$X+} compiler directive enables Delphi's support for
null-terminated strings by activating the special rules that apply to the built-in
PChar type and zero-based character arrays. For more details about null-
terminated strings, see Chapter 15, "Using null-terminated strings."

Note The {$X+} directive does not apply to built-in functions (those defined in the System
unit).

Force Far calls
Type Switch

Syntax {$F+} or {$F-}

A p p e n d i x B , C o m p i l e r d i r e c t i v e s 2 3 1

Default {$F-}

Scope Local

Remarks

The $F directive determines which call model to use for subsequently compiled
procedures and functions. Procedures and functions compiled in the {$F+} state
always use the far call model. In the {$F-} state, Delphi automatically selects the
appropriate model: far if the procedure or function is declared in the interface
section of a unit; otherwise it is near.

The near and far call models are described in full in Chapter 17, "Control issues."

Generate 80286 Code
Type Switch

Syntax {$G+} or {$G-}

Default {$G+}

Scope Global

Remarks

The $G directive enables or disables 80286 code generation. In the {$G-} state, only
generic 8086 instructions are generated, and programs compiled in this state can run
on any 80x86 family processor. You can specify {$G-} any place within your code.

In the {$G+} state, the compiler uses the additional instructions of the 80286 to
improve code generation, but programs compiled in this state cannot run on 8088
and 8086 processors. Additional instructions used in the {$G+} state include
ENTER, LEAVE, PUSH immediate, extended IMUL, and extended SHL and SHR.

Group unit segments
Type Parameter

Syntax {$G unitname unitname ...}

Scope Global

Remarks

The $G directive lets you specify groups of units you want the linker to place in the
same segment. Grouping units in the same segment ensures that the units swap in
and out of memory at the same time. The $G directive is primarily used to group
units containing discardable code.

Each $G directive specifies a group of units. $G directives are valid only in a
program or library, and must appear after the program or library's uses clause. The

2 3 2 O b j e c t P a s c a l L a n g u a g e G u i d e

compiler reports an error if you attempt to add a unit to more than one group. In
addition to any groups created with $G, the compiler maintains a default group that
includes all units not explicitly grouped.

Code segment attributes are controlled by the $C directive. The preferred segment
size is set with $S.

The linker minimizes the number of code segments in an executable file by
combining all units that belong to the same group. Two or more units are put into
the same code segment if they belong to the same group and have the same code
segment attributes, and if the combined size does not exceed the preferred segment
size.

The linker will never put units that belong to different groups in the same code
segment.

IFDEF directive
Type Conditional compilation

Syntax {$IFDEF name}

Remarks

Compiles the source text that follows it if name is defined.

IFNDEF directive
Type Conditional compilation

Syntax {$IFNDEF name}

Remarks

Compiles the source text that follows it if name is not defined.

IFOPT directive
Type Conditional compilation

Syntax {$IFOPT switch}

Remarks

Compiles the source text that follows it if switch is currently in the specified state.
switch consists of the name of a switch option, followed by a + or a - symbol. For
example, the construct

{$IFOPT N+}
 type Real = Extended;

A p p e n d i x B , C o m p i l e r d i r e c t i v e s 2 3 3

{$ENDIF}

will compile the type declaration if the $N option is currently active.

Include file
Type Parameter

Syntax {$I filename}

Scope Local

Remarks

The $I parameter directive instructs the compiler to include the named file in the
compilation. In effect, the file is inserted in the compiled text right after the {$I
filename} directive. The default extension for filename is .PAS. If filename does not
specify a directory path, then, in addition to searching for the file in the same
directory as the current module, Delphi searches in the directories specified in the
Search path input box on the Directories/Conditionals page of the Options|Project
dialog (or in the directories specified in a /I option on the DCC command line).

There is one restriction to the use of include files: An include file can't be specified in
the middle of a statement part. In fact, all statements between the begin and end of
a statement part must exist in the same source file.

Input/output checking
Type Switch

Syntax {$I+} or {$I-}

Default {$I+}

Scope Local

Remarks

The $I switch directive enables or disables the automatic code generation that
checks the result of a call to an I/O procedure. I/O procedures are described in
Chapter 13, "Input and output." If an I/O procedure returns a nonzero I/O result
when this switch is on, an EInOutError exception is raised (or the program is
terminated if exception handling is not enabled). When this switch is off, you must
check for I/O errors by calling IOResult.

Link object file
Type Parameter

Syntax {$L filename}

2 3 4 O b j e c t P a s c a l L a n g u a g e G u i d e

Scope Local

Remarks

The $L parameter instructs the compiler to link the named file with the program or
unit being compiled. The $L directive is used to link with code written in for
subprograms declared to be external. The named file must be an Intel relocatable
object file (.OBJ file). The default extension for filename is .OBJ. If filename does not
specify a directory path, then, in addition to searching for the file in the same
directory as the current module, Delphi searches in the directories specified in the
Search path input box on the Directories/Conditionals page of the Options|Project
dialog (or in the directories specified in a /O option on the DCC command line). For
further details about linking with assembly language, see Chapter 20, "Linking
assembler code."

Local symbol information
Type Switch

Syntax {$L+} or {$L-}

Default {$L+}

Scope Global

Remarks

The $L switch directive enables or disables the generation of local symbol
information. Local symbol information consists of the names and types of all local
variables and constants in a module, that is, the symbols in the module's
implementation part and the symbols within the module's procedures and
functions.

For units, the local symbol information is recorded in the unit file along with the
unit's object code. Local symbol information increases the size of unit files and takes
up additional room when compiling programs that use the unit, but it does not
affect the size or speed of the executable program.

When a program or unit is compiled in the {$L+} state, Delphi's integrated debugger
lets you examine and modify the module's local variables. Furthermore, calls to the
module's procedures and functions can be examined via the View|Call Stack.

The Include TDW debug info and Map file options on the Linker page of the
Options|Project dialog produce local symbol information for a given module only if
that module was compiled in the {$L+} state.

The $L switch is usually used in conjunction with the $D switch, which enables and
disables the generation of line-number tables for debugging. The $L directive is
ignored if the compiler is in the {$D-} state.

A p p e n d i x B , C o m p i l e r d i r e c t i v e s 2 3 5

Memory allocation sizes
Type Parameter

Syntax {$M stacksize,heapsize}

Default {$M 16384,8192}

Scope Global

Remarks

The $M directive specifies an application or library's memory allocation parameters.
stacksize must be an integer number in the range 1,024 to 65,520 which specifies the
size of the stack segment. Heapsize specifies the size of the local heap area in the data
segment. heapsize must be an integer number in the range 0 to 65520.

The $M directive has no effect when used in a unit. Furthermore, the stacksize
parameter in a $M directive is ignored in a library (a library always uses the stack of
the applications that call it).

Numeric coprocessor
Type Switch

Syntax {$N+} or {$N-}

Default {$N+}

Scope Global

Remarks

The $N directive switches between the two different models of floating-point code
generation supported by Delphi. In the {$N-} state, code is generated to perform all
real-type calculations in software by calling run-time library routines. In the {$N+}
state, code is generated to perform all real-type calculations using the 80x87 numeric
coprocessor.

Open String Parameters
Type Switch

Syntax {$P+} or {$P-}

Default {$P+}

Scope Local

2 3 6 O b j e c t P a s c a l L a n g u a g e G u i d e

Remarks

The $P directive controls the meaning of variable parameters declared using the
string keyword. In the {$P-} state, variable parameters declared using the string
keyword are normal variable parameters, but in the {$P+} state, they are open string
parameters. Regardless of the setting of the $P directive, the OpenString identifier
can always be used to declare open string parameters. For more information about
open parameters, see Chapter 8, "Procedures and functions."

Overflow checking
Type Switch

Syntax {$Q+} or {$Q-}

Default {$Q-}

Scope Local

Remarks

The $Q directive controls the generation of overflow checking code. In the {$Q+}
state, certain integer arithmetic operations (+, -, *, Abs, Sqr, Succ, and Pred) are
checked for overflow. The code for each of these integer arithmetic operations is
followed by additional code that verifies that the result is within the supported
range. If an overflow check fails, an EIntOverflow exception is raised (or the program
is terminated if exception handling is not enabled).

The {$Q+} does not affect the Inc and Dec standard procedures. These procedures
are never checked for overflow.

The $Q switch is usually used in conjunction with the $R switch, which enables and
disables the generation of range-checking code. Enabling overflow checking slows
down your program and makes it somewhat larger, so use {$Q+} only for
debugging.

Pentium safe FDIV operations
Type: Switch

Syntax: {$U+} or {$U-}

Default: {$U+}

Scope: Local

The $U directive controls generation of floating-point code that guards against the
flawed FDIV instruction exhibited by certain early Pentium processors.

In the {$U+} state, all floating-point divisions are performed using a run-time library
routine. The first time the floating-point division routine is invoked, it checks
whether the processor's FDIV instruction works correctly, and updates the TestFDIV

A p p e n d i x B , C o m p i l e r d i r e c t i v e s 2 3 7

variable (declared in the System unit) accordingly. For subsequent floating-point
divide operations, the value stored in TestFDIV is used to determine what action to
take.

 Table B-1 TestFDIV values

Value Meaning
-1 FDIV instruction has been tested and found to be flawed.
0 FDIV instruction has not yet been tested.
1 FDIV instruction has been tested and found to be correct.

For processors that do not exhibit the FDIV flaw, {$U+} results in only a slight
performance degredation. For a flawed Pentium processor, floating-point divide
operations may take up to three times longer in the {$U+} state, but they will always
produce correct results.

In the {$U-} state, floating-point divide operations are performed using in-line FDIV
instructions. This results in optimum speed and code size, but may produce
incorrect results on flawed Pentium processors. You should use the {$U-} state only
in cases where you are certain that the code is not running on a flawed Pentium
processor.

Range checking
Type Switch

Syntax {$R+} or {$R-}

Default {$R-}

Scope Local

Remarks

The $R directive enables or disables the generation of range-checking code. In the
{$R+} state, all array and string-indexing expressions are verified as being within the
defined bounds, and all assignments to scalar and subrange variables are checked to
be within range. If a range check fails, an ERangeError exception is raised (or the
program is terminated if exception handling is not enabled).

Enabling range checking slows down your program and makes it somewhat larger,
so use the {$R+} only for debugging.

Resource file
Type Parameter

Syntax {$R Filename}

Scope Local

2 3 8 O b j e c t P a s c a l L a n g u a g e G u i d e

Remarks

The $R directive specifies the name of a resource file to be included in an
application or library. The named file must be a Windows resource file and the
default extension for filename is .RES.

When a {$R filename} directive is used in a unit, the specified filename is simply
recorded in the resulting unit file. No checks are made at that point to ensure that
the filename is correct and that it specifies an existing file.

When an application or library is linked (after compiling the program or library
source file), the resource files specified in all used units as well as in the program or
library itself are processed and, each resource in each resource file is copied to the
.EXE or .DLL being produced. During the resource processing phase, Delphi's linker
searches for .RES files in the same directory as the module containing the $R
directive, and in the directories specified in the Search path input box on the
Directories/Conditionals page of the Options|Project dialog (or in the directories
specified in a /R option on the DCC command line).

Run-time type information
Type: Switch

Syntax: {$M+} or {$M-}

Default: {$M-}

Scope: Local

The $M switch directive controls generation of run-time type information. When a
class is declared in the {$M+} state, or is derived from a class that was declared in
the {$M+} state, the compiler generates run-time type information for fields,
methods, and properties that are declared in a published section. If a class is
declared in the {$M–} state, and is not derived from a class that was declared in the
{$M+} state, published sections are not allowed in the class.

Note The TPersistent class defined in the Classes unit of the Delphi Visual Class Library
was declared in the {$M+} state, so any class derived from TPersistent is allowed to
contain published sections. The Delphi Visual Class Library uses the run-time type
information generated for published sections to access the values of a component's
properties when saving a loading form files. Furthermore, the Delphi IDE uses a
component's run-time type information to determine the list of properties to show
in the Object Inspector.

There is seldom, if ever, any need for an application to directly use the $M compiler
switch.

Segment size preference
Type Parameter

Syntax {$S segsize}

A p p e n d i x B , C o m p i l e r d i r e c t i v e s 2 3 9

Default {$S 16384}

Scope Global

Remarks

The $S parameter directive is valid only in a main program or library. The directive
specifies the preferred size of code segments for grouped units. The specified size
must be in the range 0..65,535. Units that exceed the specified size are placed in their
own code segments.

When grouping units, the linker puts units with the same code segment attributes
into the same code segment, up to the size specified. The limit also applies to groups
specified by the $G directive. Grouping of units is explained under the $G directive.

The $S directive never produces warnings or error messages. If a unit can't fit into a
code segment with other units, it automatically is placed into a separate segment.

Setting the preferred segment size to 0 guarantees that every unit goes in a separate
code segment; this was the default behavior in previous versions of the compiler.

Smart callbacks
Type Switch

Syntax {$K+} or {$K-}

Default {$K+}

Scope Global

Remarks

The $K directive controls the generation of smart callbacks for procedures and
functions that are exported by an application. When an application is compiled in
the {$K-} state, it must use the MakeProcInstance and FreeProcInstance Windows API
routines when it creates callback routines. In the default {$K+} state, the application
itself can call exported entry points, and there is no need to use MakeProcInstance
and FreeProcInstance.

For more details about smart callbacks, see "Entry and exit code" in Chapter 17.

Stack-overflow checking
Type Switch

Syntax {$S+} or {$S-}

Default {$S+}

Scope Local

2 4 0 O b j e c t P a s c a l L a n g u a g e G u i d e

Remarks

The $S directive enables or disables the generation of stack-overflow checking code.
In the {$S+} state, the compiler generates code at the beginning of each procedure or
function that checks whether there is sufficient stack space for the local variables
and other temporary storage. When there is not enough stack space, a call to a
procedure or function compiled with {$S+} an EStackFault exception to be raised (or
it causes the program to be terminated if exception handling is not enabled). In the
{$S-} state, such a call is likely to cause a system crash.

Symbol reference information
Type Switch

Syntax {$Y+} or {$Y-}

Default {$Y+}

Scope Global

Remarks

The $Y directive enables or disables generation of symbol reference information.
This information consists of tables that provide the line numbers of all declarations
of and references to symbols in a module.

For units, the symbol reference information is recorded in the .DCU file along with
the unit's object code. Symbol reference information increases the size of the .DCU
files, but it does not affect the size or speed of the executable program.

When a program or unit is compiled in the {$Y+} state, Delphi's integrated browser
can display symbol definition and reference information for that module.

The $Y switch is usually used in conjunction with the $D and $L switches, which
control generation of debug information and local symbol information. The $Y
directive has no effect unless both $D and $L are enabled.

Type-checked pointers
Type Switch

Syntax {$T+} or {$T-}

Default {$T-}

Scope Global

Remarks

The $T directive controls the types of pointer values generated by the @ operator. In
the {$T-} state, the result type of the @ operator is always an untyped pointer that is
compatible with all other pointer types. When @ is applied to a variable reference in

A p p e n d i x B , C o m p i l e r d i r e c t i v e s 2 4 1

the {$T+} state, the type of the result is ^T, where T is compatible only with other
pointers to the type of the variable.

UNDEF directive
Type Conditional compilation

Syntax {$UNDEF name}

Remarks

Undefines a previously defined conditional symbol. The symbol is forgotten for the
remainder of the compilation or until it reappears in a {$DEFINE name} directive.
The {$UNDEF name} directive has no effect if name is already undefined.

Var-string checking
Type Switch

Syntax {$V+} or {$V-}

Default {$V+}

Scope Local

Remarks

The $V directive controls type checking on strings passed as variable parameters. In
the {$V+} state, strict type checking is performed, requiring the formal and actual
parameters to be of identical string types. In the {$V-} (relaxed) state, any string type
variable is allowed as an actual parameter, even if the declared maximum length is
not the same as that of the formal parameter.

The {$V-} state essentially provides an "unsafe" version of open string parameters.
Although {$V-} is still supported, you should use open string parameters. For
additional information, see "Open string parameters" in Chapter 8.

Windows stack frames
Type Switch

Syntax {$W+} or {$W-}

Default {$W-}

Scope Local

2 4 2 O b j e c t P a s c a l L a n g u a g e G u i d e

Remarks

The $W directive controls the generation of Windows-specific procedure entry and
exit code for far procedures and functions. In the {$W+} state, special entry and exit
code is generated for far procedures and functions. Some debugging tools require
this special entry and exit code to correctly identify far call stack frames.

In the {$W-} state, no special entry and exit code is generated for far procedures and
functions. This is the recommended state for final applications.

See Chapter 17 for additional information.

Word sized enumeration types
Type Switch

Syntax {$Z+} or {$Z-}

Default {$Z-}

Scope Local

Remarks

The $Z directive controls the storage size of enumerated types. An enumerated type
declared in the the {$Z+} state is always stored as a word. An enumerated type
declared in the {$Z–} state is stored as a byte if the type has no more than 256
values; otherwise it is stored as a word. The {$Z+} state is useful for interfacing with
C and C++ libraries, which usually represent enumerated types as words.

Using conditional compilation directives
Two basic conditional compilation constructs closely resemble Pascal's if statement.
The first construct

{$IFxxx}
ƒ

{$ENDIF}

causes the source text between {$IFxxx} and {$ENDIF} to be compiled only if the
condition specified in {$IFxxx} is True. If the condition is False, the source text
between the two directives is ignored.

The second conditional compilation construct

{$IFxxx}
ƒ

{$ELSE}
ƒ

{$ENDIF}

A p p e n d i x B , C o m p i l e r d i r e c t i v e s 2 4 3

causes either the source text between {$IFxxx} and {$ELSE} or the source text
between {$ELSE} and {$ENDIF} to be compiled, depending on the condition
specified by the {$IFxxx}.

Here are some examples of conditional compilation constructs:

{$IFDEF Debug}
 Writeln('X = ', X);
{$ENDIF}

{$IFDEF CPU87}
 {$N+}
 type
 Real = Double;
{$ELSE}
 {$N-}
 type
 Single = Real;
 Double = Real;
 Extended = Real;
 Comp = Real;
{$ENDIF}

You can nest conditional compilation constructs up to 16 levels deep. For every
{$IFxxx}, the corresponding {$ENDIF} must be found within the same source file--
which means there must be an equal number of {$IFxxx}'s and {$ENDIF}'s in every
source file.

Conditional symbols
Conditional compilation is based on the evaluation of conditional symbols.
Conditional symbols are defined and undefined using the directives

{$DEFINE name}
{$UNDEF name}

You can also use the /D switch in the command-line compiler to define a symbol (or
add the symbol to the Conditional Defines input box on the
Directories/Conditionals page of the Options|Project dialog box in the IDE).

Conditional symbols are best compared to Boolean variables: They are either True
(defined) or False (undefined). The {$DEFINE} directive sets a given symbol to True,
and the {$UNDEF} directive sets it to False.

Conditional symbols follow the same rules as Pascal identifiers: They must start
with a letter, followed by any combination of letters, digits, and underscores. They
can be of any length, but only the first 63 characters are significant.

Conditional symbols and Pascal identifiers have no correlation whatsoever.
Conditional symbols cannot be referenced in the actual program and the program's
identifiers cannot be referenced in conditional directives. For example, the construct

const

2 4 4 O b j e c t P a s c a l L a n g u a g e G u i d e

 Debug = True;
begin
 {$IFDEF Debug}
 Writeln('Debug is on');
 {$ENDIF}
end;

will not compile the Writeln statement. Likewise, the construct

{$DEFINE Debug}
begin
 if Debug then
 Writeln('Debug is on');
end;

will result in an unknown identifier error in the if statement.

Delphi defines the following standard conditional symbols:

VER80 Always defined, indicating that this is version 8.0 of Delphi. Each
version has corresponding predefined symbols; for example,
version 9.0 would have VER90 defined, version 9.5 would have
VER95 defined, and so on.

WINDOWS Indicates that the operating environment is MS-Windows.

CPU86 Always defined, indicating that the CPU belongs to the 80x86
family of processors. Versions of Delphi for other CPUs will
instead define a symbolic name for that particular CPU.

CPU87 Defined if an 80x87 numeric coprocessor is present at compile
time.

Other conditional symbols can be defined before a compilation by using the
Conditional Defines input box, or the /D command-line option if you are using the
command-line compiler.

A p p e n d i x C , E r r o r M e s s a g e s 2 4 5

 A p p e n d i x

C
Error Messages

This chapter lists the possible error messages you can get from Delphi. The error
messages are grouped into two categories, compiler errors and run-time errors.

Compiler error messages
Whenever possible, the compiler will display additional diagnostic information in
the form of an identifier or a file name. For example,

Error 15: File not found (TEST.DCU)

When an error is detected, Delphi automatically loads the source file and places the
cursor at the error. The command-line compiler displays the error message and
number and places the cursor at the point in the source line where the error
occurred. Note, however, that some errors are not detected until a little later in the
source text. For example, a type mismatch in an assignment statement cannot be
detected until the entire expression after the := has been evaluated. In such cases,
look for the error to the left of or above the cursor.

1 Out of memory
This error occurs when the compiler has run out of memory.

Try these possible solutions:

• Increase the amount of available memory in Windows by closing other
Windows applications or by increasing the swap file size.

• Set the Link Buffer option to Disk on the Linker page of the Options|Project
dialog box.

• If you are using the command-line compiler, use the /L option to place the link
buffer on disk.

2 4 6 O b j e c t P a s c a l L a n g u a g e G u i d e

If none of these suggestions help, your program or unit might be too large to
compile in the amount of memory available; you might have to break it into two or
more smaller units.

2 Identifier expected
An identifier was expected at this point.

You may be trying to redeclare a reserved word or standard directive as a variable.

3 Unknown identifier
This identifier has not been declared, or it may not be visible within the current
scope.

4 Duplicate identifier
Within the current scope, the identifier you are declaring already represents a
program's name, a constant, a variable, a type, a procedure or a function.

5 Syntax error
An illegal character was found in the source text.

You may have omitted the quotes around a string constant.

6 Error in real constant
The syntax of your real-type constant is invalid. Check to make sure that the
assigned value is within the range of a real type. For more information, see Chapter
3.

Note Whole real numbers outside the maximum integer range must be followed by a
decimal point and a zero, like this:

 12345678912.0

7 Error in integer constant
The syntax of your integer-type constant is invalid. Check to make sure that the
assigned value is within the range of a integer type. For more information, see
Chapter 3.

Note Whole real numbers outside the maximum integer range must be followed by a
decimal point and a zero, like this:

 12345678912.0

8 String constant exceeds line
You have probably omitted the ending quote in a string constant or your quoted
string runs past the line limit of 127 characters. Note that string constants must be
declared on a single line.

A p p e n d i x C , E r r o r M e s s a g e s 2 4 7

10 Unexpected end of file
The most likely causes of this error message are as follows:

• Your source file ends before the final end of the main statement part. The begins
and ends are probably unbalanced.

• An Include file ends in the middle of a statement part. (Every statement part
must be entirely contained in one file.)

• You did not close a comment.

11 Line too long
The maximum source-code line length is 127 characters.

12 Type identifier expected
The identifier which you are declaring does not denote a type. For more
information, “Identifiers” on page 5.

13 Too many open files
You have exceeded the maximum number of open files. Your CONFIG.SYS file does
not include a FILES=xx entry, or the entry specifies too few files.

Increase the number of FILES or close some open files.

14 Invalid file name
The file name is invalid or specifies a nonexistent path.

15 File not found
The file could not be found in the current directory or in any of the search
directories that apply to this type of file.

16 Disk full
The disk on which you are compiling this project is out of space. You must delete
some files or use a different disk.

Note that the symbolic information used by Turbo Debugger and the Browser can
be quite large. If you are not debugging or browsing your files, you can turn these
options off to save disk space.

17 Invalid compiler directive
One of the following applies:

• The compiler directive letter is unknown.

• One of the compiler directive parameters is invalid.

2 4 8 O b j e c t P a s c a l L a n g u a g e G u i d e

• You are using a global compiler directive in the body of the source-code
module.

For more information on compiler directives, see Appendix B.

18 Too many files
There are too many files involved in the compilation of the program or unit.

Try to reduce the number of files by merging Include files, by merging unit files, or
by making the file names shorter. Alternately, you can move all the files into one
directory and make it the current directory at compile time.

19 Undefined type in pointer definition
The type was referenced in a pointer-type declaration or a class reference, but never
declared in that same block. The referenced type must be declared in the same type
block as the pointer or class reference definition. For more information on pointer
types, see page 21.

20 Variable identifier expected
The identifier does not denote a variable. For more information on identifiers, see
page 5.

21 Error in type
This symbol cannot start a type definition.

22 Structure too large
The maximum allowable size of a structured type is 65520 bytes. In addition, the
maximum array size is 65520. Multiply the size of the base type with the number of
array elements to obtains the actual size of the array. To manage larger data
structures, use TList objects or pointers.

23 Set base type out of range
The base type of a set must be a subrange between 0 and 255, or an enumerated type
with no more than 256 possible values. For more information on set-type ranges,
“Set types” on page20.

24 File components cannot be files or objects
The component type of a file type cannot be any of the following:

• an object type

• a file type

• a file of any structured type that includes a file-type component.

A p p e n d i x C , E r r o r M e s s a g e s 2 4 9

25 Invalid string length
The declared maximum length of a string must be between 1 and 255. For more
information on strings, see “String types” on page 17.

26 Type mismatch
This error occurs due to one of the following:

• Incompatible types of the variable and expression in an assignment statement.

• Incompatible types of the actual and formal parameter in a call to a procedure
or function.

• An expression type that is incompatible with the index type in array indexing.

• Incompatible operand types in an expression.

• Your typecast is incorrect.

For more information, see “Type Compatibility” on page 25.

27 Invalid subrange base type
Only ordinal types are valid base types. For a listing on the Object Pascal ordinal
types, see page 12.

28 Lower bound greater than upper bound
The declaration of a subrange type must specify a lower bound less than the upper
bound.

29 Ordinal type expected
Real types, string types, structured types, and pointer types are not allowed here.
For a listing on the Object Pascal ordinal types, see page 12.

30 Integer constant expected
Only an integer constant is allowed here. For more information on constants, see
Chapter 2.

31 Constant expected
Only a constant is allowed here. For more information on constants, see Chapter 2.

32 Integer or real constant expected
Only a numeric constant is allowed here. For more information on constants, see
Chapter 2.

2 5 0 O b j e c t P a s c a l L a n g u a g e G u i d e

33 Pointer type identifier expected
The identifier does not denote a pointer type. For more information on pointer
types, see “Pointer Types” on page 21.

34 Invalid function result type
File types are not valid function result types. For more information, see page 74.

35 Label identifier expected
The identifier does not denote a label. For more information about labels, see page 6.

36 BEGIN expected
A BEGIN was expected here, or there is an error in the block structure of the unit or
program.

37 END expected
An END was expected here, or there is an error in the block structure of the unit or
program.

38 Integer expression expected
The expression must be of an Integer type. For more information on integer types
page 12.

39 Ordinal expression expected
The expression must be of an ordinal type. For more information on ordinal types,
see page 12.

40 Boolean expression expected
The expression must be of type Boolean. For more information on Boolean
expressions, see page 45.

The compiler can also generate this error if you forget to include an operator in the
conditional expression of an if statement.

41 Operand types do not match operator
The operator cannot be applied to operands of this type; for example, 'A' div '2'.

42 Error in expression
This symbol cannot participate in an expression in the way it is written.

You may have forgotten to write an operator between two operands.

A p p e n d i x C , E r r o r M e s s a g e s 2 5 1

43 Illegal assignment
Files and untyped variables cannot be assigned values (you must typecast untyped
variables to be able to assign values to them).

A function identifier can only be assigned values within the statement part of the
function.

44 Field identifier expected
The identifier does not denote a field in the record variable. For more information
on record types, see page 19.

45 Object file too large
Delphi cannot link in .OBJ files larger than 64K.

46 Undefined external
The external procedure or function does not have a matching PUBLIC definition in
an object file.

Make sure you have specified all object files in $L filename directives, and checked
the spelling of the procedure or function identifier in the .ASM file.

47 Invalid object file record
The .OBJ file contains an invalid object record; make sure the file is an .OBJ file.

There are many reasons why the compiler might generate this error message;
however, all the reasons relate to an object file that does not conform to the Delphi
object-file requirements. For example, Delphi does not support linking 32-bit flat
memory model object files.

48 Code segment too large
The maximum code size of a program or unit is 65520 bytes.

• If you are compiling a program, move some procedures or functions into a unit.

• If you are compiling a unit, break it into two or more units.

49 Data segment too large
The maximum size of a program's data segment is 65520 bytes, including data
declared by the units in the program. Note that in Windows programs, both the
stack and the local heap "live" in the data segment.

If you need more global data than this, declare larger structures as pointers, and
allocate them dynamically using the New procedure.

2 5 2 O b j e c t P a s c a l L a n g u a g e G u i d e

Note that old model objects (as supported by Borland Pascal 7) store their virtual
method tables in the data segment. The new model classes do not. Also, PChar
string constants are stored in the data segment. Pascal string constants are not.

If you are using the old model objects, try using the new method classes declaration
to reduce the virtual methods used in your program. In addition, try moving PChar
string constants into a string table resource.

50 DO expected
The reserved word DO does not appear where it should.

51 Invalid PUBLIC definition
Here are some possible sources of this error:

• Two or more PUBLIC directives in assembly language define the same
identifier.

• The .OBJ file defines PUBLIC symbols that do not reside in the CODE segment.

52 Invalid EXTRN definition
Here are some possible sources of this error:

• The identifier was referred to through an EXTRN directive in assembly
language, but it is not declared in the unit, nor in the interface part of any of the
used units.

• The identifier denotes an absolute variable.

• The identifier denotes an inline procedure or function.

53 Too many EXTRN definitions
Delphi cannot handle .OBJ files with more than 256 EXTRN definitions per object
file.

54 OF expected
The reserved word OF does not appear where it should in the case statement.

55 INTERFACE expected
The reserved word INTERFACE does not appear where it should; the reserved
word INTERFACE is missing or declarations appear before the INTERFACE
reserved word.

56 Invalid relocatable reference
A relocatable reference is usually a pointer to a procedure or function or another
type of reference to the code segment.

A p p e n d i x C , E r r o r M e s s a g e s 2 5 3

Here are some possible sources of this error:

• The .OBJ file contains data and relocatable references in segments other than
CODE. For example, you may be attempting to declare initialized variables in
the DATA segment.

• The .OBJ file contains byte-sized references to relocatable symbols. This error
occurs if you use the HIGH and LOW operators with relocatable symbols, or if
you refer to relocatable symbols in DB directives.

• An operand refers to a relocatable symbol that was not defined in the CODE
segment or in the DATA segment.

• An operand refers to an EXTRN procedure or function with an offset; for
example:

 CALL SortProc+8

57 THEN expected
The reserved word THEN does not appear where it should.

58 TO or DOWNTO expected
The reserved word TO or DOWNTO does not appear in the for loop.

59 Undefined FORWARD
Here are some possible sources of this error:

• The procedure or function was declared in the interface part of a unit, but its
body never occurred in the implementation part.

• The procedure or function was declared forward but its definition was never
found.

61 Invalid typecast
Here are some possible sources of this error:

• In a variable typecast, the sizes of the variable reference and the destination type
differ.

• You are attempting to typecast an expression where only a variable reference is
allowed.

• For more information on variable typecasting, see page 34.

62 Division by zero
You are attempting to divide using a constant expression that evaluates to zero. The
compiler can generate this error only when you use a constant expression as the
divisor of a divide operator, and that constant expression evaluates to zero.

2 5 4 O b j e c t P a s c a l L a n g u a g e G u i d e

63 Invalid file type
The file-handling procedure does not support the given file's type.

For example, you might have made a call to Readln with a typed file or Seek with a
text file.

64 Cannot read or write variables of this type

Reading:

Read and Readln can input these variables:

• character
• integer
• real
• string

Writing:

Write and Writeln can output these variables:

• character
• integer
• real
• string
• Boolean

65 Pointer variable expected
This variable must be of a pointer type. For more information on pointer types, see
page 21.

66 String variable expected
This variable must be of a string type. For more information about string types, see
page 17.

67 String expression expected
This expression must be of a string type. For more information about string types,
see page 17.

68 Circular unit reference
Two units reference each other in their interface parts. Move the cross reference of
at least one of the units into the implementation section of that unit (rearrange your
uses clauses so that at least one of the circular references occurs in the
implementation part of the unit). Note that it is legal for two units to use each other
in their implementation parts.

A p p e n d i x C , E r r o r M e s s a g e s 2 5 5

69 Unit name mismatch
The name of the disk file does not match the name declared inside that unit. Check
the spelling of the unit name.

70 Unit version mismatch
A unit used by this project was compiled with an earlier version of the compiler.
Make sure the source file for the specified unit is on the compiler search path, then
use Compile|Build All to automatically recompile the units that have changed.

If you don't have the source file for the offending DCU unit, contact the author of
the unit for an update.

71 Internal stack overflow
The compiler's internal stack is exhausted due to too many levels of nested
statements.

You must rearrange your code to remove some levels of nesting.

For example, move the inner levels of nested statements into a separate procedure.

72 Unit file format error
The .DCU file is invalid; make sure it is a .DCU file.

The .DCU file may have been created with a previous version of Delphi. In this case,
you must recompile the corresponding .PAS file to create a new .DCU file.

For more information about units, see Chapter 11.

73 IMPLEMENTATION expected
The reserved word IMPLEMENTATION must appear between the interface part
and the actual procedure definitions.

74 Constant and case types don't match
The type of the case constant is incompatible with the case statement's selector
expression. For more information on type compatibility, see page 25.

75 Record or object variable expected
This variable must be of a record or object type. For more information, see page 17.

76 Constant out of range
You are trying to do one of the following:

• Index an array with an out-of-range constant.

• Assign an out-of-range constant to a variable.

2 5 6 O b j e c t P a s c a l L a n g u a g e G u i d e

• Pass an out-of-range constant as a parameter to a procedure or function.

77 File variable expected
This variable must be of a file type. For more information on file types, see page 21.

78 Pointer expression expected
This expression must be of a pointer type. For more information on pointer types,
page 21.

79 Integer or real expression expected
This expression must be of an integer or a real type. For more information on integer
or real types, see page 11.

80 Label not within current block
A goto statement cannot reference a label outside the current block. For more
information on goto statements, see page 56.

81 Label already defined
The label already marks a statement. You have declared a label and then are trying
to reassign the label identifier within the same block. For more information on
labels, see page 6.

82 Undefined label in preceding statement part
The label was declared and referenced in a statement part, but never defined. You
must define some action to occur when control proceeds to this label. For more
information on labels, see page 6.

83 Invalid @ argument
Valid arguments are variable references and procedure or function identifiers. For
more information on the @ operator, see page 49.

84 UNIT expected
The reserved word unit should appear in the header for the module. If you have
any other reference, such as program or library, you must replace it with unit. If
you are trying to compile this unit as a .DLL you must replace program with library
in the project file.

85 ";" expected
A semicolon does not appear where it should. The line above the highlighted line is
missing a semicolon. All Object Pascal statements are separated by a semicolon.

A p p e n d i x C , E r r o r M e s s a g e s 2 5 7

86 ":" expected
A colon does not appear where it should. The offending line is missing a colon.
When you are defining an identifier you must separate it from its type using a colon.
For more information on type declarations, see page 11.

87 "," expected
A comma does not appear where it should.

88 "(" expected
An opening parenthesis is missing from the selected line.

This error might indicate that the compiler considers the identifier to the left of the
insertion point a type identifier. In this case, the compiler is looking for an opening
parenthesis to make a typecast expression.

89 ")" expected
A closing parenthesis is missing from the selected line.

90 "=" expected
An equal sign is missing from the selected line. The equals sign is a relational
operator used to test equality.

91 ":=" expected
An assignment operator is missing from the selected line. The assignment operator
is used to assign values to variables or properties.

For more information on assignment statements, see page 55.

92 "[" or "(." expected
A left bracket is missing from the selected line.

93 "]" or ".)" expected
A right bracket is missing from the selected line.

94 "." expected
A period is missing from the selected line. This indicates that a type is being used as
a variable or that the name of the program itself overrides an important identifier
from another unit.

2 5 8 O b j e c t P a s c a l L a n g u a g e G u i d e

95 ".." expected
A subrange is missing from the declaration for a subrange type. For more
information on subrange types, see page 15.

96 Too many variables

Global

The total size of the global variables declared within a program or unit cannot
exceed 64K.

Local

The total size of the local variables declared within a procedure or function cannot
exceed 64K.

97 Invalid FOR control variable
The FOR statement control variable must be a simple variable defined in the
declaration part of the current subroutine.

98 Integer variable expected
This variable must be of an integer type. For more information on integers, see page
12.

99 File types are not allowed here
A typed constant cannot be of a file type. For more information on typed constants,
see page 35.

100 String length mismatch
The length of the string constant does not match the number of components in the
character array. For more information on string constants, see page 37.

101 Invalid ordering of fields
The fields of a record or object type constant must be written in the order of
declaration. For more information on record types see page 19.

102 String constant expected
A string constant is expected to appear in the selected statement. For more
information on string constants, see page 37.

A p p e n d i x C , E r r o r M e s s a g e s 2 5 9

103 Integer or real variable expected
This variable must be of an integer or real type. For more information on numeric
types, see page 11.

104 Ordinal variable expected
This variable must be of an ordinal type. For more information on ordinal types, see
page 12.

105 INLINE error
The < operator is not allowed in conjunction with relocatable references to variables.

Such references are always word-sized.

For more information on relocatable expressions, see page 198.

106 Character expression expected
This expression must be of a character type. For more information on character
types, see page 14.

107 Too many relocation items
The size of the relocation table in the .EXE file exceeds 64K, which is the limit
supported by the Windows executable format.

If you encounter this error, your program is simply too big for the linker to handle.
It is also probably too big for Windows to execute. Each executable segment has its
own relocation table. Too many relocations in one code segment can cause this
error.

If you use the old object model supported by Borland Pascal 7, virtual method tables
could cause this error to occur in the data segment, since the virtual method tables
are 100% relocation items. For more information on the new class model supported
by Delphi, see Chapter 9.

One solution is to split the program into a "main" part that executes two or more
"subprogram" parts.

108 Overflow in arithmetic operation
The result of the preceding arithmetic operation is not in the Longint range

 (-2147483648..2147483647)

Correct the operation or use real-type values instead of integer-type values.

This is an error that the compiler catches at compile time; the expression in question
must be a constant expression, and not an expression that contains variables that are
determined at run-time.

2 6 0 O b j e c t P a s c a l L a n g u a g e G u i d e

109 No enclosing FOR, WHILE, or REPEAT statement
The Break and Continue standard procedures cannot be used outside a for, while,
or repeat statement.

110 Debug information table overflow
This error indicates that an overflow occurred while generating Turbo Debugger
symbol information in the .EXE file.

To avoid this error, turn debug information off (using a {$D-} compiler directive) in
one or more of your units or by unchecking Debug Information on the Compiler
page of the Project Options dialog box.

112 CASE constant out of range
For integer-type case statements, the constants must be within the range -
32768..65535. For more information on case statements, see page 58.

113 Error in statement
This symbol cannot start a statement.

This error, for example, can be caused by unbalanced begin and end statements. As
an example, the following segment of code generates this error on the else
statement:

if (<expression>)
 begin
 <statement>
 <statement>
 else
 <statement>

114 Cannot call an interrupt procedure
You cannot directly call an interrupt procedure.

115 Duplicate CASE constant
The constant or range is already handled by a previous case statement entry. A case
statement is not allowed to have overlapping constants or ranges.

116 Must be in 80x87 mode to compile
This construct can only be compiled in the {$N+} state.

Operations on the 80x87 real types (Single, Double, Extended, and Comp) are not
allowed in the {$N-} state. Note that {$N+} is on by default.

A p p e n d i x C , E r r o r M e s s a g e s 2 6 1

117 Target address not found
The Search|Find Error command could not locate a statement that corresponds to
the specified address.

The unit containing the target address must have {$D+} debug information enabled
for the compiler to locate the statement.

118 Include files are not allowed here
Every statement part must be entirely contained in one file.

119 No inherited methods are accessible here
You are using the inherited keyword outside a method, or in a method of an object
type that has no ancestor. For more information on inheriting methods or
properties, see page 87.

121 Invalid qualifier
You are trying to do one of the following:

• Index a variable that is not an array.

• Specify fields in a variable that is not a record.

• Dereference a variable that is not a pointer.

For more information on qualifiers, see page 32.

122 Invalid variable reference
This construct follows the syntax of a variable reference, but it does not denote a
memory location. Some of the possible causes for this error are:

• You are trying to pass a constant parameter to a variable parameter.

• You are calling a pointer function, but you are not dereferencing the result.

• You are trying to assign a value (or values) to a portion of a property that is of
type record. When properties are of type record, you must assign values to the
entire record; you cannot assign values to individual fields of the record.
(although you can read individual field values of a record). For example, if you
have a property P that is of type TPoint, the following statement will generate
this error:

 P.X := 50;

Instead, you must assign values to all the fields of the record property:

 XX := 50;
 YY := 25;
 P := Point (XX, YY);

For more information on variable references, see page 31.

2 6 2 O b j e c t P a s c a l L a n g u a g e G u i d e

123 Too many symbols
The program or unit declares more than 64K of symbols.

If you are compiling with {$D+}, try turning it off. You can also split the unit by
moving some declaration into a separate unit.

Note This will disable debugging information from the module and will be unable to use
the debugger with that module.

124 Statement part too large
Delphi limits the size of a statement part to about 24K of compiled machine code.

If you encounter this error, move sections of the statement part into one or more
procedures.

For more information on statements, see Chapter 6.

125 Undefined class in preceding declaration
You declared a forward reference to a class, but the actual declaration of the class
does not appear in the same type block (make sure you have not inserted a const
block between the two blocks). For example,

type
 MyClass = class;

is a forward reference.

For more information on deriving classes, see Chapter 9.

126 Files must be var parameters
You are attempting to declare a file-type value parameter.

File-type parameters must be var parameters.

For more information on var parameters, see page 77.

127 Too many conditional symbols
There is not enough room to define further conditional symbols.

Try to eliminate some symbols, or shorten some of the symbolic names.

For more information on conditional symbols, see page 242.

128 Misplaced conditional directive
The compiler encountered an {$ELSE} or {$ENDIF} directive without a matching
{$IFDEF}, {$IFNDEF}, or {$IFOPT} directive.

For more information on these directives, see page 242.

A p p e n d i x C , E r r o r M e s s a g e s 2 6 3

129 ENDIF directive missing
The source file ended within a conditional compilation construct.

There must be an equal number of {$IFxxx}s and {$ENDIF} in a source file.

130 Error in initial conditional defines
The initial conditional symbols specified on the Directories/Conditionals page of the
Project Options dialog box (or in a /D directive) are invalid.

The compiler expects zero or more identifiers separated by blanks, commas, or
semicolons.

131 Header does not match previous definition
The procedure or function header specified in an interface part or FORWARD
declaration does not match this header.

132 Too many PUBLIC definitions
The .OBJ file contains more PUBLIC definitions than Delphi's linker can handle.
Attempt to reduce the number of PUBLIC definitions, for example by breaking the
.OBJ file into two or more .OBJ files.

133 Cannot evaluate this expression
You are attempting to use a non-supported feature in a constant expression or
debug expression.

For example, you might be attempting to use the Sin function in a const declaration,
or attempting to call a user-defined function in a debug expression.

For more information on constant expressions, see page 9.

134 Expression incorrectly terminated
The compiler expects either an operator or the end of the expression (a semicolon) at
this point, but found neither.

135 Invalid format specifier
You are using an invalid debugger format specifier in an expression, or else the
numeric argument of a format specifier is out of range.

136 Unit is missing from uses clause
The statement attempts to make an invalid indirect reference.

For example, you might be using an absolute variable whose base variable is not
known in the current module, or using an inline routine that references a variable
not known in the current module.

2 6 4 O b j e c t P a s c a l L a n g u a g e G u i d e

Or, you might have declared a new component type, inheriting from, for example,
MyType. MyType has propertied of types defined in a third unit. Your new
component's unit does not use that third unit. This results in the generation of this
error message on those inherited property types.

In general, if unit A uses a type defined in unit B, and unit B uses a type defined in
unit C, unit A must also use unit C to avoid indirect references.

For more information on indirect references, see page 126.

137 Structured variables are not allowed here
You are attempting to perform a non-supported operation on a structured variable.

For example, you might be trying to multiply two records.

For more information on structured variables, see page 17.

138 Cannot evaluate without System unit
Your DELPHI.DSL library file must contain the System unit for the debugger to be
able to evaluate expressions.

139 Cannot access this symbol
A program's entire set of symbols is available to the debugger (or the Browser) as
soon as you have compiled the program with symbolic debug information.

You may be trying to access a symbol that cannot be accessed until you actually run
the program.

140 Invalid floating-point operation
An operation on two real-type values produced an overflow or a division by zero.
This is a compiler error that results only from the evaluation of constant
expressions.

For more information on floating point operations, see page 44.

142 Pointer or procedural variable expected
The Assigned standard function requires the argument to be a variable of a pointer
or procedural type.

143 Invalid procedure or function reference
You are attempting to call a procedure in an expression.

A procedure or a function must be compiled in the {$F+} state, and cannot be
declared with inline if it is to be assigned to a procedure variable.

A p p e n d i x C , E r r o r M e s s a g e s 2 6 5

146 File access denied
The file could not be opened or created. The compiler may be trying to write to a
read-only file, read from a file that does not exist, or access a file that is already in
use. You cannot compile (generate) an .EXE or a .DLL while that module is
executing. Terminate the program, then recompile.

147 Object or class type expected
The identifier does not denote an object or class type.

For more information on object types, see Chapter 3.

148 Local object or class types are not allowed
Object and class types can be defined only in the outermost scope of a program or
unit.

Object-type definitions within procedures and functions are not allowed.

For more information on object types, see Chapter 3.

149 VIRTUAL expected
The keyword virtual is missing.

150 Method identifier expected
The identifier does not denote a method. A method call was expected in the selected
statement.

151 Virtual constructors are not allowed
A constructor method must be static when declared using the object model
supported by Borland Pascal 7. For more information on constructors, see page 95.

Note that this construct is of concern only when you use the object model supported
by Borland Pascal 7; virtual constructors are supported by the Delphi class model.
For more information on the Delphi class model, see Chapter 9.

152 Constructor identifier expected
This error message is generated when you make a call similar to the following:

 New(Type, Constructor);

The second parameter is not a constructor of the given object type. For more
information on constructors, see page 95.

Note that this construct is of concern only when you use the object model supported
by Borland Pascal 7. For more information on the Delphi class model, see Chapter 9.

2 6 6 O b j e c t P a s c a l L a n g u a g e G u i d e

153 Destructor identifier expected
This error message is generated when you make a call similar to the following:

 Dispose (objvar, Destructor);

The second parameter is not a destructor of the given object type. For more
information in destructors, see page 96.

154 Fail only allowed within constructors
The Fail standard procedure can be used only within constructors.

155 Invalid combination of opcode and operands
The assembler opcode does not accept this combination of operands.

Possible causes are:

• There are too many or too few operands for this assembler opcode; for example,
INC AX,BX or MOV AX.

• The number of operands is correct, but their types or order do not match the
opcode; for example, DEC 1, MOV AX,CL or MOV 1,AX.

156 Memory reference expected
The assembler operand is not a memory reference, which is required here.

You may have forgotten to put square brackets around an index register operand,
for example MOV AX,BX+SI instead of MOV AX,[BX+SI].

For more information on memory references, see page 198.

157 Cannot add or subtract relocatable symbols
The only arithmetic operation that can be performed on a relocatable symbol in an
assembler operand is addition or subtraction of a constant.

Variables, procedures, functions, and labels are relocatable symbols. Assuming that
Var is variable and Const is a constant, then the instructions MOV AX,Const+Const
and MOV AX,Var+Const are valid, but MOV AX,Var+Var is not.

158 Invalid register combination
Valid index-register combinations are

• [BX]
• [BP]
• [SI]
• [DI]
• [BX+SI]
• [BX+DI]
• [BP+SI]

A p p e n d i x C , E r r o r M e s s a g e s 2 6 7

• [BP+DI]

Other index-register combinations, such as [AX], [BP+BX], and [SI+DX], are not
allowed.

Local variables are always allocated on the stack and accessed via the BP register.
The assembler automatically adds [BP] in references to such variables, so that even
though a construct like Local[BX] (where Local is a local variable) appears valid, it is
not, since the final operand would become Local[BP+BX].

159 286/287 instructions are not enabled
This error is generated when you are using a 80286 (or greater) opcode in inline
assembly statements. Use the {$G+} compiler directive to enable 286/287 opcodes,
but be aware that the resulting code cannot be run on 8086 and 8088 based machines
(the default for this directive is on).

160 Invalid symbol reference
This symbol cannot be accessed in an assembler operand.

Possible causes are that you are attempting to:

• access a standard procedure, a standard function, or the Mem, MemW, MemL,
Port, or PortW special arrays in an assembler operand.

• access a string, floating-point, or set constant in an assembler operand.

• access an inline procedure or function in an assembler operand.

• access the @Result special symbol outside a function.

• generate a short JMP instruction that jumps to something other than a label.

161 Code generation error
The preceding statement part contains a LOOPNE, LOOPE, LOOP, or JCXZ
instruction that cannot reach its target label. These short-jump assembly instructions
can jump at the most 127 bytes (or -128 bytes). Reverse the logic of your jump
instruction to do an unconditional far jump to the target label, preceded by
conditional near jump (reverse logic) over the far jump.

162 ASM expected
The compiler expects an ASM reserved word at this location. (A procedure or
function declared as assembler must start with asm, not begin.

163 Duplicate dynamic method index
This dynamic method index has already been used by another method.

For more information on dynamic methods, see page 92.

2 6 8 O b j e c t P a s c a l L a n g u a g e G u i d e

Note that this construct is of concern only when you use the object model supported
by Borland Pascal 7, since you cannot specify an index for dynamic methods using
the class model introduced with Delphi. For more information on the Delphi class
model, see Chapter 9.

164 Duplicate resource identifier
This resource file contains a resource with a name or identifier that has already been
used by another resource.

165 Duplicate or invalid export index
The ordinal number specified in the Index cause is not between 1 and 32767, or has
already been used by another exported routine.

166 Procedure or function identifier expected
The exports clause only allows procedures and functions to be exported.

167 Cannot export this symbol
A procedure or function cannot be exported unless it was declared with the export
directive.

168 Duplicate export name
The name specified in the name clause has already been used by another exported
routine.

169 Executable file header too large
The size of the header of the .EXE file being generated exceeds the .EXE file format's
upper limit of 64K bytes.

You may be importing or exporting too many procedures and functions by name, or
you may have too many named resources.

Consider importing or exporting by ordinal numbers instead.

170 Too many segments
The executable file being generated contains more than 254 segments, which is the
upper limit of the DOS protected mode and Windows .EXE file format.

Most likely, the preferred code segment size for the executable file is too small.
Specify a larger preferred code segment size using a {$S segsize} compiler directive.

A p p e n d i x C , E r r o r M e s s a g e s 2 6 9

172 READ or WRITE clause expected
The property you are declaring must obtain its values by reading and writing to
methods or fields declared in the private part of the class declaration or are
inherited from an ancestor.

For more information on declaring properties, see page 102.

173 Cannot read a write-only property
The property you are attempting to read from is write-only. It has no value to read.

174 Cannot assign to a read-only property
The property is your assignment statement is read only. It will not accept any values
you try to assign.

175 Cannot exit a FINALLY block
The entire group of statements in a finally block must execute. It is illegal to
prematurely break out of a finally block.

For more information on finally blocks, see page 120.

176 Label and GOTO not at same nesting level
Any label which is being accessed by a goto statement must be within the same
block a the goto statement. You cannot jump into another routine.

For more information on goto statements, see page 56.

177 ON expected
To handle a raised exception within an excepts block you must preface the exception
type identifier with the on standard directive. For more information on handling
exceptions, see page 115.

178 Cannot mix class and object types
These types are incompatible. You cannot inherit one type from the other or assign
from variables of one to the other. For more information on type compatibility, see
page 25.

179 PROCEDURE or FUNCTION expected
The class method you are trying to declare requires that you follow the class
reserved word with either procedure or function. For more information on class
methods, see page 110.

2 7 0 O b j e c t P a s c a l L a n g u a g e G u i d e

180 Class type identifier expected
The instance of the exception you are trying to handle in your on clause must be a
class type. For more information on handling exceptions, see page 115.

181 Class expression expected
The exception you are trying to raise must evaluate to a class instance. You can only
raise exceptions on class instances. For more information on raising exceptions, see
page 114.

182 Instance variable not accessible here
Inside the body of a class procedure or class function, you cannot refer to any
instance data, nor can you refer to the self pointer or any fields of the class type.

183 Invalid method reference
You are trying to access a method of a class without a valid instance of that class.
You cannot call non-class methods from within a class method. To solve this
problem you must instantiate the class or use a class method. For more information
on class methods, see page 110.

184 Default property must be an array property
You have declared a property to be the default property of a class that is not of type
array or without assigning it a value. (You might have forgotten to define a value
after the default directive.

Although you can assign a default value to a property of any type, Delphi will only
accept default properties that are of type array.

For more information on specifying default properties, see page 104.

185 Class already has a default property
Each class can only have one default property. You cannot change the default if
your ancestor defines a default array property. For more information on specifying
default properties, see page 104.

186 Invalid message handler parameter list
The parameter list you are passing to the message handler does not match the list
the message handler was expecting. A message method must have one variable
parameter of any type. Any other parameters will cause this message to be
generated.

187 Method does not exist in base class
You can only override methods that exist in an ancestor class. You are trying to
override a method that does not exist in the ancestor class. To solve the problem,

A p p e n d i x C , E r r o r M e s s a g e s 2 7 1

remove override from the method declaration and recompile your module (also, be
sure you are using the correct spelling of the method you are typing to override.

For more information on overriding methods, see page 93.

188 Cannot override a static method
Static methods cannot be overridden using the override directive. A method must
be dynamic or virtual in order to be overridden. For more information on static
methods, see page 90.

189 Property does not exist in base class
You can only override properties that exist in an ancestor class. You can move an
inherited property to a higher visibility level by "redeclaring" the property name
with no type information in the descendant. For example:

 Public
 property MyProp;
 end;

Also, when you are redeclaring (promoting) a property from protected to public or
published, make sure you match the spelling of the property as it is shown the base
class.

190 Unit has no register procedure
When you are declaring a new component, you must declare and define a Register
procedure for the unit. This will tell Delphi what components to add to its
component library and which page of the Component palette the components
should appear. Note that you will only receive this message when you install the
unit into the component library.

191 Type not supported in expression lists
In an array of const constructor you can only use the following types:

• float types

• scalar types

• pointer types

• string types

For example, you cannot pass a record to the Format function which uses an array of
const for the second parameter.

For more information on type-variant open-array parameters, see page 82.

2 7 2 O b j e c t P a s c a l L a n g u a g e G u i d e

192 Property access method not found
The property you are trying to evaluate is a write only property. You cannot
evaluate a property that does not have a read method. For more information on
read methods, see page 102.

193 Expression too complex
The selected expression is too complex for the debugger's expression evaluator. Try
breaking the expression into smaller statements. For more information on
expressions, see Chapter 5.

194 Process faulted during evaluation
The expression you are evaluating in the integrated debugger caused a General
Protection Fault during its execution.

195 Exception raised during evaluation
The process which you are evaluating with the integrated debugger threw an
exception.

196 Evaluator already active
You can only have one instance of the debugger's evaluator open at any time.

197 Property access method removed by smart linker
You are trying to access or evaluate a run-time only property for a class that was not
used in the source code. If a run-time only property is not used in the source code,
the smart linker removes that property from the compiled code.

If you want to access this property, you must use it in the source code.

198 RAISE not allowed outside EXCEPT..END block
You can only reraise an exception within a except block. For more information on
reraising exceptions, see page 117.

199 Resource file format error
The given file is not a valid .RES file. Note that bitmap (.BMP) and icon (.ICO) files
cannot be linked directly into an executable. They must first be imported into a
resource file.

200 PUBLISHED not allowed in this class
If a class is declared in the {$M–} state, and is not derived from a class that was
declared in the {$M+} state, published sections are not allowed in the class. For
further details, see "Component Visibility" on page 89, and the description of the $M
compiler directive on page 181.

A p p e n d i x C , E r r o r M e s s a g e s 2 7 3

201 This field cannot be PUBLISHED
Fields defined in a published section must be of a class type. Fields of all other
types are restricted to public, protected, and private sections.

202 This property cannot be PUBLISHED
The property does not meet the requirements of a published property. For further
details, see "Published components" on page 89.

Run-time errors
Certain errors at run time cause the program to display an error message and
terminate:

 Run-time error nnn at xxxx:yyyy

where nnn is the run-time error number, and xxxx:yyyy is the run-time error
address (segment and offset).

The run-time errors are divided into four categories: File errors, 1 through 99; I/O
errors, 100 through 149; and fatal errors, 200 through 255.

File errors

1 Invalid function number.
You made a call to a nonexistent DOS function.

2 File not found.
Reported by Reset, Append, Rename, Rewrite if the filename is invalid, or Erase if the
name assigned to the file variable does not specify an existing file.

3 Path not found.
• Reported by Reset, Rewrite, Append, Rename, or Erase if the nameassigned to the

file variable is invalid or specifies a nonexistent subdirectory.

• Reported by ChDir, MkDir, or RmDir if the path is invalid or specifiesa
nonexistent subdirectory.

4 Too many open files.
Reported by Reset, Rewrite, or Append if the program has too many open files. DOS
never allows more than 15 open files per process. If you get this error with less than
15 open files, it might indicate that the CONFIG.SYS file does not include a
FILES=xx entry or that the entry specifies too few files. Increase the number to some
suitable value, such as 20.

2 7 4 O b j e c t P a s c a l L a n g u a g e G u i d e

5 File access denied.
• Reported by Reset or Append if FileMode allows writing and the name assigned to

the file variable specifies a directory or a read-only file.

• Reported by Rewrite if the directory is full or if the name assigned to the file
variable specifies a directory or an existing read-only file.

• Reported by Rename if the name assigned to the file variable specifies a directory
or if the new name specifies an existing file.

• Reported by Erase if the name assigned to the file variable specifies a directory
or a read-only file.

• Reported by MkDir if a file with the same name exists in the parent directory, if
there is no room in the parent directory, or if the path specifies a device.

• Reported by RmDir if the directory isn't empty, if the path doesn't specify a
directory, or if the path specifies the root directory.

• Reported by Read or BlockRead on a typed or untyped file if the file is not open
for reading.

• Reported by Write or BlockWrite on a typed or untyped file if the file is not open
for writing.

6 Invalid file handle.
This error is reported if an invalid file handle is passed to a DOS system call. It
should never occur; if it does, it is an indication that the file variable is somehow
trashed.

12 Invalid file access code.
Reported by Reset or Append on a typed or untyped file if the value of FileMode is
invalid.

15 Invalid drive number.
Reported by GetDir or ChDir if the drive number is invalid.

16 Cannot remove current directory.
Reported by RmDir if the path specifies the current directory.

17 Cannot rename across drives.
Reported by Rename if both names are not on the same drive.

18 No more files.
A call to FindFirst or FindNext found no files matching the specified file name and
set of attributes.

A p p e n d i x C , E r r o r M e s s a g e s 2 7 5

I/O errors
These errors cause termination if the particular statement was compiled in the {$I+}
state. In the {$I-} state, the program continues to execute, and the error is reported
by the IOResult function.

100 Disk read error.
Reported by Read on a typed file if you attempt to read past the end of the file.

101 Disk write error.
Reported by CloseFile, Write, Writeln, or Flush if the disk becomes full.

102 File not assigned.
Reported by Reset, Rewrite, Append, Rename, and Erase if the file variable has not been
assigned a name through a call to Assign.

103 File not open.
Reported by CloseFile, Read, Write, Seek, Eof, FilePos, FileSize, Flush, BlockRead, or
BlockWrite if the file is not open.

104 File not open for input.
Reported by Read, Readln, Eof, Eoln, SeekEof, or SeekEoln on a text file if the file is not
open for input.

105 File not open for output.
Reported by Write and Writeln on a text file if you fail to use the WinCrt unit.

106 Invalid numeric format.
Reported by Read or Readln if a numeric value read from a text file does not conform
to the proper numeric format.

Fatal errors
These errors always immediately terminate the program.

200 Division by zero.
The program attempted to divide a number by zero during a /, mod, or div
operation.

2 7 6 O b j e c t P a s c a l L a n g u a g e G u i d e

201 Range check error.
This error is reported by statements compiled in the {$R+} state when one of the
following situations arises:

• The index expression of an array qualifier was out of range.

• You attempted to assign an out-of-range value to a variable.

• You attempted to assign an out-of-range value as a parameter to a procedure or
function.

202 Stack OverFlow
There are too many local variables declared in a procedure or function compiled in
the {$S+} state.

Increase the size of the stack with the $M compiler directive.

The Stack Overflow error can also be caused by infinite recursion, or by an assembly
language procedure that does not maintain the stack properly.

203 Heap overflow error.
This error is reported by New or GetMem when there is not enough free space in the
heap to allocate a block of the requested size.

For a complete discussion of the heap manager, see Chapter 16.

204 Invalid pointer operation.
This error is reported by Dispose or FreeMem if the pointer is nil or points to a
location outside the heap.

205 Floating point overflow.
A floating-point operation produced a number too large for Delphi or the numeric
coprocessor (if any) to handle.

206 Floating point underflow.
A floating-point operation produced an underflow. This error is only reported if
you are using the 8087 numeric coprocessor with a control word that unmasks
underflow exceptions. By default, an underflow causes a result of zero to be
returned.

207 Invalid floating point operation.
• The real value passed to Trunc or Round could not be converted to an integer

within the Longint range (-2,147,483,648 to 2,147,483,647).

• The argument passed to the Sqrt function was negative.

• The argument passed to the Ln function was zero or negative.

A p p e n d i x C , E r r o r M e s s a g e s 2 7 7

• An 8087 stack overflow occurred. For further details on correctly programming
the 8087, see Chapter 14.

210 Call to an Abstract Function
You are trying to execute an abstract virtual method.

215 Arithmetic overflow error.
This error is reported by statements compiled in the {$Q+} state when an integer
arithmetic operation caused an overflow, such as when the result of the operation
was outside the supported range.

216 General Protection fault
This error results if you try to access memory that is not legal for your your
application to access. The operating system halts your application and tells you that
a general protection (GP) fault occurred, but your system does not crash. The
following practices cause GP faults:

• Dereferencing nil pointers

• Using an object that has not been constructed

• Loading constant values into segment registers

• Performing arithmetic operations on segment registers of selectors

• Using segment registers for temporary storage

• Writing to code segments

• Accessing memory beyond the local address space given to your application

217 Unhandled exception
An exception has occurred for which an exception handler could not be located.

219 Invalid typecast
The object given on the left hand side of an as operator is not of the class given on
the right hand side of the operator.

2 7 8 O b j e c t P a s c a l L a n g u a g e G u i d e

I n d e x 2 7 9

Index

Symbols
(pound) character, 7
@ operator, 49

with a variable, 49
with procedures and

functions, 50
@@ operator, 53
^ (pointer) symbol, 21, 22, 33
80286 code generation

compiler switch, 231
80x87

floating-point model, 16
software emulation,

selecting, 16
80x87 code option, 235

A
$A compiler directive, 184,

226
Abs function, 181
absolute

clause syntax, 30
expressions, built-in

assembler, 199
variables, 30

abstract directive, 92
abstract methods, 92
access specifiers

property definitions, 103
accessing properties, 102
actual parameters, 56
address

factor, 42
address-of (@) operator, 21,

34, 49, 52
Align Data command, 226
aligning data, 226
allocating

Windows memory, 162
ancestors

defined, 87
and operator, 45
apostrophes in character

strings, 7
Append procedure, 139, 140
arguments

command-line compiler,
215

arithmetic
operations precison rules,

13
operators, 44

array
types, 18
variables, 32

array properties, 104
default, 105

arrays, 18, 32
accessing elements, 18
indexing

multidimensional, 32
number of elements, 18
of arrays, 18
types, 166
valid index types, 18
zero-based character, 19,

37, 153, 155
array-type constant syntax,

37
asm statement, 187
.ASM files, 152
assembler

code
in Delphi, 187
linked with Delphi,

207
declaration syntax, 73

assembly language, 234
80x87 emulation and, 152
call model, 207
inline

directives, 213
statements, 211

interfacing programs
with, 208

statements
multiple, 188
syntax, 192

Assign procedure, 139, 140,
145

AssignCrt procedure, 144,
145

assignment
compatibility, 26
statement syntax, 55

assignment-compatibility

class-reference types, 109
automatic

call model selection,
overriding, 174

data segment, 160
jump sizing, built-in

assembler, 189
word alignment, 184

AutoTracking variable, 143,
145

AX register, 173, 213

B
$B compiler directive, 46,

182, 227
base type, 21
binary

arithmetic operators, 44
operands, 41
operators, 13

binary format, 221
bitwise operators, 45
blanks, defined, 3
block

defined, 65
scope, 66
syntax, 65

BlockRead procedure, 139,
142

BlockWrite procedure, 139,
142

Boolean
data type, 14, 163
expression evaluation,

182
complete, 46

operators, 14
variables, 14

Boolean evaluation
compiler switch, 227
complete, 227
short circuit, 227

Boolean expression
evaluation

short-circuit, 46
Boolean operators, 45
BP register, 178
brackets, in expressions, 50
BufEnd variable, 167

2 8 0 O b j e c t P a s c a l L a n g u a g e G u i d e

buffer
BufPtr pointer, 167
BufSize variable, 167
Build command, 219
build command-line option,

219
built-in assembler

directives, 187
expressions, 192

classes, 198
Object Pascal

expressions versus,
193

operators, 192
types, 201

instruction sizing, 189
opcodes, 189
operands, 192
procedures and functions,

203
reserved words, 192

BX register, 173
Byte data type, 12
ByteBool data type, 163

C
$C code segment attribute,

227
call model, 207
call models, 70
callbacks

smart, 71
calling

methods, 93
calling conventions, 171

constructors and
destructors, 176

calls
near and far, 173

case
sensitivity of Turbo

Pascal, 4
statement syntax, 58

Char data type, 14, 162
character

arrays, 155
pair special symbols, 4
pointer operators, 46
pointers

character arrays and,
155

indexing, 155
string literals and, 154

strings, 7
ChDir procedure, 139
CheckBreak variable, 145
CheckEOF variable, 144, 145
Chr function, 14, 181
class components

private, 90
protected, 90
public, 89
published, 89
scope, 88
visibility, 89

class domain, 87
class forward references, 88
class instances, 86
class methods, 87, 110
class of reserved words, 108
class reference types

constructors, 109
class references, 86
class reserved word, 88, 110
class type compatibility, 88
class types, 85
classes

ancestors, 87
components, 85
descendants, 87
inheritance, 87
scope, 88

class-reference types, 108
ClassType method function,

109
Close procedure, 139, 140,

145
CloseFile procedure, 146
ClrEol procedure, 144
ClrScr procedure, 144
CmdShow variable, 137
Code generation

Windows, 241
code segment, 208

attributes, 159
changing, 160

maximum size of, 159
procedures and functions

in, 207
Code segment attribute, 227
codesegs2, 159
command-line

compiler reference, 215
options, 215

/B, 219
/D, 218
debug, 221

/E, 221
/F, 219
/G, 221
/GD, 222
/GP, 222
/GS, 222
/I, 221
/L, 219
/M, 219
mode, 218
/O, 221
/Q, 220
switching directive

defaults (/$), 217
/T, 220
/U, 221
/V, 222

command-line compiler
arguments, 215
compiling and linking

with, 215
extended syntax, 217
options, 215

286 code generation,
216

align data, 216
append debug

information to EXE,
222

Boolean evaluation,
216

build all, 218, 219
build all units, 217
debug, 221
debug information,

216, 222
in EXE, 217

define conditional
symbol, 217

DOS real-mode .EXE,
217

emulation, 216
EXE & DCU directory,

221
EXE and TPU

directory, 217
find error, 219
find run-time error,

217
force far calls, 216
I/O checking, 216
include directories,

217, 221
link buffer, 218, 219

I n d e x 2 8 1

link buffer on disk, 217
list of, 216
local symbols, 216, 222
make, 219
make modified units,

217
map file, 217, 221
memory sizes, 216
numeric coprocessor,

216
object directories, 217,

221
open parameters, 216
overflow checking, 216
quiet compile, 217,

218, 220
range checking, 216
resource directories,

221
Smart callbacks, 216
stack checking, 216
TPL & CFG

directories, 217
TPL & CFG directory,

220
type-checked pointers,

216
unit directories, 217,

221
var-string checking,

216
Windows real-mode

support, 216
symbol reference

information, 217
comments, 7

built-in assembler, 188
common types of integer

types, 13
Comp data type, 16, 150, 165
comparing

character pointers, 48
packed strings, 48
pointers, 48
sets, 49
simple types, 48
strings, 48
values of real types, 151

compilation
conditional, 242

compiler
directives

$A, 226
$B, 46, 227

$C, 227
change state of, 217
conditional, 226
$D, 219, 228, 229
$DEFINE, 218, 229, 243
defined, 8
$ELSE, 229
$ENDIF, 230
$F, 24, 71, 174, 230
$G, 189, 231
$I, 233
$IFDEF, 232
$IFNDEF, 232
$IFOPT, 232
$K, 239
$L, 207, 208, 211, 233,

234
$L filename, 73, 152
$M, 30, 218, 235
$N, 16, 44, 189, 235
$P, 78, 235
parameter, 225
$R, 237
$S, 30, 137, 238, 239
switch, 225
$T, 26, 49
$UNDEF, 241, 243
$V, 241
$W, 241
$X, 230
$X, 7, 19, 22, 31, 46
$Y, 240

compiling
to .EXE file, 219

Complete Boolean Eval
option, 227

complete Boolean
evaluation, 46

compound statement syntax,
57

concatenation, 46
conditional

defines (command-line
option), 218

symbols, 243
conditional statement

syntax, 57
configuration file

DCC.CFG, 222
CONST segment, 207
constant

address expressions, 36
declaration part syntax,

65

declarations, 9
expressions, 9
parameters, 76

constants, 9, 194
array-type, 37
folding, 181
merging, 181
numeric, built-in

assembler, 194
pointer-type, 39
procedural-type, 40
record-type, 38
set-type, 39
simple-type, 9, 36
string, built-in assembler,

194
string-type, 36
structured-type, 37
typed, 35

constructor reserved word,
94

constructors, 95
calling conventions, 176
class references, 109
defined, 87

control
characters, 7, 143

defined, 3
embedding in strings,

7
string syntax diagram, 7

CPU symbols, 244
creatfile, 219
creating objects, 95
CRT window, 142

closing, 143
scrolling, 143

CSEG segment, 208
current

file position, 140
file size, 140

Cursor variable, 145
CursorTo procedure, 144

D
$D compiler directive, 219,

228
$D description, 229
/D command-line option,

218
data

alignment, 184
ports, 169

2 8 2 O b j e c t P a s c a l L a n g u a g e G u i d e

segment, 207, 208
DLL, 137
maximum size, 30

data alignment, 226
DATA segment, 207
DCC.CFG file, 220, 222

sample, 223
dead code eliminated, 184
Debug Information

command, 228
option, 228

debugging
command-line option, 222
information switch, 228
options, command-line,

221
range-checking switch,

237
stack overflow switch,

239
decimal notation, 6
default array properties, 105
default directive, 105, 106
$DEFINE compiler directive,

218, 229, 243
defining properties, 102

access specifiers, 103
storage specifiers, 106

DELPHI.DSL, 220, 221
DEMANDLOAD code

segment attribute, 160
descendants

defined, 87
Description directive, 229
designators

field, 33
method, 33

destorying objects
nil values, 97

Destroy method, 97
Destroy method versus Free

method, 97
destroying objects, 96
destructor reserved word, 94
destructors, 96

calling conventions, 176
defined, 87

devices
drivers, 145

digit syntax diagram, 3
digits, defined, 3
direct memory, 168
directives

assembler, defined, 190

built-in assembler, 187,
203, 204

compiler, defined, 8
forward, 72
inline, 73
list of Borland Pascal, 4
private, 5
public, 5
standard, 4

directories
command-line options,

220
DISCARDABLE code

segment attribute, 160
div operator, 44
DLL

CmdShow variable, 137
contrasted with a unit,

129
data segment, 137
exit code, 135
files in a, 137
global memory in a, 137
global variables in, 137
gmem_DDEShare

attribute, 137
HeapLimit variable, 138
HPrevInst variable, 137
initalization code, 135
KERNEL, 130
multi-language

programming, 129
PrefixSeg variable, 137
run-time errors in a, 138
structure of, 133
syntax, 133
unloading a, 136
using a, 130

domain
classes, 87

DoneWinCrt procedure, 143,
144

double address-of (@@)
operator, 53

Double data type, 16, 150,
164

drivers
text-file device, 145

DS register, 178
DSEG segment, 207
DSL & CFG directory

command-line option, 220
DX register, 173
dynamic

importing, 132
linking, 129
variables, 30

dynamic directive, 92
dynamic methods, 92
dynamic variables, 21, 33
dynamic versus virtual

methods, 92
dynamic-link libraries, 129.

See also DLL

E
/E command-line option,

221
editing keys

in WinCrt unit, 144
eliminate dead code, 184
$ELSE compiler directive,

229
embedding control

characters in strings, 7
empty set, 21
$ENDIF compiler directive,

230
end-of-line character, 3
entry code, 176, 203
enumerated

types, 14, 163
Eof function, 139
Eoln function, 139
Erase procedure, 139
error messages

searching, 219
ErrorAddr variable, 179
errors

range, 237
reporting, 178

examples
array type, 18
character strings, 7
constant expressions, 9,

10
control characters in

strings, 7
enumerated type, 15
record type, 19
subrange type, 15
using subrange types, 15
variant part of a record,

20
EXE & DCU directory

command-line option, 221
.EXE files

I n d e x 2 8 3

building, 185
.EXE files, creating, 219
exit

code, 203
in DLL, 136

functions, 176
procedures, 136, 137, 176,

178
ExitCode variable, 136, 179
exiting a program, 178
ExitProc variable, 136, 137,

178
exponents, 163
export directive, 134
exports clause, 134

syntax, 134
expression syntax, 41
expressions, 194, 199

built-in assembler, 192,
199

classes, 198
elements of, 196
versus Object Pascal,

193
constant, 9, 10

address, 36
order of evaluation, 182
types, built-in assembler,

200
Extended data type, 16, 150,

164
range arithmetic, 150

extended syntax, 7, 19, 22,
230

Extended Syntax option, 230
external

(reserved word), 211
declaration, 130
declarations, 234
directive, 204

in imported procedure
and functions, 130

procedures and functions,
152, 207

EXTRN directive, 208

F
$F compiler directive, 24, 71,

145, 174, 230
/F command-line option,

219
False predefined constant

identifer, 14

far
call, 173

model
in imported

procedures and
function, 130

model, forcing use of,
178

far call model, forcing use
of, 230

field
designators syntax, 33
list (of records), 19
record, 33

fields
object, 87

file. See also files
buffer, 167
handles, 166
modes, 166
types, 21

FilePos function, 139, 140
files

.ASM, 152

.OBJ, 207
functions for, 139
.MAP, 221
.OBJ, 221

linking with, 233
procedures for, 139
text, 141
typed, 166
types of, 166
untyped, 142, 166

files,, 274
FileSize function, 139, 140
Find Error command, 219
find error command-line

option, 219
finding the size of a given

string, 17
FIXED code segment

attribute, 159
fixed part of records, 19
floating-point

calculations, type Real
and, 150

numbers, 16, 149
numeric coprocessor

(80x87), 16
parameters, 172
software, 16
types, 150

floating-point,, 276

Flush function, 146
Flush procedure, 139
for statement syntax, 61
Force Far Calls

command, 231
compiler directive, 230

formal
parameter list syntax, 75
parameters, 50, 56

forward
declarations, 72
directive, 72

forward references, 88
Free method, 97
Free method versus Destroy

method, 97
function

calls, 50
extended syntax and,

50
syntax, 50

declarations
assembler, 72
external, 72

headings, 74
results, 173
syntax, 74

functions, 69, 203. See also
procedures and

calls, 171
discarding results, 230
entry/exit code, built-in

assembler, 203
extended syntax, 230
far, 174
near, 174
nested, 174
parameters, built-in

assembler, 203
private, 125
SizeOf, 79
stack frame for, built-in

assembler, 203
standard

and constant
expressions, 10

G
$G compiler directive, 189,

231
/G command-line option,

221

2 8 4 O b j e c t P a s c a l L a n g u a g e G u i d e

/GD command-line option,
222

GetDir procedure, 139
GetMem procedure, 33
global

heap in Windows, 161
memory in a DLL, 137
variables in a DLL, 137

gmem_DDEShare attribute,
137, 138

gmem_Moveable attribute,
138

goto statement syntax, 56
GotoXY procedure, 144
/GP command-line option,

222
Group unit segments

compiler directive, 231

H
Halt procedure, 178
handles

file, 166
heap

management
Windows, 161

fragmenting, 161
management, sizes, 218
manager

Windows, 161
allocating memory

blocks, 162
Windows global, 161
Windows local, 161

changing size of, 161
size of, 161

heap management, sizes, 235
HeapAllocFlags variable,

138, 162
HeapBlock variable, 162
HeapLimit variable, 162
heapmanwin, 161
hex digits, 3
hexadecimal

constants, 6
numbers, 6

Hi function, 181
high bounds of index type of

an array, 18
High function, 12, 18, 79
highest value in a range, 12
HInstance variable, 137
host type, 15

I
$I compiler directive, 140,

233
I/O, 139

checking, 233
command, 233

devices, 145
error-checking, 140, 233

/I command-line option, 221
identifiers

as labels, 7
defined, 5
examples, 5
how identified in

manuals, 5
length of, 5
qualified, 5
restrictions on naming, 5
scope of, 11

if statement syntax, 57
$IFDEF compiler directive,

232
$IFNDEF compiler directive,

232
$IFOPT compiler directive,

232
immediate values, built-in

assembler, 198
implementation part

of a unit, 125, 174
syntax, 125

import units, 131
importing procedures and

functions
dynamically, 132
statically, 132
with import unit, 131

in operator, 47, 49
InactiveTitle variable, 145
Include directories

command-line option, 221,
233

include files, 221, 233
including resources, 237
index

clause, 130, 135
syntax, 32
types valid in arrays, 18

index directive, 105
index parameter list

array properties, 104
index specifiers

property definitions, 105

indexed properties, 104
indexes in arrays, 18
indexing character pointers,

155
indirect unit references, 126
infinite loop. See loop,

infinite
inherited reserved word, 88,

94
initialization

code in DLL, 135
part of a unit, 125

initialized variables, 35
in assembler, 207

InitWinCrt procedure, 143,
144

inline
directive, 73
directives, 213
statements, 211

InOut function, 146
Input text-file variable, 141

and WinCrt unit, 142
in WinCrt unit, 141

instances, 86
instruction opcodes, built-in

assembler, 189
Integer data type, 12, 162
integer types, 14
interface part of a unit, 124,

174
interfacing=page, 208
internal data formats, 162
invalid

built-in assembler, 196
IOResult function, 139, 140

J
jump sizing, automatic,

built-in assembler, 189

K
$K compiler directive, 239
KERNEL dynamic-link

library, 130
KeyPressed function, 144

L
$L compiler directive, 207,

208, 211, 233, 234
$L filename compiler

directive, 73, 152

I n d e x 2 8 5

/L command-line option,
219

label
declaration part syntax,

65
syntax, 6

labels
built-in assembler, 188
defined, 6

left
brace special symbol, 4
bracket special symbol, 4

Length function, 181
length of

a string-type value, 17
character strings, 7, 165
identifiers, 5
program lines, 8
record, 167

letters, defined, 3
libraries

dynamic-link, 129
library header, 133
line

input editing keys, 144
lines, maximum length of, 8
Link Buffer

option, 219
linking

buffer option, 219
dynamically, 129
object files, 233
smart, 185
statically, 129

Lo function, 181
local

labels, 189
local symbol information

switch, 234
Local Symbols

command, 234
option, 234

logical
operators, 45

LongBool data type, 14, 163
Longint data type, 12
loop, infinite. See infinite

loop
low bounds of index type of

an array, finding, 18
Low function, 12, 18, 79
lowest value in a range,

finding, 12

M
$M compiler directive, 30,

161, 218, 235
.MODEL directive, 208
/M command-line option,

219
machine code in program,

211
Make command, 219
make command-line option,

219
map file command-line

option, 221
.MAP files, 221
Mem array, 168
MemL array, 168
memory

allocation, 218
compiler directive, 235

model, 208
Object Pascal and, 159
references, built-in

assembler, 198
size, 235

MemW array, 168
metaclasses, 108
method activation, 93
method designator, 93
method identifiers

qualified, 94
methods

abstract, 92
assembly language, 211
calling, 93
class, 87, 110
constructors, 87
defined, 87
designators, 33
destructors, 87
dynamic, 92
external, 211
implementation, 93
overriding, 91
scope, 94
static, 90
virtual, 91
virtual versus dynamic,

92
MkDir procedure, 139
mod operator, 45
modular programming, 124
MOVEABLE code segment

attribute, 159

multi-language
programming and DLLs,
129

N
$N compiler directive, 44
$N compiler directive, 16,

189, 235
name clause, 130, 135
near

call, 173
nested procedures and

functions, 24, 174
nesting include files, 233
New procedure, 21, 33
nil (reserved word), 21, 34
nil values

destroying objects, 97
nodefault directive, 106
not operator, 45
NULL Character, 153
null strings, 7, 17
null-terminated strings, 19

defined, 153
NULL Character, 153
pointers and, 154
standard procedures and,

157
number

constants, 6
syntax, 6

numbers
counting, 6, 162
hexadecimal, 6
integer, 6
real, 6

numeric
constants, built-in

assembler, 194
coprocessor

emulating, assembly
language and, 152

evaluation stack, 152
numeric coprocessor

compiler switch, 235

O
.OBJ files, 207
/O command-line option,

221
.OBJ files, 221

linking with, 233
object

2 8 6 O b j e c t P a s c a l L a n g u a g e G u i d e

component designators,
33

directories, compiler
directive, 233

files, 207
files, linking with, 233

object directories command-
line option, 221

object reference, 86
object types. See also objects
objects

creating, 95
defined, 86
destroying, 96
fields, 87

designators, 33
files in $L directive, 208
methods, 87
referencing, 86
scope, 67

Odd function, 181
opcomp, 181
Open function, 146
open parameters, 76, 78

array, 19, 76, 79
how passed, 172
string, 17, 78

open string parameters
compiler switch, 235

OpenString identifier, 17
operands, 41, 192

built-in assembler, 192
operators

@ (address-of), 21, 34, 49,
52

@@ (double address-of),
53

and, 45
arithmetic, 44
binary arithmetic, 44
bitwise, 45
Boolean, 45
character-pointer, 46
div, 44
logical, 45
mod, 45
not, 45
or, 45
precedence of, 41, 44

built-in assembler, 201
relational, 47
set, 47
shl, 45
shr, 45

string, 46
structure member

selector, 198
types of, 44
unary arithmetic, 44
xor, 45

or operator, 45
Ord function, 12, 14, 15, 181
order of evaluation, 183
ordering between two string-

type values, 17
ordinal

types
predefined, 12
user-defined, 12

ordinality
defined, 12
enumerated constant, 15
finding enumerated

type's value, 15
returning, 12

Char values, 14
Origin variable, 145
Output text-file

in WinCrt unit, 141
Output text-file variable, 141

and WinCrt unit, 142
overflow checking, 236
override directive, 91
overriding methods, 91
overriding properties, 107

P
$P compiler directive, 78,

235
packed

reserved word, 17
string type, 18
strings, comparing, 48

parameters
actual, 56
constant, 76
floating-point, 172
formal, 56
open, 78

array, 79
string, 78

passing, 56
types, 75
untyped, 77
value, 76, 172
variable, 77
virtual method, 176

passing parameters
by reference, 171
by value, 171

passing parmeters, 171
passing string variables of

varying sizes, 17
PChar data type, 22
PERMANENT code segment

attribute, 160
pointer (^) symbol, 21, 22, 33
Pointer data type, 22
pointers

comparing, 48
types, 21, 165
values, 33
variables, 33

pointer-type constants, 39
Port array, 169
ports, accessing, 169
PortW array, 169
pound (#) character, 7
precedence of operators, 41,

44
precision

of real-type values, 16
rules of arithmetic, 13

Pred function, 12, 181
predecessor of a value,

returning, 12
PrefixSeg variable, 137
PRELOAD code segment

attribute, 160
private

directive, 5
procedures and functions,

125
private sections

classes, 90
PROC directive, 208
procedural

types
type compatibility of,

24
variable typecasts, 35

procedural-type constants,
40

procedure
declaration syntax, 69
declarations

assembler, 72
external, 72
forward, 72
inline, 73

headings, 70

I n d e x 2 8 7

statements, 56
procedure and function

declaration part, 66
procedures, 69. See also

procedures and
entry/exit code, built-in

assembler, 203
exit, 137
external, 152
far, 174
near, 174
nested, 174
parameters, built-in

assembler, 203
stack frame, built-in

assembler, 203
procedures and functions.

See also procedures;
functions

importing, 130
nested, 24
written in assembler, 207

call model, 207
program

comments, 7
heading, 123
lines, maximum length

of, 8
parameters, 123
syntax, 123
termination, 178

programs
rebuilding, 219

properties, 101
access, 102
array, 104
defined, 87
definitions, 102

index specifiers, 105
overrides, 107
storage specifiers, 106

overriding, 107
property override, 107
protected sections

classes, 90
Ptr function, 21, 33, 181
public

directive, 5
procedures and functions,

124
PUBLIC directives, 207
public sections

classes, 89
published sections

classes, 89

Q
/Q command-line option,

220
qualified

identifiers, 5
method

identifiers, 33, 50
qualified method identifer,

94
qualifier syntax, 32
quiet mode command-line

option, 220

R
$R compiler directive, 237
$R filename directive, 237
range

checking, 156
compile-time, 184

finding higest value, 12
finding lowest value, 12
of real-type values, 16

range checking, 217
command, 237
compiler switch, 237
option, 237

read directive, 102
Read procedure

for values not of type
Char, 141

text files, 139, 140
ReadBuf function, 144
ReadKey function, 144
Readln procedure, 139
real

data types, 16
numbers, 16, 149, 163

Real data type, 16
real-type operations

80x87 floating type, 16
software floating point,

16
record

scope, 67
types, 19

records, 19, 33, 38, 166
fields, 33
variant part, 19

record-type constant syntax,
38

recursive loop. See recursive
loop

redeclaration of variables, 29
references

class, 86
registers

and inline statements, 212
AX, 173, 213
BP, 178
built-in assembler, 195,

198
BX, 173
DS, 178
DX, 173
SP, 178
SS, 178
use, built-in assembler,

188
using, 173, 178, 188

register-saving conventions,
178

regs, 195
relaxed string parameter

checking, 241
relocation expressions, built-

in assembler, 199
Rename procedure, 139
repeat statement syntax, 59
repetitive statement syntax,

59
reserved words, 4

built-in assembler, 192
defined, 4
external, 211
how identified in

manuals, 4
list of, 4

Reset procedure, 139, 140
resident option in exports

clause, 135
Resource directories

command-line option, 221
resource file, 237
resources

including, 237
RET instruction, built-in

assembler, 189
RETF instruction, built-in

assembler, 189
RETN instruction, built-in

assembler, 189
return character, defined, 3
returning

Char values, 14

2 8 8 O b j e c t P a s c a l L a n g u a g e G u i d e

the ordinality of a value,
12

the predecessor of a
value, 12

the successor of a value,
12

Rewrite procedure, 139, 140
right

brace special symbol, 4
bracket special symbol, 4

RmDir procedure, 139
Round function, 181
rules

governing boolean
variables, 14

run-time
errors, 178

in a DLL, 138
run-time errors

Find Error command and,
219

finding, 219
run-time type information,

89

S
$S compiler directive, 30,

137, 238, 239
scale factor syntax diagram,

6
scope

block, 66
class, 88
object, 67
record, 67
rules of, 66
type identifiers, 11
unit, 67
within methods, 94

ScreenSize variable, 143, 145
ScrollTo procedure, 144
Seek procedure, 139, 140
SeekEof function, 139
SeekEoln function, 140
segment

attributes, 159
sub-allocator, 161

Segment size compiler
directive, 238

segments, 207
Self identifer, 87
Self identifier, 110
Self parameter, 176

separating tokens, 3
separators, defined, 3
set

constructors
syntax, 50

membership
testing, 49

operators, 47
types, 20, 165

set constructors, 42
sets. See also set

comparing, 49
small, 183

SetTextBuf procedure, 140
set-type constants, 39
Shift instructions faster than

multiply or divide, 184
shl operator, 45
short-circuit Boolean

evaluation, 46, 182, 227
Shortint data type, 12
shr operator, 45
signed number syntax

diagram, 6
significand, 163
simple

expression syntax, 43
statement syntax, 55
types

comparing, 48
simple-type constants, 36
single character special

symbols, 4
Single data type, 16, 150, 164
size

of a given string, finding,
17

of structured types,
maximum, 17

SizeOf function, 79
small sets, 183
smart callbacks, 71, 239
smart linking, 185
software

floating-point
model, 16
restrictions, 16

source debugging compiler
switch, 228

SP register, 178
space characters, 3
special symbols

built-in assembler, 196
character pairs listed, 4

single characters listed, 4
SS register, 178
stack, 161

80x87, 152
changing size of, 161
checking, 137
checking switch directive,

239
frame, built-in assembler

use of, 203
overflow, 30

switch directive, 239
passing parameters and,

171
segment, 30

DLLs and, 138
size, 235

Stack Checking
command, 239
option, 239

standard, 139
directives, 4
procedure or function

used as a procedural
value, 24

statement part syntax, 66
statements, 55

assignment, 55
case, 58
compound, 57
conditional, 57
for, 61
goto, 56
if, 57
procedure, 56
repeat, 59
repetitive, 59
simple, 55
structured, 57
while, 60
with, 62

static
data area, 161
importing, 132
linking, 129

static methods, 90
storage specifiers, 106
stored directive, 106
storing

null-terminated strings,
19

strict string parameter
checking, 241

string. See also strings

I n d e x 2 8 9

constants, built-in
assembler, 194

literals, assigning to
PChar, 154

operator, 46
type

default size, 17
defined, 17
ordering between two

values, 17
packed, 19

typed constants, 36
variables, 32

String Var Checking
command, 241
option, 241

string variables
passing, 17

strings. See also string
character, 7

length of, 7
comparing, 48
concatenating, 46
embedding control

characters in, 7
length byte, 165
maximum length, 165
null, 7, 17
null-terminated, 19
relaxed parameter

checking of, 241
strict parameter checking

of, 241
types, 165

Strings unit, 153
structure member selector

operator, 198
structured

statement syntax, 57
structured types, 17
structured-type constants, 37
subrange type, 15
Succ function, 12, 181
successor of a value,

returning, 12
Swap function, 181
switch compiler directives,

225
symbol reference compiler

switch, 240
symbols, 3, 196

built-in assembler, 196
conditional, 243
CPU, 244

invalid, built-in
assembler, 196

list of special, 4
local information, 234
reserved, built-in

assembler, 195
scope access, built-in

assembler, 198
special, built-in

assembler, 196
syntax

extended, 230
System unit, 123

T
$T compiler directive, 26, 49
/T command-line option,

220
tag field, 20
task header, 160
TClass type, 111
term syntax, 43
terminating, 178
testing

set membership, 49
text

files, 141
devices

drivers, 145
Text type, 141
TObject class, 88

Destroy method, 97
Free method, 97

TObject type, 111
tokens, 3

categories of, 3
defined, 3
separating, 3

TrackCursor procedure, 144
trapping I/O errors, 233
True predefined constant

identifier, 14
Trunc function, 181
Truncate procedure, 140
TTextRec records, 145, 166
Turbo Assembler, 208

80x87 emulation and, 152
type. See also types

declaration, 11
declaration part syntax,

66
identifier, 11

type checking

strings and, 241
type checking, built in

assembler, 200
typecasting integer-type

values, 14
typecasts, value, 34, 51
typed

constant
syntax, 35

files, 166
types

array, 18, 166
boolean, 14, 163
Byte, 12
ByteBool, 163
Char, 14, 162
class, 85
class reference, 108
Comp, 12, 150
compatibility, 24, 25
declaration part, 27
Double, 12, 150
enumerated, 14, 163
Extended, 12, 150
file, 21
floating-point, 16, 150,

163
Comp, 165
comparing values of,

151
Double, 164
Extended, 164
Single, 164

host, 15
identical, 24
identity, 25
Integer, 12, 162

converting through
typecasting, 14

format of, 13
range of, 13

LongBool, 14, 163
Longint, 12
major classes, 11
ordinal

characteristics of, 12
predefined, 12
user-defined, 12

packed string, 19
PChar, 22
Pointer, 21, 22, 165
procedural, 52
Real, 12, 16
real numbers, 163

2 9 0 O b j e c t P a s c a l L a n g u a g e G u i d e

record, 19, 166
set, 20, 165
Shortint, 12
Single, 12, 150
string, 17, 165
subrange, 15
Text, 141
Word, 12
WordBool, 14, 163

U
/U command-line option,

221
unary

arithmetic operators, 44
operands, 41

$UNDEF compiler directive,
241, 243

Unit Directories
option, 221

Unit segment grouping
compiler directive, 231

unit syntax, 124
units

heading, 124
identifiers, 5
implementation part, 125
import, 131
indirect references, 126
initialization part, 125
interface part, 124
scope of, 67
Strings, 153
unit directories option,

221
uses clause, 123
version number, 126
WinCrt, 142

unsigned
constant syntax, 42
integer syntax diagram, 6
number syntax diagram,

6
real syntax diagram, 6

untyped
files, 142, 166
parameters, 77

uses clause, 123

V
$V compiler directive, 241
/V command-line option,

222

value
parameters, 76, 172
typecast syntax, 51

var
declaration section, 185
parameters, 77, 171

built-in assembler and,
197

string checking
compiler switch, 241

variable. See also variables
declaration part syntax,

66
declaration syntax, 29
parameters, 77
reference

qualifiers, 31
syntax, 31

typecasts, 34
and procedural types,

35
syntax, 34

variables
absolute, 30
array, 32
declarations, 29
dynamic, 21, 33
global, 30
initialized in assembler,

207
initializing, 35
local, 30
parameters, 171
pointer, 33
record, 33
references, 31
string, 32

variant part of records, 19
VER80 symbol, 244
virtual

method
parameter, 176

virtual directive, 91
virtual methods, 91
virtual versus dyanmic

methods, 92
visibility of class

components, 89

W
$W compiler directive, 241
WEP exported function, 136

wep_Free_DLL value for
ExitCode, 136

wep_System_Exit value for
ExitCode, 136

WhereX function, 144
WhereY function, 144
while statement syntax, 60
wincrt, 142
WinCrt unit, 141, 142

editing keys in, 144
using the, 142
variables in, 144

windows stack frames, 241
Windows symbols, 244
WindowSize variable, 145
WindowTitle variable, 145
WinOrg variable, 144
with statement syntax, 62
with statements, 88, 93
word alignment, automatic,

184
Word data type, 12
WordBool data type, 14, 163
write directive, 102
Write procedure, 140

for values not of type
Char, 141

WriteBuf procedure, 144
WriteChar procedure, 144
Writeln procedure, 140

X
$X compiler directive, 7, 19,

22, 31, 46, 230
xor operator, 45

Y
$Y compiler directive, 240

Z
zero-based character arrays,

37, 153, 155

I n d e x 2 9 1

Object Pascal Language Guide

Delphi
Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

VERSION 1.0

Borland may have patents and/or pending patent applications covering subject matter in this document. The furnishing of
this document does not give you any license to these patents.

Copyright © 1995 Borland International. All rights reserved. All Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are trademarks or registered trademarks of their respective
holders.

Printed in the U.S.A.

1E0R395
9596979899-9 8 7 6 5 4 3 2 1
W1

C o n t e n t s i

Contents
Introduction 1
What’s in this manual? 1
Syntax Diagrams .. 1

Chapter 1
Tokens 3
Special symbols .. 3
Reserved words and standard directives 4
Identifiers.. 5
Numbers ... 6
Labels .. 6
Character strings .. 7
Comments... 7
Program lines ... 8

Chapter 2
Constants 9

Chapter 3
Types 11
Simple types ... 11

Ordinal types ... 12
Integer types 12
Boolean types 14
Char type 14
Enumerated types 14
Subrange types 15

Real types ... 16
80x87 floating point 16
Software floating point 16

String types... 17
Structured types... 17

Array types .. 18
Record types .. 19
Set types ... 20
File types .. 21

Pointer types... 21
Type Pointer... 22
Type PChar .. 22

Procedural types .. 22
Global procedure pointers 22
Method pointers 23
Procedural values 23

Procedural type compatibility.................24
Identical and compatible types....................24

Type identity...25
Type compatibility25
Assignment compatibility........................26

The type declaration part27

Chapter 4
Variables and typed constants 29
Variable declarations29

The data segment30
The stack segment30
Absolute variables....................................30
Variable references...................................31
Qualifiers...32

Arrays, strings, and indexes 32
Records and field designators 33
Object component designators 33
Pointers and dynamic variables 33

Variable typecasts34
Typed constants ..35

Simple-type constants36
String-type constants37
Structured-type constants........................37

Array-type constants 37
Record-type constants 38
Set-type constants 39

Pointer-type constants39
Procedural-type constants40

Chapter 5
Expressions 41
Expression syntax ...41
Operators...44

Arithmetic operators................................44
Logical operators......................................45

Boolean operators 45
String operator..46
Character-pointer operators46
Set operators ...47
Relational operators47

Comparing simple types 48

i i O b j e c t P a s c a l L a n g u a g e D e f i n i t i o n

Comparing strings 48
Comparing packed strings 48
Comparing pointers and references 48
Comparing character pointers 48
Comparing sets 49
Testing set membership 49

Class operators .. 49
The @ operator... 49

@ with a variable 49
@ with a procedure, function, or

method 50
Function calls.. 50
Set constructors .. 50
Value typecasts... 51
Procedural types in expressions 52

Chapter 6
Statements 55
Simple statements .. 55

Assignment statements 55
Procedure statements.............................. 56
Goto statements 56

Structured statements.................................. 57
Compound statements 57
Conditional statements 57

If statements 57
Case statements 58

Repetitive statements 59
Repeat statements 60
While statements 60
For statements 61

With statements 62

Chapter 7
Blocks, locality, and scope 65
Blocks .. 65
Rules of scope... 66

Block scope... 66
Record scope.. 67
Class scope ... 67
Unit scope .. 67

Chapter 8
Procedures and functions 69
Procedure declarations 69

Near and far declarations 70

Export declarations71
cdecl declarations.....................................71
Forward declarations...............................72
External declarations72
Assembler declarations............................73
Inline declarations74

Function declarations74
Parameters...75

Value parameters76
Constant parameters................................76
Variable parameters77
Untyped parameters77
Open parameters......................................78

Open-string parameters 78
Open-array parameters 79

Open-array constructors81
Type variant open-array parameters81

Chapter 9
Class types 85
Instances and references...............................86
Class components ...87

Fields ...87
Methods ..87
Properties..87

Inheritance...87
Components and scope88
Forward references.......................................88
Class type compatibility rules......................88
Component visibility89

Public components89
Published components.............................89
Protected components90
Private components..................................90

Static methods...90
Virtual methods ..91
Dynamic methods...92
Abstract methods..92
Method activations93
Method implementations93
Constructors and destructors94

Constructors ...95
Destructors ...96

Class operators..98
The is operator..98
The as operator...98

Message handling ...99

C o n t e n t s i i i

Message handler declarations 99
Message handler implementations 99
Message dispatching 100

Properties.. 101
Property definitions............................... 102
Property access 102
Access specifiers 103
Array properties 104
Index specifiers 105
Storage specifiers 106
Property overrides................................. 107

Class-reference types 108
Constructors and class references 109
Class methods .. 110
The TObject and TClass types................... 111

Chapter 10
Exceptions 113
Using exception handling.......................... 113
Exception declarations............................... 114
The raise statement 114
The try...except statement 115

Re-raising exceptions 117
Nested exceptions.................................. 118

The try...finally statement.......................... 119
Exit, Break, and Continue procedures 120
Predefined exceptions................................ 120
Exception handling support routines....... 122

Chapter 11
Programs and units 123
Program syntax .. 123

The program heading............................ 123
The uses clause 123

Unit syntax ... 124
The unit heading.................................... 124
The interface part................................... 124
The implementation part 125
The initialization part............................ 125
Indirect unit references 126

Circular unit references 127

Chapter 12
Dynamic-link libraries 129
What is a DLL?... 129
Using DLLs... 130

Import units ... 131

Static and dynamic imports...................132
Writing DLLs ..133

The export procedure directive.............134
The exports clause..................................135
Library initialization code135

Library programming notes.......................137
Global variables in a DLL......................137
Global memory and files in a DLL........137
DLLs and the System unit137
Run-time errors in DLLs........................138
DLLs and stack segments138

Chapter 13
Input and output 139
File input and output..................................140

Text files..141
Untyped files ..142

Input and output with the WinCrt unit142
Using the WinCrt unit............................142

Special characters 143
Line input 144

WinCrt procedures and functions144
WinCrt unit variables.............................144

Text-file device drivers...............................145
The Open function 146
The InOut function 146
The Flush function 146
The Close function 146

Chapter 14
Using the 80x87 149
The 80x87 data types150
Extended range arithmetic.........................150
Comparing reals..151
The 80x87 evaluation stack152
Detecting the 80x87.....................................152
Emulation in assembly language...............152
Exception statements..................................152

Chapter 15
Using null-terminated strings 153
What is a null-terminated string?..............153
Using null-terminated strings....................153

Character pointers and string literals ...154
Character pointers and character arrays155
Character pointer indexing....................155

i v O b j e c t P a s c a l L a n g u a g e D e f i n i t i o n

Null-terminated strings and standard
procedures ... 157

Chapter 16
Memory issues 159
Windows memory management............... 159

Code segments....................................... 159
Segment attributes 159

MOVEABLE or FIXED................. 159
PRELOAD or DEMANDLOAD.. 160
DISCARDABLE or PERMANENT160

Changing attributes 160
The automatic data segment................. 160
The heap manager 161

Internal data formats 162
Integer types .. 162
Char types .. 162
Boolean types... 163
Enumerated types.................................. 163
Floating-point types 163

The Real type 163
The Single type 164
The Double type 164
The Extended type 164
The Comp type 165

Pointer types .. 165
String types .. 165
Set types ... 165
Array types .. 166
Record types .. 166
File types .. 166
Procedural types.................................... 167
Class types ... 167
Class reference types............................. 168

Direct memory access................................ 168
Direct port access 169

Chapter 17
Control issues 171
Calling conventions 171

Variable parameters 171
Value and constant parameters 172
Open parameters 172
Function results 173
NEAR and FAR calls 173
Nested procedures and functions 174

Method calling conventions175
Constructors and destructors................176
Entry and exit code176
Register-saving conventions..................178

Exit procedures ...178

Chapter 18
Optimizing your code 181
Constant folding ...181
Constant merging181
Short-circuit evaluation..............................182
Constant parameters182
Redundant pointer-load elimination.........182
Constant set inlining...................................183
Small sets ...183
Order of evaluation183
Range checking ...184
Shift instead of multiply or divide184
Automatic word alignment........................184
Eliminating dead code................................184
Smart linking...185

Chapter 19
The built-in assembler 187
The asm statement187

Register use...188
Assembler statement syntax188

Labels ..188
Instruction opcodes................................189

RET instruction sizing 189
Automatic jump sizing 189

Assembler directives..............................190
Operands...192

Expressions..193
Differences between Object Pascal and

Assembler expressions193
Expression elements...............................194

Constants 194
Numeric constants194
String constants194
Registers...195

Symbols 196
Expression classes198
Expression types.....................................200
Expression operators201

Assembler procedures and functions........203

C o n t e n t s v

Chapter 20
Linking assembler code 207
Turbo Assembler and Delphi.................... 208
Examples of assembly language routines 209
Assembly language methods 211
Inline machine code 211

Inline statements.................................... 211
Inline directives 213

Appendix A
The command-line compiler 215
Command-line compiler options 215

Compiler directive options 217
The switch directive option 217
The conditional defines option 218

Compiler mode options 218
The make (/M) option 219
The build all (/B) option 219
The find error (/F) option 219
The link buffer (/L) option 219
The quiet (/Q) option 220

Directory options................................... 220
The DSL & CFG Directory (/T)

option 220
The EXE & DCU directory (/E)

option 221
The include directories (/I) option 221
The unit directories (/U) option 221
The resource directories (/R)

option 221
The object files directories (/O)

option 221
Debug options.. 221

The map file (/G) option 221
The debugging (/V) option 222

The DCC.CFG file 222

Appendix B
Compiler directives 225
Align data ... 226
Boolean evaluation..................................... 227
Code segment attribute 227
Debug information..................................... 228
DEFINE directive....................................... 229
Description ... 229
ELSE directive .. 229
ENDIF directive ... 230

Extended syntax..230
Force Far calls..230
Generate 80286 Code231
Group unit segments231
IFDEF directive ...232
IFNDEF directive..232
IFOPT directive...232
Include file...233
Input/output checking...............................233
Link object file...233
Local symbol information234
Memory allocation sizes.............................235
Numeric coprocessor..................................235
Open String Parameters235
Overflow checking......................................236
Pentium safe FDIV operations...................236
Range checking ...237
Resource file ..237
Run-time type information238
Segment size preference238
Smart callbacks ...239
Stack-overflow checking239
Symbol reference information240
Type-checked pointers240
UNDEF directive ..241
Var-string checking.....................................241
Windows stack frames241
Word sized enumeration types..................242
Using conditional compilation directives .242
Conditional symbols...................................243

Appendix C
Error Messages 245
Compiler error messages245
Run-time errors...273

File errors ..273
I/O errors..275
Fatal errors..275

Index 277

v i O b j e c t P a s c a l L a n g u a g e D e f i n i t i o n

C o n t e n t s 1

Tables
 1-1 Object Pascal reserved words............. 4
 1-2 Object Pascal directives....................... 5
 3-1 Fundamental integer types 13
 3-2 Generic integer types for 16-bit

implementations of Object Pascal..... 13
 3-3 Generic integer types for 32-bit

implementations of Object Pascal..... 13
 3-4 Real data types................................... 16
 5-1 Precedence of operators 41
 5-2 Binary arithmetic operations 44
 5-3 Unary arithmetic operations............. 44
 5-4 Logical operations.............................. 45
 5-5 Boolean operations 45
 5-6 String operation 46
 5-7 Permitted PChar constructs 47
 5-8 Set operations..................................... 47
 5-9 Relational operations......................... 47
 8-1 Type variant open-array expressions83
 10-1 Predefined exception classes........... 121
 10-2 Exception support routines............. 122

 13-1 Input and output procedures and
functions..139

 13-2 Special characters in the WinCrt
window ...143

 13-3 WinCrt procedures and functions...144
 13-4 WinCrt variables...............................144
 16-1 Virtual Method Table layout168
 19-1 Built-in assembler reserved words .192
 19-2 String examples and their values195
 19-3 CPU registers195
 19-4 Values, classes, and types of

symbols..197
 19-5 Predefined type symbols..................201
 19-6 Summary of built-in asssembler

expression operators201
 19-7 Definitions of built-in assembler

expression operators202
 A-1 Command-line options216
 B-1 TestFDIV values237

2 O b j e c t P a s c a l L a n g u a g e G u i d e

	Object Pascal Language Guide
	TABLES
	1.1 Object Pascal reserved words
	1.2 Object Pascal directives
	3.1 Fundamental integer types
	3.2 Generic integer types for 16-bit implementations of Object Pascal
	3.3 Generic integer types for 32-bit implementations of Object Pascal
	3.4 Real data types
	5.1 Precedence of operators
	5.2 Binary arithmetic operations
	5.3 Unary arithmetic operations
	5.4 Logical operations
	5.5 Boolean operations
	5.6 String operation
	5.7 Permitted PChar constructs
	5.8 Set operations
	5.9 Relational operations
	8.1 Type variant open-array expressions
	10.1 Predefined exception classes
	10.2 Exception support routines
	13.1 Input and output procedures and functions
	13.2 Special characters in the WinCrt window
	13.3 WinCrt procedures and functions
	13.4 WinCrt variables
	16.1 Virtual Method Table layout
	19.1 Built-in assembler reserved words
	19.2 String examples and their values
	19.3 CPU registers
	19.4 Values, classes, and types of symbols
	19.5 Predefined type symbols
	19.6 Summary of built-in asssembler expression operators
	19.7 Definitions of built-in assembler expression operators
	A.1 Command-line options
	B.1 TestFDIV values

	INTRODUCTION
	What's in this manual?
	Syntax Diagrams

	CHAPTER 1: Tokens
	Special symbols
	Reserved words and standard directives
	Identifiers
	Numbers
	Labels
	Character strings
	Comments
	Program lines

	CHAPTER 2: Constants
	CHAPTER 3: Types
	Simple types
	Ordinal types
	Integer types
	Boolean types
	Char type
	Enumerated types
	Subrange types

	Real types
	80x87 floating point
	Software floating point

	String types
	Structured types
	Array types
	Record types
	Set types
	File types

	Pointer types
	Type Pointer
	Type PChar

	Procedural types
	Global procedure pointers
	Method pointers
	Procedural values
	Procedural type compatibility

	Identical and compatible types
	Type identity
	Type compatibility
	Assignment compatibility

	The type declaration part

	CHAPTER 4: Variables and typed constants
	Variable declarations
	The data segment
	The stack segment
	Absolute variables
	Variable references
	Qualifiers
	Arrays, strings, and indexes
	Records and field designators
	Object component designators
	Pointers and dynamic variables

	Variable typecasts

	Typed constants
	Simple-type constants
	String-type constants
	Structured-type constants
	Array-type constants
	Record-type constants
	Set-type constants

	Pointer-type constants
	Procedural-type constants

	CHAPTER 5: Expressions
	Expression syntax
	Operators
	Arithmetic operators
	Logical operators
	Boolean operators

	String operator
	Character-pointer operators
	Set operators
	Relational operators
	Comparing simple types
	Comparing strings
	Comparing packed strings
	Comparing pointers and references
	Comparing character pointers
	Comparing sets
	Testing set membership

	Class operators
	The @ operator
	@ with a variable
	@ with a procedure, function, or method

	Function calls
	Set constructors
	Value typecasts
	Procedural types in expressions

	CHAPTER 6: Statements
	Simple statements
	Assignment statements
	Procedure statements
	Goto statements

	Structured statements
	Compound statements
	Conditional statements
	If statements
	Case statements

	Repetitive statements
	Repeat statements
	While statements
	For statements

	With statements

	CHAPTER 7: Blocks, locality, and scope
	Blocks
	Rules of scope
	Block scope
	Record scope
	Class scope
	Unit scope

	CHAPTER 8: Procedures and functions
	Procedure declarations
	Near and far declarations
	Export declarations
	cdecl declarations
	Forward declarations
	External declarations
	Assembler declarations
	Inline declarations

	Function declarations
	Parameters
	Value parameters
	Constant parameters
	Variable parameters
	Untyped parameters
	Open parameters
	Open-string parameters
	Open-array parameters

	Open-array constructors
	Type variant open-array parameters

	CHAPTER 9: Class types
	Instances and references
	Class components
	Fields
	Methods
	Properties

	Inheritance
	Components and scope
	Forward references
	Class type compatibility rules
	Component visibility
	Public components
	Published components
	Protected components
	Private components

	Static methods
	Virtual methods
	Dynamic methods
	Abstract methods
	Method activations
	Method implementations
	Constructors and destructors
	Constructors
	Destructors

	Class operators
	The is operator
	The as operator

	Message handling
	Message handler declarations
	Message handler implementations
	Message dispatching

	Properties
	Property definitions
	Property access
	Access specifiers
	Array properties
	Index specifiers
	Storage specifiers
	Property overrides

	Class-reference types
	Constructors and class references
	Class methods
	The TObject and TClass types

	CHAPTER 10: Exceptions
	Using exception handling
	Exception declarations
	The raise statement
	The try...except statement
	Re-raising exceptions
	Nested exceptions

	The try...finally statement
	Exit, Break, and Continue procedures
	Predefined exceptions
	Exception handling support routines

	CHAPTER 11: Programs and units
	Program syntax
	The program heading
	The uses clause

	Unit syntax
	The unit heading
	The interface part
	The implementation part
	The initialization part
	Indirect unit references

	Circular unit references

	CHAPTER 12: Dynamic-link libraries
	What is a DLL?
	Using DLLs
	Import units
	Static and dynamic imports

	Writing DLLs
	The export procedure directive
	The exports clause
	Library initialization code

	Library programming notes
	Global variables in a DLL
	Global memory and files in a DLL
	DLLs and the System unit
	Run-time errors in DLLs
	DLLs and stack segments

	CHAPTER 13: Input and output
	File input and output
	Text files
	Untyped files

	Input and output with the WinCrt unit
	Using the WinCrt unit
	Special characters
	Line input

	WinCrt procedures and functions
	WinCrt unit variables

	Text-file device drivers
	The Open function
	The InOut function
	The Flush function
	The Close function

	CHAPTER 14: Using the 80x87
	The 80x87 data types
	Extended range arithmetic
	Comparing reals
	The 80x87 evaluation stack
	Detecting the 80x87
	Emulation in assembly language
	Exception statements

	CHAPTER 15: Using null-terminated strings
	What is a null-terminated string?
	Using null-terminated strings
	Character pointers and string literals
	Character pointers and character arrays
	Character pointer indexing
	Null-terminated strings and standard procedures

	CHAPTER 16: Memory issues
	Windows memory management
	Code segments
	Segment attributes
	MOVEABLE or FIXED
	PRELOAD or DEMANDLOAD
	DISCARDABLE or PERMANENT

	Changing attributes

	The automatic data segment
	The heap manager

	Internal data formats
	Integer types
	Char types
	Boolean types
	Enumerated types
	Floating-point types
	The Real type
	The Single type
	The Double type
	The Extended type
	The Comp type

	Pointer types
	String types
	Set types
	Array types
	Record types
	File types
	Procedural types
	Class types
	Class reference types

	Direct memory access
	Direct port access

	CHAPTER 17: Control issues
	Calling conventions
	Variable parameters
	Value and constant parameters
	Open parameters
	Function results
	NEAR and FAR calls
	Nested procedures and functions
	Method calling conventions
	Constructors and destructors
	Entry and exit code
	Register-saving conventions

	Exit procedures

	CHAPTER 18: Optimizing your code
	Constant folding
	Constant merging
	Short-circuit evaluation
	Constant parameters
	Redundant pointer-load elimination
	Constant set inlining
	Small sets
	Order of evaluation
	Range checking
	Shift instead of multiply or divide
	Automatic word alignment
	Eliminating dead code
	Smart linking

	CHAPTER 19: The built-in assembler
	The asm statement
	Register use

	Assembler statement syntax
	Labels
	Instruction opcodes
	RET instruction sizing
	Automatic jump sizing

	Assembler directives
	Operands

	Expressions
	Differences between Object Pascal and Assembler expressions
	Expression elements
	Constants
	Numeric constants
	String constants
	Registers

	Symbols

	Expression classes
	Expression types
	Expression operators

	Assembler procedures and functions

	CHAPTER 20: Linking assembler code
	Turbo Assembler and Delphi
	Examples of assembly language routines
	Assembly language methods
	Inline machine code
	Inline statements
	Inline directives

	APPENDIX A: The command-line compiler
	Command-line compiler options
	Compiler directive options
	The switch directive option
	The conditional defines option

	Compiler mode options
	The make (/M) option
	The build all (/B) option
	The find error (/F) option
	The link buffer (/L) option
	The quiet (/Q) option

	Directory options
	The DSL & CFG Directory (/T) option
	The EXE & DCU directory (/E) option
	The include directories (/I) option
	The unit directories (/U) option
	The resource directories (/R) option
	The object files directories (/O) option

	Debug options
	The map file (/G) option
	The debugging (/V) option

	The DCC.CFG file

	APPENDIX B: Compiler directives
	Align data
	Boolean evaluation
	Code segment attribute
	Debug information
	DEFINE directive
	Description
	ELSE directive
	ENDIF directive
	Extended syntax
	Force Far calls
	Generate 80286 Code
	Group unit segments
	IFDEF directive
	IFNDEF directive
	IFOPT directive
	Include file
	Input/output checking
	Link object file
	Local symbol information
	Memory allocation sizes
	Numeric coprocessor
	Open String Parameters
	Overflow checking
	Pentium safe FDIV operations
	Range checking
	Resource file
	Run-time type information
	Segment size preference
	Smart callbacks
	Stack-overflow checking
	Symbol reference information
	Type-checked pointers
	UNDEF directive
	Var-string checking
	Windows stack frames
	Word sized enumeration types
	Using conditional compilation directives
	Conditional symbols

	APPENDIX C: Error Messages
	Compiler error messages
	Run-time errors
	File errors
	I/O errors
	Fatal errors

	INDEX
	Symbols
	A - B
	C
	D
	E
	F - G
	H - L
	M - O
	P
	Q - R
	S
	T
	U - Z

