

1

Purpose and Background
The Microsoft® Win32® Internet functions provide Win32-based applications
with easy access to common Internet protocols. These functions abstract the
Internet's Gopher, FTP (file transfer protocol), and HTTP (hypertext
transfer protocol) protocols into a high-level application programming
interface (API) that is familiar to independent software vendors (ISVs) and
software developers, and that provides a fast and straightforward path to
making applications Internet-aware.

Initially, the Win32 Internet functions will be shipped as
redistributables independent of operating systems through the Microsoft
Developer Network (MSDN), CompuServe, and the Internet. ISVs can
redistribute Wininet.dll with their applications, following the model of
Win32s®. In the future, the functions described in this documentation will
be folded into all Microsoft operating systems. The Win32 Internet
functions are exported from Wininet.dll.

The Win32 Internet functions facilitate access to the Internet by:

• Eliminating the need to embed knowledge of TCP/IP and Windows® Sockets.

By converting the Internet protocols into task-oriented functions,
application developers do not need to write Windows Sockets code or be
familiar with the TCP/IP protocol.

• Eliminating the need to embed knowledge of Internet protocols.

While the concepts supported by the Internet protocols, such as FTP and
HTTP, are simple, the actual implementation of these protocols can be
complex. For example, FTP servers return ASCII text file directory
listings, but parsing these listings requires specific knowledge of the
format returned by each FTP server. By encapsulating this functionality
within the Internet functions, directory parsing is solved once for all
applications using the FTP protocol. This provides consistent behavior
across applications.

• Providing a constant set of functions in an environment of rapidly
changing and evolving protocols.

Keeping pace with the changes in Internet protocols is a challenge when
writing applications. With the set of functions designed to remain
constant, application developers no longer need to update their
applications every time the underlying protocol changes. Now, only

Microsoft Win32 Internet
Functions

Note

 Win32 Internet Programmer's Reference

Wininet.dll needs to be changed. In addition, advanced protocols, such
as HTTP version 1.1, can also be implemented without changing
applications.

• Following Win32 function standards.

The Win32 Internet functions are similar to the traditional Win32
functions in the way they treat elements such as buffer management and
error returns. Application developers familiar with the Win32 function
set will find that the Win32 Internet functions return information in a
familiar format. Furthermore, application developers will find it easy
to use the returned information in other Win32 functions.

• Providing full access to Internet protocols.

Occasionally, applications need to access extended features of the
Internet protocols. The Win32 Internet functions help provide this
access.

• Enabling high-performance, multithreaded Internet applications.

The Win32 Internet functions are fully "reentrant" and multithread safe.
Multithreaded applications can make simultaneous calls into the
functions from different threads without adverse effects. The Internet
functions themselves complete any necessary synchronization.

• Having persistent caching support built in.

The Win32 Internet functions provide persistent caching for all
protocols, so the application developer can concentrate on obtaining the
data and not worrying about managing the cache. For more information
about how Win32 Internet functions use the cache functions to get proper
Web behavior, see Persistent URL Cache Functions.

The Win32 Internet functions are intended to make Internet client
applications easier to write; they are not intended to facilitate writing
Internet servers. This is because servers must be able to control how the
protocol is accessed and how I/O is performed in order to achieve the high
performance necessary for high-traffic servers. In addition, the Win32
Internet functions are not intended to solve the general issue of access to
mail and news servers.

verview of the Win32 Internet Functions
The following table summarizes the Win32 Internet functions. Each function
indicates any functions that it is dependent on. A dependent function can
be called only after the related higher-level function is called. This is
because the higher-level function returns a handle and sets up a state at
the protocol level that is a prerequisite to the successful execution of
the dependent function or functions.

General Win32 Internet
Functions

InternetOpen Initializes the application's use of
the Win32 Internet functions and
creates the root HINTERNET handle

InternetConnect Opens an FTP, Gopher, or HTTP

Microsoft Win32 Internet Functions 3

session with a server. This function
requires a handle created by
InternetOpen .

InternetCloseHandle Closes any designated handle created
by a Win32 Internet function and any
handles derived from that handle.

InternetQueryOption Queries the setting of an Internet
option.

InternetSetOption Sets an Internet option.

InternetSetStatusCallba
ck

Sets a callback function that is
called with status information.
Assigns a callback function to the
designated HINTERNET handle and all
of the handles derived from it.

InternetStatusCallback This is a placeholder for the
application-defined status callback.

InternetConfirmZoneCros
sing

Checks for changes between secure
and non-secure URLs.

InternetTimeFromSystemT
ime

Formats a date and time according to
the specified RFC format (as
specified in the HTTP version 1.0
specification).

InternetTimeToSystemTim
e

Takes an HTTP time/date string and
converts it to a SYSTEMTIME
structure.

InternetAttemptConnect Allows an application to attempt to
connect to the Internet before
issuing any requests.

InternetReadFile Dowloads data from the Internet.
This function requires a handle
created by InternetOpenUrl,
FtpOpenFile, GopherOpenFile, or
HttpOpenRequest.

InternetSetFilePointer Sets the position for the next read
in a file. This function requires a
handle created by InternetOpenUrl
(on an HTTP URL only) or a handle
created by HttpOpenRequest using
the GET method.

InternetFindNextFile Continues file enumeration or
search. This function requires a
handle created by FtpFindFirstFile
or GopherFindFirstFile.

InternetQueryDataAvaila
ble

Queries the amount of data
available. This function requires a
handle created by FtpOpenFile,
GopherOpenFile, or
HttpOpenRequest.

InternetGetLastResponse
Info

Retrieves the text of the server's
response to the FTP command. This
function requires a handle created
by InternetConnect.

 Win32 Internet Programmer's Reference

InternetWriteFile Writes data to an open file. This
function requires a handle created
by FtpOpenFile.

InternetCrackUrl Parses a URL string into components.

InternetCreateUrl Creates a URL string from
components.

InternetCanonicalizeUrl Converts a URL to a canonical form.

InternetCombineUrl Combines base and relative URLs.

InternetOpenUrl Begins retrieving a complete FTP,
Gopher, or HTTP URL. This function
requires a handle created by
InternetOpen.

FTP Functions

FtpFindFirstFile Starts file enumeration or file
search in the current directory.
This function requires a handle
created by InternetConnect.

FtpGetFile Retrieves an entire file from the
server. This function requires a
handle created by InternetConnect.

FtpPutFile Writes an entire file to the server.
This function requires a handle
created by InternetConnect.

FtpDeleteFile Deletes a file on the server. This
function requires a handle created
by InternetConnect.

FtpRenameFile Renames a file on the server. This
function requires a handle created
by InternetConnect.

FtpOpenFile Initiates access to a file on the
server for either reading or
writing. This function requires a
handle created by InternetConnect.

FtpCreateDirectory Creates a new directory on the
server. This function requires a
handle created by InternetConnect.

FtpRemoveDirectory Deletes a directory on the server.
This function requires a handle
created by InternetConnect.

FtpSetCurrentDirectory Changes the client's current
directory on the server. This
function requires a handle created
by InternetConnect.

FtpGetCurrentDirectory Returns the client's current
directory on the server. This
function requires a handle created
by InternetConnect.

Gopher Functions

GopherFindFirstFile Starts enumerating a Gopher
directory listing. This function
requires a handle created by

Microsoft Win32 Internet Functions 5

InternetConnect.

GopherOpenFile Starts retrieving a Gopher object.
This function requires a handle
created by InternetConnect.

GopherCreateLocator Forms a Gopher locator for use in
other Gopher function calls.

GopherGetAttribute Retrieves attribute information on
the Gopher object. This function
requires a handle created by
InternetConnect.

HTTP (World Wide Web)
Functions

HttpOpenRequest Opens an HTTP request handle. This
function requires a handle created
by InternetConnect.

HttpAddRequestHeaders Adds HTTP request headers to the
HTTP request handle. This function
requires a handle created by
HttpOpenRequest.

HttpSendRequest Sends the specified request to the
HTTP server. This function requires
a handle created by
HttpOpenRequest.

HttpQueryInfo Queries information about an HTTP
request. This function requires a
handle created by HttpOpenRequest.

InternetErrorDlg Displays predefined dialog boxes for
common Internet error conditions.
Requires the handle used in the call
to the function HttpSendRequest.

Cookie Functions

InternetGetCookie Returns cookies for the specified
URL and all its parent URLs.

InternetSetCookie Sets a cookie on the specified URL.

Cache Functions

CommitUrlCacheEntry Caches data in the specified file in
the cache storage and associates it
with the given URL.

CreateUrlCacheEntry Allocates the requested cache
storage and creates a local file
name for saving the cache entry
corresponding to the source name.

GetUrlCacheEntryInfo Retrieves information about a cache
entry.

ReadUrlCacheEntryStream Reads the cached data from a stream
that has been opened using
RetrieveUrlCacheEntryStream.

RetrieveUrlCacheEntryFi
le

Retrieves a cache entry from the
cache in the form of a file.

RetrieveUrlCacheEntrySt
ream

Provides the most efficient and
implementation-independent way of

 Win32 Internet Programmer's Reference

accessing the cache data.

SetUrlCacheEntryInfo Sets the specified members of the
INTERNET_CACHE_ENTRY_INFO
structure.

UnlockUrlCacheEntryFile Unlocks the cache entry that was
locked while the file was retrieved
for use from the cache.

UnlockUrlCacheEntryStre
am

Closes the stream that has been
retrieved using
RetrieveUrlCacheEntryStream.

DeleteUrlCacheEntry Removes the file associated with the
source name from the cache, if the
file exists.

FindCloseUrlCache Closes the specified enumeration
handle.

FindFirstUrlCacheEntry Begins the enumeration of the cache.

FindNextUrlCacheEntry Retrieves the next entry in the
cache.

andles
The handles that are created and used by the Win32 Internet functions are
opaque handle types called HINTERNETS. These handles returned by the Win32
Internet function APIs are not interchangeable with the base Win32 handles,
so they cannot be used with Win32 APIs such as ReadFile or CloseHandle.
Similarly, base Win32 handles cannot be used with the Win32 Internet
function APIs. For example, a handle returned by CreateFile cannot be
passed to InternetReadFile.

If a callback function was registered for a handle, all operations on that
handle can generate status indications, provided that the context value
that was supplied when the handle was created was not zero. Providing a
zero context value is a method to force an operation to complete
synchronously, even though INTERNET_FLAG_ASYNC was specified in
InternetOpen.

Status indications are mainly intended to give the application feedback as
to the progress of an operation, and are mainly concerned with network
operations, such as resolving a host name, connecting to a server, and
receiving data. Three special-purpose status indications can be made for a
handle:

• INTERNET_STATUS_REQUEST_COMPLETE is indicated when an asynchronous
operation completes.

• INTERNET_STATUS_HANDLE_CREATED is indicated when the handle is initially
created.

• INTERNET_STATUS_HANDLE_CLOSING is the last status indication that will
be made for a handle.

The application must check the INTERNET_ASYNC_RESULTS structure to
determine whether the operation succeeded or failed after receiving an

INTERNET_STATUS_REQUEST_COMPLETE indication.

Microsoft Win32 Internet Functions 7

The InternetCloseHandle function closes handles of type HINTERNET and
all handles that descended from it in the Handle Hierarchy function.
Note that handle values are recycled quickly; therefore, if a handle is
closed and a new handle is generated immediately, there is a good chance
that the new handle will have the same value as the handle just closed.

Handle Hierarchy
Handles returned from Win32 Internet functions are maintained in a tree
hierarchy. The handle returned by the InternetOpen function is the root
node. Handles returned from the InternetConnect function occupy the next
level. Currently, handles that are returned by open or find functions, such
as HttpOpenRequest and FtpFindFirstFile, are the leaf nodes. This
structure can be used by InternetCloseHandle to close a single handle or
an entire subtree.

Multithreaded Access
The Win32 Internet functions are "reentrant" in the sense that there can be
multiple calls to an individual function from different threads. The
functions complete any necessary synchronization. However, multiple
simultaneous calls using the same Internet connection can lead to
unpredictable results.

For example, if an application has used FtpOpenFile to begin downloading
a file from an FTP server, and two threads simultaneously make calls to
InternetReadFile, there is no guarantee which call will be completed
first, or which thread will receive file data first. Applications that use
multiple threads for the same Internet connection are responsible for
synchronization between threads to ensure a predictable return of
information.

Error Handling
The Win32 Internet functions return error information in the same way as
Win32 functions. Return values tell whether the function is successful or
not. For example, some Internet functions return a BOOL value that is TRUE
if the function succeeded or FALSE if it failed, and others return a handle
of type HINTERNET. A NULL handle indicates that the function failed, and
any other value indicates that it succeeded.

If a function fails, the application can call the Win32 Internet function
GetLastError to retrieve the specific error code for the failure. In
addition, the FTP and Gopher protocols let servers return additional error
information. For these protocols, applications can use the
InternetGetLastResponseInfo function to retrieve error text.

Both GetLastError and InternetGetLastResponseInfo operate on a per-
thread basis. If two threads call Internet functions at the same time,
error information will be returned for each of the individual threads so
that there is no conflict between the threads.

 Win32 Internet Programmer's Reference

nicode Support
The Win32 Internet functions do not currently provide support for Unicode.
However, support will be provided in future versions.

PI Flags
Many of the Win32 Internet functions accept a double-word array of flags as
a parameter. The following is a brief description of the defined flags:

INTERNET_FLAG_RELOAD

Force a download of the requested file, object, or
directory listing from the origin server, not from the
cache. The GopherFindFirstFile, GopherOpenFile,
FtpFindFirstFile, FtpGetFile, FtpOpenFile,
FtpPutFile, HttpOpenRequest, and InternetOpenUrl
functions utilize this flag.

INTERNET_FLAG_RAW_DATA

Return the data as a GOPHER_FIND_DATA structure when
retrieving Gopher directory information, or as a
WIN32_FIND_DATA structure when retrieving FTP
directory information using the InternetOpenUrl API.

INTERNET_FLAG_EXISTING_CONNECT

Attempt to use an existing InternetConnect object if
one exists with the same attributes required to make the
request. Only the InternetOpenUrl function uses this
flag.

INTERNET_FLAG_ASYNC

Make only asynchronous requests on handles descended from
the handle returned from this function. Only the
InternetOpen function uses this flag.

INTERNET_FLAG_PASSIVE

Use passive FTP semantics. Only InternetConnect and
InternetOpenUrl use this flag. InternetConnect uses
this flag for FTP requests, and InternetOpenUrl uses
this flag for FTP files and directories.

INTERNET_FLAG_NO_CACHE_WRITE

Do not add the returned entity to the cache. This flag is
used by GopherFindFirstFile, GopherOpenFile,
FtpFindFirstFile, FtpGetFile, FtpPutFile,
HttpOpenRequest, and InternetOpenUrl.

INTERNET_FLAG_MAKE_PERSISTENT

Add the returned entity to the cache as a persistent
entity. This means that standard cache cleanup,
consistency checking, or garbage collection cannot remove
this item from the cache. This flag is used by
GopherFindFirstFile, GopherOpenFile,
FtpFindFirstFile, FtpGetFile, FtpOpenFile,
FtpPutFile, HttpOpenRequest, and InternetOpenUrl.

INTERNET_FLAG_OFFLINE

Do not make network requests. All entities are returned
from the cache. If the requested item is not in the

Microsoft Win32 Internet Functions 9

cache, a suitable error, such as ERROR_FILE_NOT_FOUND, is
returned. Only the InternetOpen function uses this
flag.

INTERNET_FLAG_SECURE

Use secure transaction semantics. This translates to
using Secure Sockets Layer/Private Communications
Technology (SSL/PCT) and is only meaningful in HTTP
requests. This flag is used by HttpOpenRequest and
InternetOpenUrl, but this is made redundant if
"https://" appears in the URL.

INTERNET_FLAG_KEEP_CONNECTION

Use keep-alive semantics, if available, for the
connection. This flag is used by HttpOpenRequest and
InternetOpenUrl (for HTTP requests).

INTERNET_FLAG_NO_AUTO_REDIRECT

Do not automatically handle redirection in
HttpSendRequest. This flag can also be used by
InternetOpenUrl for HTTP requests.

INTERNET_FLAG_IGNORE_CERT_CN_INVALID

Disable Win32 Internet function checking of SSL/PCT-based
certificates that are returned from the server against
the host name given in the request. Win32 Internet
functions use a simple check against certificates by
comparing for matching host names and simple wildcarding
rules. This flag can be used by HttpOpenRequest and
InternetOpenUrl (for HTTP requests).

INTERNET_FLAG_IGNORE_CERT_DATE_INVALID

Disable Win32 Internet function checking of SSL/PCT-based
certificates for proper validity dates. This flag can be
used by HttpOpenRequest and InternetOpenUrl (for
HTTP requests).

INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTPS

Disable the ability of the Win32 Internet functions to
detect this special type of redirect. When this flag is
used, Win32 Internet functions transparently allow
redirects from HTTP to HTTPS URLs. This flag can be used
by HttpOpenRequest and InternetOpenUrl (for HTTP
requests).

INTERNET_FLAG_IGNORE_REDIRECT_TO_HTTP

Disable the ability of the Win32 Internet functions to
detect this special type of redirect. When this flag is
used, Win32 Internet functions transparently allow
redirects from HTTPS to HTTP URLs. This flag can be used
by HttpOpenRequest and InternetOpenUrl (for HTTP
requests).

INTERNET_FLAG_READ_PREFETCH

Download the entity without requiring the application to
initiate reads from the network. This flag can be used by
HttpOpenRequest and InternetOpenUrl (for HTTP
requests).

INTERNET_FLAG_NO_COOKIES

 Win32 Internet Programmer's Reference

Do not automatically add cookie headers to requests, and
do not automatically add returned cookies to the cookie
database. This flag can be used by HttpOpenRequest and
InternetOpenUrl (for HTTP requests).

INTERNET_FLAG_NO_AUTH

Do not attempt authentication automatically. This flag
can be used by HttpOpenRequest and InternetOpenUrl
(for HTTP requests).

INTERNET_FLAG_TRANSFER_ASCII

Transfer file as ASCII (FTP only). This flag can be used
by FtpOpenFile, FtpGetFile, and FtpPutFile.

INTERNET_FLAG_TRANSFER_BINARY

Transfer file as binary (FTP only). This flag can be used
by FtpOpenFile, FtpGetFile, and FtpPutFile.

INTERNET_FLAG_MUST_CACHE_REQUEST

Cause operation to fail if the downloaded file cannot be
cached. This flag can be used by GopherFindFirstFile,
GopherOpenFile, FtpFindFirstFile, FtpGetFile,
FtpOpenFile, FtpPutFile, HttpOpenRequest, and
InternetOpenUrl.

INTERNET_FLAG_RESYNCHRONIZE

Perform a conditional download of the file. This flag can
be used by GopherFindFirstFile, GopherOpenFile,
FtpFindFirstFile, FtpGetFile, FtpOpenFile,
FtpPutFile, HttpOpenRequest, and InternetOpenUrl.

INTERNET_FLAG_HYPERLINK

Force a reload if there was no Expires time and no Last-
Modified time returned from the server when determining
whether to reload the item from the network. This flag
can be used by GopherFindFirstFile, GopherOpenFile,
FtpFindFirstFile, FtpGetFile, FtpOpenFile,
FtpPutFile, HttpOpenRequest, and InternetOpenUrl.

ontext Values
Many of the Win32 Internet functions that create a handle can also accept
an application-defined context value. This context value is associated with
the handle until it is closed. For example, you can specify a context value
to the HttpOpenRequest function that will be used in all callbacks made
for requests against this handle. If the INTERNET_FLAG_ASYNC flag is
specified, supplying a zero context value forces the request to be
synchronous.

synchronous Support
By default, the Win32 Internet functions operate synchronously. An
application can request asynchronous operation by setting the
INTERNET_FLAG_ASYNC flag in the call to the InternetOpen function. All
future calls made against handles derived from the handle returned from

InternetOpen will be made asynchronously.

Microsoft Win32 Internet Functions 11

The rationale for asynchronous versus synchronous operation is to allow a
single-threaded application to maximize its utilization of the CPU without
having to wait for network I/O to complete. Therefore, depending on the
request, the operation may complete synchronously or asynchronously. The
application should check the return code. If a function returns FALSE or
NULL, and GetLastError returns ERROR_IO_PENDING, the request has been
made asynchronously, and the application will be called back with
INTERNET_STATUS_REQUEST_COMPLETE when the function has completed.

For an application to be able to make requests asynchronously, it must set
the INTERNET_FLAG_ASYNC flag in the call to InternetOpen, it must
register a valid callback function, and it must supply a non-zero context
value.

Persistent Caching
Win32 Internet functions have built-in caching support that is simple yet
flexible. Any data that is retrieved from the network is cached on the hard
disk and retrieved for subsequent requests. The caller has the option of
controlling the caching on a per-request basis. In the case of HTTP, most
headers received from the server are also cached. When an HTTP request is
satisfied from the cache, the cached headers are also returned to the
caller. This makes data download from Win32 Internet functions seamless,
whether it is coming from the cache or from the wire.

Buffers and Buffer Parameters
For the APIs that return strings, there is an input lpszBuffer parameter
and an lpdwBufferLength parameter. The lpszBuffer can be NULL, and
lpdwBufferLength must be a valid pointer to a DWORD variable. If the input
buffer pointed to by lpszBuffer is either too small to hold the output
string or NULL, a failure indication will be returned by the API and
GetLastError will return ERROR_INSUFFICIENT_BUFFER. The variable pointed
to by lpdwBufferLength will contain a number that represents the number of
bytes that are required by the function to return the requested string,
which includes the NUL terminator. The application should allocate a buffer
of this size, set the variable pointed to by lpdwBufferLength to this
value, and resubmit the request. If the size of the buffer is sufficient to
receive the requested string, the string is copied to the output buffer
with a NUL terminator and a success indication is returned by the API. The
variable pointed to by lpdwBufferLength will now contain the number of
characters stored in the buffer, excluding the NUL terminator.

General Win32 Internet Functions
The general Win32 Internet functions perform basic Internet file
manipulations.

InternetAttemptConnect
DWORD InternetAttemptConnect(
 DWORD dwReserved

 Win32 Internet Programmer's Reference

);

Attempts to make a connection to the Internet. This function allows an
application to first attempt to connect before issuing any requests. If the
connection fails, the application can enter off-line mode.

• Returns ERROR_SUCCESS if successful, or a Win32 error value otherwise.

dwReserved
Reserved; must be zero.

InternetCanonicalizeUrl
BOOL InternetCanonicalizeUrl(
 IN LPCTSTR lpszUrl,
 OUT LPTSTR lpszBuffer,
 IN OUT LPDWORD lpdwBufferLength,
 IN DWORD dwFlags
);

Converts a URL to a canonical form, which includes converting unsafe
characters into escape sequences.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError. Possible errors include:

ERROR_INVALID_PARAMETER

Bad string, buffer, buffer size,
or flags parameter.

ERROR_INSUFFICIENT_BUFFER

Canonicalized URL is too large to
fit in the buffer provided. The
*lpdwBufferLength parameter is
set to the size, in bytes, of the
buffer required to hold the
resultant, canonicalized URL.

ERROR_BAD_PATHNAME

The URL could not be
canonicalized.

ERROR_INTERNET_INVALID_URL

The format of the URL is invalid.

lpszUrl
Address of the input URL to canonicalize.

lpszBuffer
Address of the buffer that receives the resulting canonicalized URL.

lpdwBufferLength
Length, in bytes, of the lpszBuffer buffer. If the function succeeds,
this parameter receives the length of the lpszBuffer buffer梩he length

does not include the terminating null. If the function fails, this

Microsoft Win32 Internet Functions 13

parameter receives the required length, in bytes, of the lpszBuffer
buffer梩he required length includes the terminating null.

dwFlags
Flags that control canonicalization. Can be one of these values:

Value Meaning

ICU_DECODE Convert %XX escape sequences to
characters.

ICU_NO_ENCODE Do not convert unsafe characters
to escape sequence.

ICU_NO_META Do not remove meta sequences
(such as "." and "..") from the
URL.

ICU_ENCODE_SPACES_ONLY Encode spaces only.

ICU_BROWSER_MODE Do not encode or decode
characters after #' or '?', and
do not remove trailing white
space after '?'. If this value is
not specified, the entire URL is
encoded and trailing white space
is removed.

If no flags are specified, the function converts all unsafe characters
and meta sequences (such as \.,\ .., and \...) to escape sequences.

InternetCanonicalizeUrl always encodes by default, even if the
ICU_DECODE flag has been specified. To decode without re-encoding, use
ICU_DECODE | ICU_NO_ENCODE. If the ICU_DECODE flag is used without
ICU_NO_ENCODE, the URL is decoded before being parsed; unsafe characters
then are re-encoded after parsing. This function will handle arbitrary
protocol schemes, but to do so it must make inferences from the unsafe
character set.

InternetCloseHandle
BOOL InternetCloseHandle(
 IN HINTERNET hInet
);

Closes a single Internet handle or a subtree of Internet handles.

• Returns TRUE if the handle is successfully closed, or FALSE otherwise.
To get extended error information, call GetLastError.

hInet
Valid Internet handle to be closed.

This function can be used to close any Internet handle or subtree of
handles of the type HINTERNET and free any associated resources. The
function terminates any pending operations on the handle and discards any
outstanding data. If a thread is blocking a call to Wininet.dll, another
thread in the application can call InternetCloseHandle on the Internet
handle being used by the first thread to cancel the operation and unblock
the first thread.

 Win32 Internet Programmer's Reference

InternetCloseHandle should be used to close the handle returned from
InternetOpen when the application has finished using the Internet DLL.

If there is a status callback registered for the handle being closed and
the handle was created with a non-NULL context value, an
INTERNET_STATUS_HANDLE_CLOSING callback will be made. This indication will
be the last callback made from a handle and indicates that the handle is
being destroyed.

If asynchronous requests are pending for the handle or any of its child
handles, the handle cannot be closed immediately, but it will be
invalidated. Any new requests attempted using the handle will return with
an ERROR_INVALID_HANDLE notification. The asynchronous requests will
complete with INTERNET_STATUS_REQUEST_COMPLETE. Applications must be
prepared to receive any INTERNET_STATUS_REQUEST_COMPLETE indications on the
handle before the final INTERNET_STATUS_HANDLE_CLOSING indication is made,
which indicates that the handle is completely closed.

An application can call GetLastError to determine if requests are
pending. If GetLastError returns ERROR_IO_PENDING, there were outstanding
requests when the handle was closed.

See also FtpFindFirstFile, FtpOpenFile, GopherFindFirstFile,
HttpOpenRequest, InternetConnect, InternetOpen

InternetCombineUrl
BOOL InternetCombineUrl(
 IN LPCTSTR lpszBaseUrl,
 IN LPCTSTR lpszRelativeUrl,
 OUT LPTSTR lpszBuffer,
 IN OUT LPDWORD lpdwBufferLength,
 IN DWORD dwFlags
);

Combines a base and relative URL into a single URL. The resultant URL will
be canonicalized (see InternetCanonicalizeUrl).

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError. Possible error codes include:

ERROR_INVALID_PARAMETER

Bad string, buffer, buffer size,
or flags parameter.

ERROR_INSUFFICIENT_BUFFER

The *lpdwBufferLength parameter,
in bytes, of the buffer required
to hold the resultant, combined
URL.

ERROR_BAD_PATHNAME

The URLs could not be combined.

ERROR_INTERNET_INVALID_URL

The format of the URL is invalid.

Microsoft Win32 Internet Functions 15

lpszBaseUrl
Address of the base URL to be combined.

lpszRelativeUrl
Address of the relative URL to be combined.

lpszBuffer
Address of a buffer that receives the resulting URL.

lpdwBufferLength
Size, in bytes, of the lpszBuffer buffer. If the function succeeds, this
parameter receives the length, in characters, of the resultant combined
URL梩he length does not include the null terminator. If the function
fails, this parameter receives the length, in bytes, of the required
buffer梩he length includes the null terminator.

dwFlags
Flags controlling the operation of the function. For a description of
the flags, see InternetCanonicalizeUrl.

InternetConnect
HINTERNET InternetConnect(
 IN HINTERNET hInternetSession,
 IN LPCTSTR lpszServerName,
 IN INTERNET_PORT nServerPort,
 IN LPCTSTR lpszUsername OPTIONAL,
 IN LPCTSTR lpszPassword OPTIONAL,
 IN DWORD dwService,
 IN DWORD dwFlags,
 IN DWORD dwContext
);

Opens an FTP, Gopher, or HTTP session for a given site.

• Returns a valid handle to the FTP, Gopher, or HTTP session if the
connection is successful, or NULL otherwise. To get extended error
information, call GetLastError. An application can also use
InternetGetLastResponseInfo to determine why access to the service
was denied.

hInternetSession
Handle of the current Internet session. The handle must have been
returned by a previous call to InternetOpen.

lpszServerName
Address of a null-terminated string that contains the host name of an
Internet server. Alternately, the string can contain the IP number of
the site in ASCII dotted-decimal format (for example, 11.0.1.45).

nServerPort
Number of the TCP/IP port on the server to connect to. Can be one of the
values in the following list. If this parameter is set to
INTERNET_INVALID_PORT_NUMBER, the function uses the default port for the
specified service. These values do not cause the function to use this

 Win32 Internet Programmer's Reference

protocol. The value sets the port to be used. A flag must be used to set
the service.

Value Meaning

INTERNET_DEFAULT_FTP_PORT Use the default port for FTP
servers (port 21).

INTERNET_DEFAULT_GOPHER_POR
T

Use the default port for Gopher
servers (port 70).

INTERNET_DEFAULT_HTTP_PORT Use the default port for HTTP
servers (port 80).

INTERNET_DEFAULT_HTTPS_PORT Use the default port for HTTPS
servers (port 443).

lpszUsername
Address of a null-terminated string that contains the name of the user
to log on. If this parameter is NULL, the function uses an appropriate
default, except for HTTP. A NULL parameter in HTTP causes the server to
return an error. For the FTP protocol, the default is anonymous.

lpszPassword
Address of a null-terminated string that contains the password to use to
log on. If both lpszPassword and lpszUsername are NULL, the function
uses the default anonymous password. In the case of FTP, the default
anonymous password is the user's e-mail name. If lpszPassword is NULL,
but lpszUsername is not NULL, the function uses a blank password. The
following table describes the behavior for the four possible settings of
lpszUsername and lpszPassword:

lpszUsername lpszPasswor
d

User name
sent to FTP
server

Password
sent to FTP
server

NULL NULL "anonymous" User's e-mail
name

Non-NULL string NULL lpszUsername ""

NULL Non-NULL
string

ERROR ERROR

Non-NULL string Non-NULL
string

lpszUsername lpszPassword

dwService
Type of service to access. Can be one of these values:

Value Meaning

INTERNET_SERVICE_FTP FTP service.

INTERNET_SERVICE_GOPHER Gopher service.

INTERNET_SERVICE_HTTP HTTP service.

dwFlags
Flags specific to the service used. Can be one of these values:

If dwService is: dwFlags supported

INTERNET_SERVICE_FTP INTERNET_CONNECT_FLAG_PASSIVE
(Use passive mode in all data
connections for this FTP
session.)

Microsoft Win32 Internet Functions 17

dwContext
An application-defined value that is used to identify the application
context for the returned handle in callbacks.

The InternetConnect function is required before communicating with any
Internet service.

Having a connect function for all protocols, even those that do not use
persistent connections, lets an application communicate common information
about several requests using a single function call. In addition, this
allows for future versions of Internet protocols that do not require a
connection to be established for every client request.

For FTP sites, InternetConnect actually establishes a connection with the
server; for others, such as Gopher, the actual connection is not
established until the application requests a specific transaction.

For maximum efficiency, applications using the Gopher and HTTP protocols
should try to minimize calls to InternetConnect and avoid calling this
function for every transaction requested by the user. One way to accomplish
this is to keep a small cache of handles returned from InternetConnect;
when the user makes a request to a previously accessed server, that session
handle is still available.

An application that needs to display multiline text information sent by an
FTP server can use InternetGetLastResponseInfo to retrieve the text.

For FTP connections, if lpszUsername is NULL, InternetConnect sends the
string "anonymous" as the user name. If lpszPassword is NULL,
InternetConnect attempts to use the user's e-mail name as the password.

To close the handle returned from InternetConnect, the application should
call InternetCloseHandle. This function disconnects the client from the
server and frees all resources associated with the connection.

See also InternetCloseHandle, InternetOpen

InternetConfirmZoneCrossing
DWORD InternetConfirmZoneCrossing(
 IN HWND hWnd,
 IN LPSTR szUrlPrev,
 IN LPSTR szUrlNew,
 IN BOOL bPost
);

Checks for changes between secure and non-secure URLs. When a change occurs
in security between two URLs, an application should allow the user to
acknowledge this change, typically by displaying a dialog box.

• Returns ERROR_SUCCESS if the user confirmed that it was okay to continue
or there was no user input needed, ERROR_CANCELLED if the user canceled,
or ERROR_NOT_ENOUGH_MEMORY if there is not enough memory to carry out
the request.

 Win32 Internet Programmer's Reference

hWnd
Handle of the parent window for any needed dialog box.

szUrlPrev
URL that was viewed before the current request was made.

szUrlNew
New URL that the user has requested to view.

bPost
TRUE if a post is being made in this request. This flag is ignored in
this release.

InternetCrackUrl
BOOL InternetCrackUrl(
 IN LPCSTR lpszUrl,
 IN DWORD dwUrlLength,
 IN DWORD dwFlags,
 IN OUT LPURL_COMPONENTS lpUrlComponents
);

Cracks a URL into its component parts.

• Returns TRUE if the function succeeds, or FALSE otherwise. To get
extended error information, call GetLastError.

lpszUrl
Address of a string that contains the canonical URL to crack.

dwUrlLength
Length of the lpszUrl string, or zero if lpszUrl is an ASCIIZ string.

dwFlags
Flags controlling the operation. Can be one of these values:

ICU_ESCAPE Convert unsafe characters in the
URL-path component to escape
sequences.

ICU_DECODE Convert encoded characters back
to their normal form. This can be
used only if the user provides
buffers to copy the components
into.

ICU_USERNAME Not currently implemented.

lpUrlComponents
Address of a URL_COMPONENTS structure that receives the URL
components.

The required components are indicated by members of the URL_COMPONENTS
structure. Each component has a pointer to the value, and has a member that
stores the length of the stored value. If both the value and the length for
a component are equal to zero, that component is not returned. If the
pointer to the value of the component is NULL and the value of its

corresponding length member is non-zero, the address of the first
character of the corresponding component in the lpszUrl string is stored in

Microsoft Win32 Internet Functions 19

the pointer, and the length of the component is stored in the length
member. Otherwise, the pointer contains the address of the user-supplied
buffer where the component is copied, and the length member is updated with
the length of the copied component, minus 1 for the trailing string
terminator.

See also FtpOpenFile, InternetCloseHandle, InternetFindNextFile,
InternetSetStatusCallback

InternetCreateUrl
BOOL
 IN LPURL_COMPONENTS lpUrlComponents,
 IN DWORD dwFlags,
 OUT LPSTR lpszUrl,
 IN OUT LPDWORD lpdwUrlLength
);

Creates a URL from its component parts.

• Returns TRUE if the function succeeds, or FALSE otherwise. To get
extended error information, call GetLastError. If the function finds
no matching files, GetLastError returns ERROR_NO_MORE_FILES.

lpUrlComponents
Address of a URL_COMPONENTS structure that contains the components
from which to create the URL.

dwFlags
Flags that control the operation of this function. Can be a combination
of these values:

Value Meaning

ICU_ESCAPE Convert unsafe characters in the
URL-path component to escape
sequences.

ICU_USERNAME When adding the user name, use
the name that was specified at
login time.

lpszUrl
Address of a buffer that receives the URL.

lpdwUrlLength
Length, in bytes, of the lpszUrl buffer. When the function returns, this
parameter receives the length, in bytes, of the URL string, minus 1 for
the terminating character. If GetLastError returns
ERROR_INSUFFICIENT_BUFFER, this parameter receives the number of bytes
required to hold the created URL.

InternetErrorDlg
DWORD InternetErrorDlg(

 Win32 Internet Programmer's Reference

 IN HWND hWnd,
 IN OUT HINTERNET hInternet,
 IN DWORD dwError,
 IN DWORD dwFlags,
 IN OUT LPVOID *lppvData
);

Displays a dialog box that explains why an error occurred with an
HttpSendRequest Win32 Internet function. An application can call this
function for several different error codes, and can do bookkeeping based on
the user's response to the dialog box.

• Returns ERROR_SUCCESS, ERROR_CANCELLED, or ERROR_INTERNET_FORCE_RETRY.

hWnd
Handle of the parent window for any needed dialog box. This parameter
can be NULL if no dialog box is needed.

hInternet
Handle of the Internet connection used in the call to HttpSendRequest.

dwError
Error value for which to display a dialog box. Can be one of these
values:

ERROR_INTERNET_HTTP_TO_HTTPS_ON_REDIR

Notifies the user of the zone crossing to and from a
secure site.

ERROR_INTERNET_INCORRECT_PASSWORD

Displays a dialog box for obtaining the user's name
and password. (On Windows 95, the function attempts to
use the network caching user interface and disk
cache.)

ERROR_INTERNET_INVALID_CA

Notifies the user that the Win32 Internet function
does not have a certificate for this SSL site.

ERROR_INTERNET_POST_IS_NON_SECURE

Displays a warning about posting data to the server
through a non-secure connection.

ERROR_INTERNET_SEC_CERT_CN_INVALID

Displays an Invalid SSL Common Name dialog box, and
lets the user view the incorrect certificate. Also
allows the user to select a certificate in response to
a server request.

ERROR_INTERNET_SEC_CERT_DATE_INVALID

Tells the user that the SSL certificate has expired.

dwFlags
Action flags. Can be a combination of these values:

FLAGS_ERROR_UI_FLAGS_CHANGE_OPTIONS

If the function succeeds, store the results of the
dialog box in the Internet handle.

Microsoft Win32 Internet Functions 21

FLAGS_ERROR_UI_FLAGS_GENERATE_DATA

Query the Internet handle for needed information. The
function constructs the appropriate data structure for
the error. (For example, for Cert CN failures, the
function will grab the certificate.)

FLAGS_ERROR_UI_FILTER_FOR_ERRORS

Scan the returned headers for errors. Call after every
HttpSendRequest. The function detects any hidden
errors, such as an authentication error.

lppvData
Address of a yet-to-be-defined structure. The structure may be different
for each error that needs to be handled

InternetFindNextFile
BOOL InternetFindNextFile(
 IN HINTERNET hFind,
 OUT LPVOID lpvFindData
);

Continues a file search started as a result of a previous call to
FtpFindFirstFile or GopherFindFirstFile.

• Returns TRUE if the function succeeds, or FALSE otherwise. To get
extended error information, call GetLastError. If the function finds
no matching files, GetLastError returns ERROR_NO_MORE_FILES.

hFind
Valid handle returned from either FtpFindFirstFile or
GopherFindFirstFile.

lpvFindData
Address of the buffer that receives information about the found file or
directory. The format of the information placed in the buffer depends on
the protocol in use. The FTP protocol returns a WIN32_FIND_DATA
structure, and the Gopher protocol returns a GOPHER_FIND_DATA
structure.

See also FtpFindFirstFile, GopherFindFirstFile

InternetGetLastResponseInfo
BOOL InternetGetLastResponseInfo(
 OUT LPDWORD lpdwError,
 OUT LPTSTR lpszBuffer OPTIONAL,
 IN OUT LPDWORD lpdwBufferLength
);

Retrieves the last Win32 Internet function error description or server
response on the thread calling this API.

 Win32 Internet Programmer's Reference

• Returns TRUE if error text was successfully written to the buffer, or
FALSE otherwise. To get extended error information, call GetLastError.
If the buffer is too small to hold all the error text, GetLastError
returns ERROR_INSUFFICIENT_BUFFER, and the lpdwBufferLength parameter
contains the minimum buffer size required to return all the error text.

lpdwError
Address of a variable that receives an error code pertaining to the
operation that failed.

lpszBuffer
Address of a buffer that receives the error text.

lpdwBufferLength
Size of the lpszBuffer buffer. When the function returns, this parameter
contains the size of the string written to the buffer.

The FTP and Gopher protocols can return additional text information along
with most errors. This extended error information can be retrieved by using
the InternetGetLastResponseInfo function whenever GetLastError
returns ERROR_INTERNET_EXTENDED_ERROR (occurring after an unsuccessful
function call).

The buffer pointed to by lpszBuffer must be large enough to hold both the
error string and a zero terminator at the end of the string. However, note
that the value returned in lpdwBufferLength does not include the
terminating zero.

InternetGetLastResponseInfo can be called multiple times until another
Win32 Internet function API is called on this thread. When another API is
called, the internal buffer that is storing the last response information
is cleared.

InternetOpen
HINTERNET InternetOpen(
 IN LPCTSTR lpszAgent,
 IN DWORD dwAccessType,
 IN LPCTSTR lpszProxyName OPTIONAL,
 IN LPCSTR lpszProxyBypass OPTIONAL,
 IN DWORD dwFlags
);

Initializes an application's use of the Win32 Internet functions.

• Returns a valid handle that the application passes on to subsequent
Win32 Internet functions. If InternetOpen fails, it returns NULL. To
get a specific error code, call GetLastError.

lpszAgent
Address of a string that contains the name of the application or entity
calling the Internet functions (for example, Microsoft Internet

Explorer). This name is used as the user agent in the HTTP protocol.

Microsoft Win32 Internet Functions 23

dwAccessType
Type of access required. Can be one of these values:

INTERNET_OPEN_TYPE_DIRECT

Resolve all host names locally.

INTERNET_OPEN_TYPE_PROXY

Pass requests to the proxy unless a proxy bypass list
is supplied and the name to be resolved bypasses the
proxy. In this case, the function proceeds as for
INTERNET_OPEN_TYPE_DIRECT.

INTERNET_OPEN_TYPE_PRECONFIG

Retrieve the proxy or direct configuration from the
registry.

lpszProxyName
Address of a string that contains the name of the proxy server (or
servers) to use if proxy access was specified. If this parameter is
NULL, the function reads proxy information from the registry. For more
information about this parameter, see the comments below.

lpszProxyBypass
Address of an optional list of host names or IP addresses, or both, that
are known locally. Requests to these names are not routed through the
proxy. The list can contain wildcards, such as "157.55.* *int*", meaning
any IP address starting with 157.55, or any name containing the
substring "int", will bypass the proxy.

If this parameter specifies the "<local>" macro as the only entry, the
function bypasses any host name that does not contain a period. For
example, "www.microsoft.com" would be routed to the proxy, whereas
"internet" would not.

If this parameter is NULL, the function reads the bypass list from the
registry.

dwFlags
Flag that indicates various options affecting the behavior of the
function. Can be a combination of these values:

INTERNET_FLAG_OFFLINE

Satisfy download operations on this handle through the
persistent cache only. If the item does not exist in
the cache, the function returns an appropriate error
code.

INTERNET_FLAG_ASYNC

Future operations on this handle may fail with
ERROR_IO_PENDING. A status callback will be made with
INTERNET_STATUS_REQUEST_COMPLETE. This callback will
be on a thread other than the one for the original
request. A status callback routine must be registered
or the functions will be completed synchronously.

This function is the first Win32 Internet function called by an
application. It tells the Internet DLL to initialize internal data
structures and prepare for future calls from the application. When the

 Win32 Internet Programmer's Reference

application finishes using the Internet functions, it should call
InternetCloseHandle to free the handle and any associated resources.

If dwFlags includes INTERNET_FLAG_ASYNC, all handles derived from this
handle will have asynchronous behavior as long as a status callback routine
is registered. For a function to be completed synchronously, dwContext must
be set to zero for that call.

By default, the function assumes that the proxy specified by lpszProxyName
is a CERN proxy. For example, "proxy" defaults to a CERN proxy called
"proxy" that listens at port 80 (decimal). An application can specify more
than one proxy, including different proxies for the different protocols.
For example, if you specify "ftp=ftp://ftp-gw gopher=http://jericho:99
proxy", FTP requests are made through the FTP proxy "ftp-gw", which listens
at port 21 (default for FTP), and Gopher requests are made through a CERN
proxy called "jericho", which listens at port 99. All other requests (for
example, HTTP requests) are made through the CERN proxy called "proxy",
which listens at port 80. Note that if the application is only using FTP,
for example, it would not need to specify "ftp=ftp://ftp-gw:21". It could
specify just "ftp-gw". An application must specify the protocol names only
if it will be using more than one protocol per handle returned by
InternetOpen.

The application can make any number of calls to InternetOpen, although a
single call is normally sufficient. The application may need to have
separate behaviors defined for each InternetOpen instance, such as
different proxy servers configured for each.

See also InternetCloseHandle

InternetOpenUrl
HINTERNET InternetOpenUrl(
 IN HINTERNET hInternetSession,
 IN LPCTSTR lpszUrl,
 IN LPCTSTR lpszHeaders OPTIONAL,
 IN DWORD dwHeadersLength,
 IN DWORD dwFlags,
 IN DWORD dwContext
);

Begins reading a complete FTP, Gopher, or HTTP Universal Resource Locator
(URL). Use InternetCanonicalizeUrl first if the URL being used contains
a relative URL and a base URL separated by blank spaces.

• Returns a valid handle to the FTP, Gopher, or HTTP URL if the connection
is successfully established, or NULL if the connection fails. To get a
specific error code, call GetLastError. To determine why access to the
service was denied, call InternetGetLastResponseInfo.

hInternetSession
Handle of the current Internet session. The handle must have been
returned by a previous call to InternetOpen.

Microsoft Win32 Internet Functions 25

lpszUrl
Address of a string that contains the URL to begin reading. Only URLs
beginning with ftp:, gopher:, http:, or https: are supported.

lpszHeaders
Address of a string that contains the headers to be sent to the HTTP
server. (For more information, see the description of the lpszHeaders
parameter to HttpSendRequest.)

dwHeadersLength
Length, in characters, of the additional headers. If this parameter is -
1L and lpszHeaders is not NULL, lpszHeaders is assumed to be zero-
terminated (ASCIIZ) and the length is calculated.

dwFlags
Action flags. Can be one of these values:

INTERNET_FLAG_RELOAD

Get the data from the wire even if it is locally
cached.

INTERNET_FLAG_DONT_CACHE

Do not cache the data, either locally or in any
gateways.

INTERNET_FLAG_RAW_DATA

Return raw data (WIN32_FIND_DATA structures for FTP,
and GOPHER_FIND_DATA structures for Gopher). If this
flag is not specified, InternetOpenUrl returns HTML
formatted for directories.

INTERNET_FLAG_SECURE

Request secure transactions on the wire with Secure
Sockets Layer or PCT. This flag applies to HTTP
requests only.

INTERNET_FLAG_EXISTING_CONNECT

If possible, reuse the existing connections to the
server for new requests generated by InternetOpenUrl
instead of creating a new session for each request.

dwContext
An application-defined value that is passed, along with the returned
handle, to any callback functions.

This is a general function that an application can use to retrieve data
over any of the protocols that the Win32 Internet functions support. This
function is particularly useful when the application does not need to
access the particulars of a protocol, but only requires the data
corresponding to a URL. The InternetOpenUrl function parses the URL
string, establishes a connection to the server, and prepares to download
the data identified by the URL. The application can then use
InternetReadFile to retrieve the URL data. It is not necessary to call
InternetConnect before InternetOpenUrl.

InternetOpenUrl disables Gopher on ports less than 1024, except for port
70 (the standard Gopher port) and port 105 (typically used for Central
Services Organization [CSO] name searches).

 Win32 Internet Programmer's Reference

Use InternetCloseHandle to close the handle returned from
InternetOpenUrl. However, note that closing the handle before all the URL
data has been read results in the connection being terminated.

See also HttpSendRequest, InternetCloseHandle, InternetOpen,
InternetReadFile

InternetQueryDataAvailable
BOOL
 IN HINTERNET hFile,
 OUT LPDWORD lpdwNumberOfBytesAvailable,
 IN DWORD dwFlags,
 IN DWORD dwContext
);

Queries the amount of data available.

• Returns TRUE if the function succeeds, or FALSE otherwise. To get
extended error information, call GetLastError. If the function finds
no matching files, the GetLastError function returns
ERROR_NO_MORE_FILES.

hFile
Valid Internet file handle, as returned by FtpOpenFile,
GopherOpenFile, or HttpOpenRequest.

lpdwNumberOfBytesAvailable
Address of a variable that receives the number of available bytes.

dwFlags
Reserved; must be zero.

dwContext
Reserved; must be zero.

This function returns the number of bytes of data that are available to be
read immediately by a subsequent call to InternetReadFile. If there is
currently no data available and the end of the file has not been reached,
the request waits until data becomes available. The amount of data
remaining will not be recalculated until all of the available data
indicated by the call to InternetQueryDataAvailable is read.

See also FtpFindFirstFile, GopherFindFirstFile

InternetQueryOption
BOOL InternetQueryOption(
 IN HINTERNET hInternet OPTIONAL,
 IN DWORD dwOption,
 OUT LPVOID lpBuffer OPTIONAL,

 IN OUT LPDWORD lpdwBufferLength
);

Microsoft Win32 Internet Functions 27

Queries an Internet option on the specified handle.

• Returns TRUE if successful, or FALSE otherwise. To get a specific error
code, call GetLastError.

hInternet
Internet handle on which to query information.

dwOption
Internet option to query. Can be one of these values:

INTERNET_OPTION_CALLBACK

Returns the address of the callback function defined
for this handle.

INTERNET_OPTION_CONNECT_TIMEOUT

Returns the time-out value in milliseconds to use for
Internet connection requests. If a connection request
takes longer than this time-out value, the request is
canceled. The default time-out value is infinite.

INTERNET_OPTION_CONNECT_RETRIES

Returns the retry count to use for Internet connection
requests. If a connection attempt still fails after
the specified number of tries, the request is
canceled. The default is five retries.

INTERNET_OPTION_CONNECT_BACKOFF

Returns the delay value, in milliseconds, to wait
between connection retries. (This flag is currently
not implemented.)

INTERNET_OPTION_CONTROL_SEND_TIMEOUT

Returns the time-out value, in milliseconds, to use
for non-data (control) Internet send requests. If a
non-data send request takes longer than this time-out,
the request is canceled. The default time-out is
infinite. Currently, this value has meaning only for
FTP sessions.

INTERNET_OPTION_CONTROL_RECEIVE_TIMEOUT

Returns the time-out value, in milliseconds, to use
for non-data (control) Internet receive requests. If a
non-data receive request takes longer than this time-
out value, the request is canceled. The default time-
out is infinite. Currently, this value has meaning
only for FTP sessions.

INTERNET_OPTION_DATA_SEND_TIMEOUT

Returns the time-out value, in milliseconds, to use
for Internet data send requests. If a data send
request takes longer than this time-out value, the
request is canceled. The default time-out value is
infinite.

INTERNET_OPTION_DATA_RECEIVE_TIMEOUT

Returns the time-out value, in milliseconds, to use
for Internet data receive requests. If a data receive
request takes longer than this time-out value, the
request is canceled. The default time-out value is

 Win32 Internet Programmer's Reference

infinite.

INTERNET_OPTION_HANDLE_TYPE

Returns the type of the Internet handle passed in.
Possible return values include:

INTERNET_HANDLE_TYPE_INTE
RNET

INTERNET_HANDLE_TYPE_CONN
ECT_FTP

INTERNET_HANDLE_TYPE_CONN
ECT_GOPHER

INTERNET_HANDLE_TYPE_CONN
ECT_HTTP

INTERNET_HANDLE_TYPE_FTP_
FIND

INTERNET_HANDLE_TYPE_FTP_
FIND_HTML

INTERNET_HANDLE_TYPE_FTP_
FILE

INTERNET_HANDLE_TYPE_FTP_
FILE_HTML

INTERNET_HANDLE_TYPE_GOPH
ER_FIND

INTERNET_HANDLE_TYPE_GOPH
ER_FIND_HTML

INTERNET_HANDLE_TYPE_GOPH
ER_FILE

INTERNET_HANDLE_TYPE_GOPH
ER_FILE_HTML

INTERNET_HANDLE_TYPE_HTTP
_REQUEST

INTERNET_OPTION_CONTEXT_VALUE

Returns the context value associated with this
Internet handle.

INTERNET_OPTION_READ_BUFFER_SIZE

Returns the size of the read buffer (for example, the
buffer used by FtpGetFile).

INTERNET_OPTION_WRITE_BUFFER_SIZE

Returns the size of the write buffer (for example, the
buffer used by FtpPutFile).

INTERNET_OPTION_ASYNC_PRIORITY

Returns the priority of this download if it is an
asynchronous download.

INTERNET_OPTION_PARENT_HANDLE

Returns the parent handle of this handle.

INTERNET_OPTION_KEEP_CONNECTION

Returns an indication whether this handle uses

Microsoft Win32 Internet Functions 29

persistent connections. Can be one of these values:

INTERNET_KEEP_ALIVE_UNKNO
WN

INTERNET_KEEP_ALIVE_ENABL
ED

INTERNET_KEEP_ALIVE_DISAB
LED

INTERNET_OPTION_USERNAME

Returns the user name associated with a handle
returned by InternetConnect.

INTERNET_OPTION_PASSWORD

Returns the password associated with the handle
returned by InternetConnect.

INTERNET_OPTION_REQUEST_FLAGS

Returns special status flags about the current
download in progress. The only flag that is returned
at this time is INTERNET_REQFLAG_FROM_CACHE. This is
the way for the caller to find out whether a request
is being satisfied from the cache.

INTERNET_OPTION_EXTENDED_ERROR

Returns the Windows Sockets error code that was mapped
to the ERROR_INTERNET_ error codes last returned in
this thread context.

INTERNET_OPTION_SECURITY_CERTIFICATE_STRUCT

Returns the certificate for an SSL/PCT server into the
INTERNET_CERTIFICATE_INFO structure.

INTERNET_OPTION_SECURITY_CERTIFICATE

Returns the certificate for an SSL/PCT server into a
formatted string.

INTERNET_OPTION_SECURITY_KEY_BITNESS

Returns the bit size of the encryption key. The larger
the number, the greater the encryption strength being
used.

INTERNET_OPTION_OFFLINE_MODE

Not currently implemented.

INTERNET_OPTION_CACHE_STREAM_HANDLE

Returns the file handle being used to write the cached
data.

INTERNET_OPTION_ASYNC

Not currently implemented.

INTERNET_OPTION_SECURITY_FLAGS

Returns the security flags for a handle. Can be a
combination of these values:

SECURITY_FLAG_128BIT

SECURITY_FLAG_40BIT

 Win32 Internet Programmer's Reference

SECURITY_FLAG_56BIT

SECURITY_FLAG_IETFSSL4

SECURITY_FLAG_IGNORE_CERT
_CN_INVALID

SECURITY_FLAG_IGNORE_CERT
_DATE_INVALID

SECURITY_FLAG_IGNORE_REDI
RECT_TO_HTTP

SECURITY_FLAG_IGNORE_REDI
RECT_TO_HTTPS

SECURITY_FLAG_NORMALBITNE
SS

SECURITY_FLAG_PCT

SECURITY_FLAG_PCT4

SECURITY_FLAG_SECURE

SECURITY_FLAG_SSL

SECURITY_FLAG_SSL3

SECURITY_FLAG_UNKNOWNBIT

INTERNET_OPTION_DATAFILE_NAME

Returns the name of the file backing a downloaded
entity.

INTERNET_OPTION_URL

Returns the full URL of a downloaded entity.

INTERNET_OPTION_REFRESH

Returns TRUE if variables are allowed to be re-read
from the registry for a handle.

INTERNET_OPTION_PROXY

Returns the proxy information on an existing
InternetOpen handle when the process handle is not
NULL. If the process handle is NULL, the API sets or
queries the global proxy information. The lpBuffer
parameter is an INTERNET_PROXY_INFO structure that
contains the proxy information.

INTERNET_OPTION_VERSION

Returns the version number of Wininet.dll. The
lpBuffer parameter is the address of an
INTERNET_VERSION_INFO structure.

INTERNET_OPTION_USER_AGENT

Returns the user agent string on handles supplied by
InternetOpen and used in a subsequent
HttpSendRequest, so long as it is not overridden by
a header added by HttpAddRequestHeaders or
HttpSendRequest.

lpBuffer
Address of a buffer that receives the option setting.

Microsoft Win32 Internet Functions 31

lpdwBufferLength
Address of a variable that contains the length of lpBuffer. When the
function returns, this parameter receives the length of the data placed
into lpBuffer. If GetLastError returns ERROR_INSUFFICIENT_BUFFER, this
parameter receives the number of bytes required to hold the created URL.

See also FtpGetFile, FtpPutFile, InternetConnect, InternetOpen,
InternetSetOption

InternetReadFile
BOOL InternetReadFile(
 IN HINTERNET hFile,
 IN LPVOID lpBuffer,
 IN DWORD dwNumberOfBytesToRead,
 OUT LPDWORD lpNumberOfBytesRead
);

Reads data from a handle opened by the InternetOpenUrl, FtpOpenFile,
GopherOpenFile, or HttpOpenRequest function.

• Returns TRUE if successful or FALSE otherwise. To get extended error
information, call GetLastError. An application can also use
InternetGetLastResponseInfo when necessary.

hFile
Valid handle returned from a previous call to InternetOpenUrl,
FtpOpenFile, GopherOpenFile, or HttpOpenRequest.

lpBuffer
Address of a buffer that receives the data read.

dwNumberOfBytesToRead
Number of bytes to read.

lpNumberOfBytesRead
Address of a variable that receives the number of bytes read. The
InternetReadFile function sets this value to zero before doing any
work or error checking.

If the return value is TRUE and the number of bytes read is zero, the
transfer has been completed and there are no more bytes to read on the
handle. This is analogous to reaching EOF in a local file. Call
InternetCloseHandle to free up the connection to the server.

The buffer pointed to by lpBuffer is not always filled by calls to
InternetReadFile (sufficient data may not have arrived from the server).
When reading HTML data, for the first read posted, the buffer must be large
enough to hold the HTML headers. When reading HTML-encoded directory
entries, the buffer must be large enough to hold at least one complete
entry.

When the item being read is also being cached by a Win32 Internet function,
the application must ensure that a read is made for end-of-file so the
cache file is committed correctly.

 Win32 Internet Programmer's Reference

This function always fulfills the user's request. If more data is requested
than is available, the function waits until enough data to complete the
request is available. The only time that less data is returned than
requested is when the end of the file has been reached.

This function can also be used to retrieve FTP and Gopher directory
listings as an HTML document on a handle opened by InternetOpenUrl. The
INTERNET_FLAG_RAW_DATA value must not have been specified in the call to
InternetOpenUrl.

See also FtpOpenFile, GopherOpenFile, HttpOpenRequest,
InternetCloseHandle, InternetOpenUrl

InternetSetFilePointer
BOOL InternetSetFilePointer(
 IN HINTERNET hFile,
 IN LONG IDistanceToMove,
 IN PVOID pReserved,
 IN DWORD dwMoveMethod,
 IN DWORD dwContext
);

Sets a file position for InternetReadFile. This is a synchronous call;
however, subsequent calls to InternetReadFile may block or return
pending if the data is not available from the cache and the server does not
support random access.

• Returns the current file position if the function succeeds, or -1
otherwise.

hFile
Valid handle returned from a previous call to FtpOpenFile,
GopherOpenFile, InternetOpenUrl on an HTTP URL, or to
HttpOpenRequest (using the GET or HEAD method and passed to
HttpSendRequest). This handle must not have been created with the
INTERNET_FLAG_DONT_CACHE or INTERNET_FLAG_NO_CACHE_WRITE value set.

IDistanceToMove
Number of bytes to move the file pointer. A positive value moves the
pointer forward in the file, and a negative value moves it backward.

pReserved
Reserved; must be NULL.

dwMoveMethod
Starting point for the file pointer move. Can be one of these values:

FILE_BEGIN The starting point is zero or the
beginning of the file. If
FILE_BEGIN is specified,
lDistanceToMove is interpreted as
an unsigned location for the new
file pointer.

FILE_CURRENT The current value of the file
pointer is the starting point.

Microsoft Win32 Internet Functions 33

FILE_END The current end-of-file position
is the starting point. This
method fails if the content
length is unknown.

dwContext
Reserved; must be zero.

See also FtpOpenFile, GopherOpenFile, HttpOpenRequest,
HttpSendRequest, InternetOpenUrl, InternetReadFile

InternetSetOption
BOOL InternetSetOption(
 IN HINTERNET hInternet OPTIONAL,
 IN DWORD dwOption,
 IN LPVOID lpBuffer,
 IN DWORD dwBufferLength
);

Sets an Internet option on the specified handle.

• Returns TRUE if successful, or FALSE otherwise. To get a specific error
code, call GetLastError.

hInternet
Internet handle on which to set information.

dwOption
Internet option to set. Can be a combination of these values:

INTERNET_OPTION_CALLBACK

Sets the address of the callback function defined for
this handle.

INTERNET_OPTION_CONNECT_TIMEOUT

Sets the time-out value, in milliseconds, to use for
Internet connection requests. If a connection request
takes longer than this time-out value, the request is
canceled. The default time-out value is infinite.

INTERNET_OPTION_CONNECT_RETRIES

Sets the retry count to use for Internet connection
requests. If a connection attempt still fails after
the specified number of tries, the request is
canceled. The default is five retries.

INTERNET_OPTION_CONNECT_BACKOFF

Sets the delay value, in milliseconds, to wait between
connection retries.

INTERNET_OPTION_CONTROL_RECEIVE_TIMEOUT

Sets the time-out value, in milliseconds, to use for
non-data (control) Internet receive requests. If a
non-data receive request takes longer than this time-
out value, the request is canceled. The default time-
out is infinite. Currently, this value has meaning

 Win32 Internet Programmer's Reference

only for FTP sessions.

INTERNET_OPTION_CONTROL_SEND_TIMEOUT

Sets the time-out value, in milliseconds, to use for
non-data (control) Internet send requests. If a non-
data send request takes longer than this time-out
value, the request is canceled. The default time-out
value is infinite. Currently, this value has meaning
only for FTP sessions.

INTERNET_OPTION_CONTROL_RECEIVE_TIMEOUT

Sets the time-out value, in milliseconds, to use for
non-data (control) Internet receive requests. If a
non-data receive request takes longer than this time-
out value, the request is canceled. The default time-
out value is infinite. Currently, this value has
meaning only for FTP sessions.

INTERNET_OPTION_DATA_SEND_TIMEOUT

Sets the time-out value, in milliseconds, to use for
data Internet send requests. If a data send request
takes longer than this time-out value, the request is
canceled. The default time-out value is infinite.

INTERNET_OPTION_DATA_RECEIVE_TIMEOUT

Sets the time-out value, in milliseconds, to use for
data Internet receive requests. If a data receive
request takes longer than this time-out value, the
request is canceled. The default time-out value is
infinite.

INTERNET_OPTION_ASYNC_PRIORITY

Sets the priority of this download if it is an
asynchronous download. This option has not been
implemented.

INTERNET_OPTION_CONTEXT_VALUE

Sets the context value associated with this Internet
handle. Currently, this sets the context value to the
address stored in the pointer, DWORD(lpBuffer). For
Internet Explorer 4.0, this will be corrected so that
the value stored in the buffer will be used, and this
flag will be reassigned a new value. The old value,
10, will be preserved so that applications that are
written for the old behavior will still be supported.

INTERNET_OPTION_REFRESH

Allows variables to be re-read from the registry for a
handle.

INTERNET_OPTION_PROXY

Sets the proxy information on an existing
InternetOpen handle when the process handle is not
NULL. If the process handle is NULL, the API sets or
queries the global proxy information. The lpBuffer
parameter is an INTERNET_PROXY_INFO structure that
contains the proxy information.

INTERNET_OPTION_USER_AGENT

Sets the user agent string on handles supplied by
InternetOpen and used in subsequent

Microsoft Win32 Internet Functions 35

HttpSendRequest functions, as long as it is not
overridden by a header added by
HttpAddRequestHeaders or HttpSendRequest.

INTERNET_OPTION_USERNAME

Sets the user name associated with a handle returned
by InternetConnect.

INTERNET_OPTION_PASSWORD

Sets the password associated with a handle returned by
InternetConnect.

INTERNET_OPTION_READ_BUFFER_SIZE

Sets the size, in bytes, of the buffer to use to read
the data.

INTERNET_OPTION_WRITE_BUFFER_SIZE

Sets the size of the write buffer (for example, the
buffer used by FtpPutFile).

INTERNET_OPTION_WRITE_DATA

Sets the size, in bytes, of the buffer to use while
writing out the data.

lpBuffer
Address of a buffer that contains the option setting.

dwBufferLength
Length of the lpBuffer buffer.

See also FtpGetFile, FtpPutFile, InternetConnect, InternetOpen,
InternetQueryOption

InternetSetOptionEx
BOOL InternetSetOptionEx(
 IN HINTERNET hInternet OPTIONAL,
 IN DWORD dwOption,
 IN LPVOID lpBuffer,
 IN DWORD dwBufferLength,
 IN DWORD dwFlags
);

Sets an Internet option on the specified handle.

• Returns TRUE if successful, or FALSE otherwise. To get a specific error
code, call GetLastError.

hInternet
Internet handle on which to set information.

dwOption
Internet option to set. For a list of possible values, see
InternetSetOption.

lpBuffer
Address of a buffer that contains the option setting.

 Win32 Internet Programmer's Reference

dwBufferLength
Length of the lpBuffer buffer.

dwFlags
Action flags. Can be one of these values:

Value Meaning

ISO_GLOBAL Modify the option globally.

ISO_REGISTRY Write the option to the registry
(where applicable).

InternetSetStatusCallback
INTERNET_STATUS_CALLBACK InternetSetStatusCallback(
 IN HINTERNET hInternet,
 IN INTERNET_STATUS_CALLBACK lpfnInternetCallback
);

Sets up a callback function that Win32 Internet functions can call as
progress is made during an operation.

• Returns the previously defined status callback function if successful,
NULL if there was no previously defined status callback function, or
INTERNET_INVALID_STATUS_CALLBACK if the callback function is not valid.

hInternet
Handle for which the callback is to be set.

lpfnInternetCallback
Address of the callback function to call when progress is made, or to
return NULL to remove the existing callback function. For more
information about the callback function, see InternetStatusCallback.

Both synchronous and asynchronous functions use the callback function to
indicate the progress of the request, such as resolving a name, connecting
to a server, and so on. The callback function is required for an
asynchronous operation. The asynchronous request will call back to the
application with INTERNET_STATUS_REQUEST_COMPLETE to indicate the request
has been completed.

A callback function can be set on any handle, and is inherited by derived
handles. A callback function can be changed using
InternetSetStatusCallback, providing there are no pending requests that
need to use the previous callback value. Note, however, that changing the
callback function on a handle does not change the callbacks on derived
handles, such as that returned by InternetConnect. You must change the
callback function at each level.

Many of the Win32 Internet functions perform several operations on the
network. Each operation can take time to complete, and each can fail.

It is sometimes desirable to display status information during a long-term
operation. You can display status information by setting up an Internet
status callback function that cannot be removed as long as any

callbacks or any asynchronous functions are pending.

Microsoft Win32 Internet Functions 37

After initiating InternetSetStatusCallback, it can be accessed from
within any Win32 Internet function for monitoring time-intensive network
operations.

InternetStatusCallback
VOID InternetStatusCallback(
 IN HINTERNET hInternet,
 IN DWORD dwContext,
 IN DWORD dwInternetStatus,
 IN LPVOID lpvStatusInformation OPTIONAL,
 IN DWORD dwStatusInformationLength
);

This is a placeholder for the application-defined status callback

• No return value.

hInternet
Handle for which the callback function is being called.

dwContext
Application-defined context value associated with hInternet

dwInternetStatus
Status code that indicates why the callback function is being called.
Can be one of these values:

INTERNET_STATUS_RESOLVING_NAME

Looking up the IP address of the name contained in
lpvStatusInformation.

INTERNET_STATUS_NAME_RESOLVED

Successfully found the IP address of the name
contained in lpvStatusInformation.

INTERNET_STATUS_CONNECTING_TO_SERVER

Connecting to the socket address (SOCKADDR) pointed to
by lpvStatusInformation.

INTERNET_STATUS_CONNECTED_TO_SERVER

Successfully connected to the socket address
(SOCKADDR) pointed to by lpvStatusInformation.

INTERNET_STATUS_SENDING_REQUEST

Sending the information request to the server. The
lpvStatusInformation parameter is NULL.

INTERNET_STATUS_ REQUEST_SENT

Successfully sent the information request to the
server. The lpvStatusInformation parameter points to a
DWORD containing the number of bytes sent.

INTERNET_STATUS_RECEIVING_RESPONSE

Waiting for the server to respond to a request. The
lpvStatusInformation parameter is NULL.

INTERNET_STATUS_RESPONSE_RECEIVED

 Win32 Internet Programmer's Reference

Successfully received a response from the server. The
lpvStatusInformation parameter points to a DWORD
containing the number of bytes received.

INTERNET_STATUS_REDIRECT

Indicates that an HTTP request is about to
automatically redirect the request. The
lpvStatusInformation parameter points to the new URL.
At this point, the application may read any data
returned by the server with the redirect response, and
may query the response headers. It may also cancel the
operation by closing the handle. This callback is not
made if the original request specified
INTERNET_FLAG_NO_AUTO_REDIRECT.

INTERNET_STATUS_CLOSING_CONNECTION

Closing the connection to the server. The
lpvStatusInformation parameter is NULL.

INTERNET_STATUS_CONNECTION_CLOSED

Successfully closed the connection to the server. The
lpvStatusInformation parameter is NULL.

INTERNET_STATUS_HANDLE_CREATED

Used by InternetConnect to indicate it has created
the new handle. This lets the application call
InternetCloseHandle from another thread, if the
connect is taking too long.

INTERNET_STATUS_HANDLE_CLOSING

This handle value is now terminated

INTERNET_STATUS_REQUEST_COMPLETE

An asynchronous operation has been completed. See
InternetOpen for details on INTERNET_FLAG_ASYNC.

The lpvStatusInformation parameter points to an
INTERNET_ASYNC_RESULT structure. The
dwStatusInformationLength parameter contains the final
completion status of the asynchronous function. If
this is ERROR_INTERNET_EXTENDED_ERROR, the application
can retrieve the server error information by using
InternetGetLastResponseInfo.

lpvStatusInformation
Address of a buffer that contains information pertinent to this call to
the callback function.

dwStatusInformationLength
Size of the lpvStatusInformation buffer.

In the case of INTERNET_STATUS_REQUEST_COMPLETE, lpvStatusInformation is
the address of an INTERNET_ASYNC_RESULT structure.

An application uses the callback function to indicate the progress of
synchronous and asynchronous functions, and to indicate the completion of
an asynchronous request.

Because callbacks are made during processing of the request, the
application should spend as little time as possible in the callback

function to avoid degrading data throughput on the network. For example,

Microsoft Win32 Internet Functions 39

displaying a dialog box in a callback function may be such a lengthy
operation that the server terminates the request.

The callback function may be called in a thread context different from the
thread that initiated the request.

See also InternetCloseHandle, InternetConnect,
InternetGetLastResponseInfo, InternetOpen

InternetTimeFromSystemTime
BOOL InternetTimeFromSystemTime(
 IN CONST SYSTEMTIME *pst,
 IN DWORD dwRFC,
 OUT LPSTR lpszTime,
 IN DWORD cbTime
);

Formats a date and time according to the specified RFC format (as specified
in the HTTP version 1.0 specification).

• Returns TRUE if the function succeeds, or FALSE otherwise. To get
extended error information, call GetLastError.

pst
Address of a SYSTEMTIME structure that contains the date and time to
format.

dwRFC
RFC format.

lpszTime
Address of a buffer that receives the formatted data and time.

cbTime
Size, in bytes, of the lpszTime buffer.

InternetTimeToSystemTime
BOOL InternetTimeToSystemTime(
 IN LPCSTR lpszTime,
 OUT SYSTEMTIME *pst,
 IN DWORD dwReserved
);

Takes an HTTP time/date string and converts it to a SYSTEMTIME structure.

• Returns TRUE if the string was converted, or FALSE otherwise. To get
extended error information, call GetLastError.

lpszTime
Pointer to a null-terminated date/time string to convert

pst
Address of the pointer to the converted time.

 Win32 Internet Programmer's Reference

dwReserved
Reserved; must be zero.

InternetWriteFile
BOOL InternetWriteFile(
 IN HINTERNET hFile,
 IN LPCVOID lpBuffer,
 IN DWORD dwNumberOfBytesToWrite,
 OUT LPDWORD lpdwNumberOfBytesWritten
);

Writes data to an open Internet file.

• Returns TRUE if the function succeeds, or FALSE otherwise. To get
extended error information, call GetLastError. An application can also
use InternetGetLastResponseInfo, when necessary.

hFile
Valid handle returned from a previous call to FtpOpenFile.

lpBuffer
Address of a buffer that contains the data to be written to the file.

dwNumberOfBytesToWrite
Number of bytes to write to the file.

lpdwNumberOfBytesWritten
Address of a variable that receives the number of bytes written to the
buffer. The InternetWriteFile function sets this value to zero before
doing any work or error checking.

When the application is sending data, it must call InternetCloseHandle
to end the data transfer.

See also FtpOpenFile, InternetCloseHandle

TP Functions
The FTP functions deal with FTP file and directory manipulation and
navigation.

FtpCreateDirectory
BOOL FtpCreateDirectory(
 IN HINTERNET hFtpSession,
 IN LPCTSTR lpszDirectory
);

Creates a new directory on the FTP server.

• Returns TRUE if successful, or FALSE otherwise. To get a specific
error code, call GetLastError. If the error code indicates that the

Microsoft Win32 Internet Functions 41

FTP server denied the request to create a directory, use
InternetGetLastResponseInfo to determine why.

hFtpSession
Valid handle to an FTP session.

lpszDirectory
Address of a null-terminated string that contains the name of the
directory to create on the remote system. This can be either a fully
qualified path name or a name relative to the current directory.

An application should use FtpGetCurrentDirectory to determine the remote
site's current working directory, instead of assuming that the remote
system uses a hierarchical naming scheme for directories.

The lpszDirectory parameter can be either partially or fully qualified file
names relative to the current directory. A backslash (\) or forward slash
(/) can be used as the directory separator for either name. The
FtpCreateDirectory function translates the directory name separators to
the appropriate character before they are used.

FtpDeleteFile
BOOL FtpDeleteFile(
 IN HINTERNET hFtpSession,
 IN LPCTSTR lpszFileName
);

Deletes a file stored on the FTP server.

• Returns TRUE if successful, or FALSE otherwise. To get a specific error
code, call GetLastError.

hFtpSession
Valid handle to an FTP session.

lpszFileName
Address of a null-terminated string that contains the name of the file
to delete on the remote system.

The lpszFile parameter can be either partially or fully qualified file
names relative to the current directory. A backslash (\) or forward slash
(/) can be used as the directory separator for either name. The
FtpDeleteFile function translates the directory name separators to the
appropriate character before they are used.

FtpFindFirstFile
HINTERNET FtpFindFirstFile(
 IN HINTERNET hFtpSession,
 IN LPCTSTR lpszSearchFile OPTIONAL,
 OUT LPWIN32_FIND_DATA lpFindFileData,
 IN DWORD dwFlags
 IN DWORD dwContext

 Win32 Internet Programmer's Reference

);

Searches the specified directory of the given FTP session. File and
directory entries are returned to the application in the WIN32_FIND_DATA
structure.

• Returns a valid handle for the request if the directory enumeration was
started successfully; otherwise, returns NULL. To get a specific error
code, call GetLastError. If the function finds no matching files,
GetLastError returns ERROR_NO_MORE_FILES.

hFtpSession
Valid handle to an FTP session returned from InternetConnect.

lpszSearchFile
Address of a null-terminated string that specifies a valid directory
path name or file name for the FTP server's file system. If the value of
lpszSearchFile is NULL or if it is an empty string, it will find the
first file in the current directory on the server.

lpFindFileData
Address of a WIN32_FIND_DATA structure that receives information about
the found file or directory.

dwFlags
Application-defined value that associates this search with any
application. For a description of the values, see InternetOpenUrl.

dwContext
Application-defined value that associates this search with any
application data. This parameter is used only if the application has
already called InternetSetStatusCallback to set up a status callback
function.

This function enumerates both files and directories.

The FtpFindFirstFile function is similar to the Win32 FindFirstFile
function. Note, however, that only one FtpFindFirstFile can occur at a
time within a given FTP session. The enumerations, therefore, are
correlated with the FTP session handle. This is because the FTP protocol
allows only a single directory enumeration per session.

After calling FtpFindFirstFile and until calling InternetCloseHandle,
the application cannot call FtpFindFirstFile again on a given FTP
session handle. If this happens, calls to the FtpFindFirstFile function
will fail with error code ERROR_FTP_TRANSFER_IN_PROGRESS.

After beginning a directory enumeration with FtpFindFirstFile, the
InternetFindNextFile function can be used to continue the enumeration.

The InternetCloseHandle function is used to close the handle returned
from FtpFindFirstFile. If the InternetCloseHandle function closes the
handle before InternetFindNextFile fails with ERROR_NO_MORE_FILES, the
directory enumeration will be terminated.

Because the FTP protocol provides no standard means of enumerating,
some of the common information about files, such as file creation date

and time, is not always available or correct. When this happens,

Microsoft Win32 Internet Functions 43

FtpFindFirstFile and InternetFindNextFile fill in unavailable
information with a "best guess" based on available information. For
example, creation and last access dates will often be the same as the
file's modification date.

The application cannot call FtpFindFirstFile between calls to
FtpOpenFile and InternetCloseHandle.

See also FtpOpenFile, InternetCloseHandle, InternetFindNextFile,
InternetSetStatusCallback

FtpGetCurrentDirectory
BOOL FtpGetCurrentDirectory(
 IN HINTERNET hFtpSession,
 OUT LPCTSTR lpszCurrentDirectory,
 IN OUT LPDWORD lpdwCurrentDirectory
);

Retrieves the current directory for the specified FTP session.

• Returns TRUE if successful, or FALSE otherwise. To get the specific
error code, call GetLastError. If the error code indicates that the
FTP server denied the request to change to a directory, use
InternetGetLastResponseInfo to determine why.

hFtpSession
Valid handle to an FTP session.

lpszCurrentDirectory
Address of a buffer that receives the current directory string, which
specifies the absolute path to the current directory. The string is null
terminated.

lpdwCurrentDirectory
Address of a variable that specifies the length, in characters, of the
buffer for the current directory string. The buffer length must include
room for a terminating null character. Using a length of MAX_PATH is
sufficient for all path names. When the function returns, this parameter
receives the number of characters copied into the buffer.

If the lpszCurrentDirectory buffer is not large enough,
lpdwCurrentDirectory receives the number of bytes required to retrieve the
full, current directory name.

FtpGetFile
BOOL FtpGetFile(
 IN HINTERNET hFtpSession,
 IN LPCSTR lpszRemoteFile,
 IN LPCSTR lpszNewFile,
 IN BOOL fFailIfExists,
 IN DWORD dwFlagsAndAttributes,

 Win32 Internet Programmer's Reference

 IN DWORD dwFlags,
 IN DWORD dwContext
);

Retrieves a file from the FTP server and stores it under the specified file
name, creating a new local file in the process.

• Returns TRUE if successful, or FALSE otherwise. To get a specific error
code, call GetLastError.

hFtpSession
Valid handle to an FTP session.

lpszRemoteFile
Address of a null-terminated string that contains the name of the file
to retrieve from the remote system.

lpszNewFile
Address of a null-terminated string that contains the name of the file
to create on the local system.

fFailIfExists
Boolean flag that indicates whether the function should proceed if a
local file of the specified name already exists. If fFailIfExists is
TRUE and the local file exists, FtpGetFile fails.

dwFlagsAndAttributes
File attributes for the new file. Can be any combination of the
FILE_ATTRIBUTE_* flags used by CreateFile. See CreateFile in the
Win32 SDK for more information on FILE_ATTRIBUTE_* attributes.

dwFlags
Flags that control how the function will handle the file download. The
first set of flag values indicates the conditions under which the
transfer occurs. These transfer type flags can be used in combination
with the second set of flags that control caching. The application can
select one of these transfer type values:

FTP_TRANSFER_TYPE_ASCII

Transfer the file using FTP's ASCII (Type A) transfer method.
Control and formatting information is converted to local
equivalents.

FTP_TRANSFER_TYPE_BINARY

Transfer the file using FTP's Image (Type I) transfer method.
The file is transferred exactly as it exists with no changes.
This is the default transfer method.

INTERNET_FLAG_TRANSFER_ASCII

Transfer the file as ASCII.

INTERNET_FLAG_TRANSFER_BINARY

Transfer the file as binary.

The following flags handle how the caching of this file will be handled.
Any combination of the following flags can be used with the transfer

type flag. The possible values are:

INTERNET_FLAG_DONT_CACHE

Microsoft Win32 Internet Functions 45

Do not add the returned entity to the cache.

INTERNET_FLAG_HYPERLINK

Force a reload if there was no Expires time and no Last-
Modified time returned from the server when determining
whether to reload the item from the network.

INTERNET_FLAG_MAKE_PERSISTENT

Add the returned entity to the cache as a persistent entity.
This means that standard cache cleanup, consistency checking,
or garbage collection cannot remove this item from the cache.

INTERNET_FLAG_MUST_CACHE_REQUEST

Cause the operation to fail if the downloaded file cannot be
cached.

INTERNET_FLAG_NO_CACHE_WRITE

Do not add the returned entity to the cache.

INTERNET_FLAG_RELOAD

Force a download of the requested file, object, or directory
listing from the origin server, not from the cache.

INTERNET_FLAG_RESYNCHRONIZE

Cause the FTP resource to be reloaded from the server.

dwContext
Application-defined value that associates this search with any
application data. This is used only if the application has already
called InternetSetStatusCallback to set up a status callback
function.

The FtpGetFile function is a high-level routine that handles all the
bookkeeping and overhead associated with reading a file from an FTP server
and storing it locally. An application that needs to retrieve file data
only or that requires close control over the file transfer should use the
FtpOpenFile and InternetReadFile functions.

If the dwTransferType specifies FILE_TRANSFER_TYPE_ASCII, translation of
the file data converts control and formatting characters to local
equivalents. The default transfer is binary mode, where the file is
downloaded in the same format as it is stored on the server.

Both lpszRemoteFile and lpszNewFile can be either partially or fully
qualified file names relative to the current directory. A backslash (\) or
forward slash (/) can be used as the directory separator for either name.
The FtpGetFile function translates the directory name separators to the
appropriate character before they are used.

FtpOpenFile
HINTERNET FtpOpenFile(
 IN HINTERNET hFtpSession,
 IN LPCSTR lpszFileName,
 IN DWORD fdwAccess,
 IN DWORD dwFlags,
 IN DWORD dwContext

 Win32 Internet Programmer's Reference

);

Initiates access to a remote file for writing or reading.

• Returns a handle if successful. Otherwise, the function returns NULL. To
get a specific error code, call GetLastError.

hFtpSession
Valid handle to an FTP session.

lpszFileName
Address of a null-terminated string that contains the name of the file
to access on the remote system.

fdwAccess
Value that determines how the file will be accessed. This can be
GENERIC_READ or GENERIC_WRITE, but not both.

dwFlags
Conditions under which the transfers occur. The application should
select one transfer type and any of the flags that control how the
caching of the file will be controlled. The transfer type can be any one
of the following values:

FTP_TRANSFER_TYPE_ASCII

Transfer the file using FTP's ASCII (Type A) transfer method.
Control and formatting information is converted to local
equivalents.

FTP_TRANSFER_TYPE_BINARY

Transfer the file using FTP's Image (Type I) transfer method.
The file is transferred exactly as it exists with no changes.
This is the default transfer method.

INTERNET_FLAG_TRANSFER_ASCII

Transfer the file as ASCII.

INTERNET_FLAG_TRANSFER_BINARY

Transfer the file as binary.

The application can use one or more of the following values to control
the caching of the file:

INTERNET_FLAG_HYPERLINK

Force a reload if there was no Expires time and no Last-
Modified time returned from the server when determining
whether to reload the item from the network.

INTERNET_FLAG_MAKE_PERSISTENT

Add the returned entity to the cache as a persistent entity.
This means that standard cache cleanup, consistency checking,
or garbage collection cannot remove this item from the cache.

INTERNET_FLAG_MUST_CACHE_REQUEST

Cause the operation to fail if the downloaded file cannot be
cached.

INTERNET_FLAG_RELOAD

Force a download of the requested file, object, or directory
listing from the origin server, not from the cache.

Microsoft Win32 Internet Functions 47

INTERNET_FLAG_RESYNCHRONIZE

Cause the FTP resource to be reloaded from the server.

dwContext
Application-defined value that associates this search with any
application data. This is only used if the application has already
called InternetSetStatusCallback to set up a status callback
function.

The FtpOpenFile function should be used in the following situations:

• An application has data it needs to send to an FTP server to be created
as a file on the FTP server, but the application does not have a local
file containing the data. After the file is opened with FtpOpenFile,
the application uses InternetWriteFile to send the FTP file data to
the server.

• An application needs to retrieve a file from the server into
application-controlled memory, instead of writing the file to disk. The
application uses InternetReadFile after using FtpOpenFile to open
the file.

• An application needs a fine level of control over a file transfer. For
example, the application may need to display a "thermometer" when
downloading a file to indicate to the user that the file transfer is or
is not proceeding correctly.

After calling the FtpOpenFile function and until calling
InternetCloseHandle, the application can call only InternetReadFile or
InternetWriteFile, InternetCloseHandle, or FtpFindFirstFile. Calls
to other FTP functions on the same FTP session will fail and set the error
code to ERROR_FTP_TRANSFER_IN_PROGRESS

Only one file can be open in a single FTP session. Therefore, no file
handle is returned and the application simply uses the FTP session handle
when necessary.

The lpszFile parameter can be either partially or fully qualified file
names relative to the current directory. A backslash (\) or forward slash
(/) can be used as the directory separator for either name. The
FtpOpenFile function translates the directory name separators to the
appropriate character before they are used.

The InternetCloseHandle function is used to close the handle returned
from FtpOpenFile. If the InternetCloseHandle function closes the
handle before all the data has been transferred, the transfer is
terminated.

FtpPutFile
BOOL FtpPutFile(
 IN HINTERNET hFtpSession,
 IN LPCTSTR lpszLocalFile,
 IN LPCTSTR lpszNewRemoteFile,
 IN DWORD dwFlags,

 Win32 Internet Programmer's Reference

 IN DWORD dwContext
);

Stores a file on the FTP server.

• Returns TRUE if successful, or FALSE otherwise. To get a specific error
code, call GetLastError.

hFtpSession
Valid handle to an FTP session.

lpszLocalFile
Address of a null-terminated string that contains the name of the file
to send from the local system.

lpszNewRemoteFile
Address of a null-terminated string that contains the name of the file
to create on the remote system.

dwFlags
Conditions under which the transfer occurs. Can be any combination of
FTP_TRANSFER_* defined constants. For further information on the
FTP_TRANSFER_* constants, see FtpOpenFile.

dwContext
Application-defined value that associates this search with any
application data. This parameter is used only if the application has
already called InternetSetStatusCallback to set up a status
callback.

The FtpPutFile function is a high-level routine that handles all the
bookkeeping and overhead associated with reading a file locally and storing
it on an FTP server. An application that needs to send file data only, or
that requires close control over the file transfer, should use the
FtpOpenFile and InternetWriteFile functions.

If the dwTransferType specifies FILE_TRANSFER_TYPE_ASCII, translation of
the file data converts control and formatting characters to local
equivalents.

Both lpszNewRemoteFile and lpszLocalFile can be either partially or fully
qualified file names relative to the current directory. A backslash (\) or
forward slash (/) can be used as the directory separator for either name.
The FtpPutFile function translates the directory name separators to the
appropriate character before they are used.

FtpRemoveDirectory
BOOL FtpRemoveDirectory(
 IN HINTERNET hFtpSession,
 IN LPCTSTR lpszDirectory
);

Removes the specified directory on the FTP server.

Microsoft Win32 Internet Functions 49

• Returns TRUE if successful, or FALSE otherwise. To get the specific
error code, call GetLastError. If the error code indicates that the
FTP server denied the request to remove a directory, use
InternetGetLastResponseInfo to determine why.

hFtpSession
Valid handle to an FTP session.

lpszDirectory
Address of a null-terminated string that contains the name of the
directory to remove on the remote system. This can be either a fully
qualified path name or a name relative to the current directory.

An application should use FtpGetCurrentDirectory to determine the remote
site's current working directory, instead of assuming that the remote
system uses a hierarchical naming scheme for directories.

The lpszDirectory parameter can be either partially or fully qualified file
names relative to the current directory. A backslash (\) or forward slash
(/) can be used as the directory separator for either name. The
FtpRemoveDirectory function translates the directory name separators to
the appropriate character before they are used.

FtpRenameFile
BOOL FtpRenameFile(
 IN HINTERNET hFtpSession,
 IN LPCTSTR lpszExisting,
 IN LPCTSTR lpszNew
);

Renames a file stored on the FTP server.

• Returns TRUE if successful, or FALSE otherwise. To get a specific error
code, call GetLastError.

hFtpSession
Valid handle to an FTP session.

lpszExisting
Address of a null-terminated string that contains the name of the file
that will have its name changed on the remote FTP server.

lpszNew
Address of a null-terminated string that contains the new name for the
remote file.

The lpszExisting and lpszNew parameters can be either partially or fully
qualified file names relative to the current directory. A backslash (\) or
forward slash (/) can be used as the directory separator for either name.
The FtpRenameFile function translates the directory name separators to
the appropriate character before they are used.

 Win32 Internet Programmer's Reference

FtpSetCurrentDirectory
BOOL FtpSetCurrentDirectory(
 IN HINTERNET hFtpSession,
 IN LPCTSTR lpszDirectory
);

Changes to a different working directory on the FTP server.

• Returns TRUE if successful, or FALSE otherwise. To get the specific
error code, call GetLastError. If the error code indicates that the
FTP server denied the request to change a directory, use
InternetGetLastResponseInfo to determine why.

hFtpSession
Valid handle to an FTP session.

lpszDirectory
Address of a null-terminated string that contains the name of the
directory to change to on the remote system. This can be either a fully
qualified path name or a name relative to the current directory.

An application should use FtpGetCurrentDirectory to determine the remote
site's current working directory, instead of assuming that the remote
system uses a hierarchical naming scheme for directories.

The lpszDirectory parameter can be either partially or fully qualified file
names relative to the current directory. A backslash (\) or forward slash
(/) can be used as the directory separator for either name. The
FtpSetCurrentDirectory function translates the directory name separators
to the appropriate character before they are used.

opher Functions
The Gopher functions control the creation and use of the Internet Gopher
utilities.

GopherCreateLocator
BOOL GopherCreateLocator(
 IN LPCTSTR lpszHost,
 IN INTERNET_PORT nServerPort,
 IN LPCTSTR lpszDisplayString OPTIONAL,
 IN LPCTSTR lpszSelectorString OPTIONAL,
 IN DWORD dwGopherType,
 OUT LPCTSTR lpszLocator OPTIONAL,
 IN OUT LPDWORD lpdwBufferLength
);

Creates a Gopher or Gopher+ locator string from its component parts.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError or InternetGetLastResponseInfo.

Microsoft Win32 Internet Functions 51

lpszHost
Address of a string that contains the name of the host, or a dotted-
decimal IP address (such as 198.105.232.1).

nServerPort
Number of the port on which the Gopher server at lpszHost lives, in host
byte order. If nServerPort is INTERNET_INVALID_PORT_NUMBER, the default
Gopher port is read from the \etc\services file.

lpszDisplayString
Gopher document or directory to be displayed. If this parameter is NULL,
the function returns the default directory for the Gopher server.

lpszSelectorString
Address of the selector string to send to the Gopher server in order to
retrieve information. This parameter can be NULL.

dwGopherType
Value that specifies whether lpszSelectorString refers to a directory or
document, and whether the request is Gopher+ or Gopher. For more
information, see the GOPHER_FIND_DATA structure.

lpszLocator
Address of a buffer that receives the locator string. If lpszLocator is
NULL, lpdwBufferLength receives the needed buffer length, but the
function performs no other processing.

lpdwBufferLength
Length of the lpszLocator buffer. When the function returns, this
parameter receives the number of bytes written to the lpszLocator
buffer. If GetLastError returns ERROR_INSUFFICIENT_BUFFER, this
parameter receives the number of bytes required to form the locator
successfully.

To retrieve information from a Gopher server, an application must first get
a Gopher "locator" from the Gopher server.

The locator, which the application should treat as an opaque token, is
normally used for calls to the GopherFindFirstFile function to retrieve
a specific piece of information.

GopherGetLocatorType
BOOL GopherGetLocatorType(
 IN LPCTSTR lpszLocator,
 OUT LPDWORD lpdwGopherType
);

Parses a Gopher locator and determines its attributes.

lpszLocator
Address of the Gopher locator string to parse.

lpdwGopherType
Address of a variable that receives the type of the locator. The type is
a bitmask that consists of a combination of the following values:

 Win32 Internet Programmer's Reference

Value Meaning

GOPHER_TYPE_TEXT_FILE An ASCII text file.

GOPHER_TYPE_DIRECTORY A directory of additional
Gopher items.

GOPHER_TYPE_CSO A CSO telephone book server.

GOPHER_TYPE_ERROR Indicator of an error
condition.

GOPHER_TYPE_MAC_BINHEX A Macintosh file in BINHEX
format.

GOPHER_TYPE_DOS_ARCHIVE An MS-DOS® archive file.

GOPHER_TYPE_UNIX_UUENCODED A UUENCODED file.

GOPHER_TYPE_INDEX_SERVER An index server.

GOPHER_TYPE_TELNET A Telnet Server.

GOPHER_TYPE_BINARY A binary file.

GOPHER_TYPE_REDUNDANT Indicator of a duplicated
server. The information
contained within is a
duplicate of the primary
server. The primary server
is defined as the last
directory entry that did not
have a GOPHER_TYPE_REDUNDANT
type.

GOPHER_TYPE_TN3270 A TN3270 server.

GOPHER_TYPE_GIF A GIF graphics file.

GOPHER_TYPE_IMAGE An image file.

GOPHER_TYPE_BITMAP A bitmap file.

GOPHER_TYPE_MOVIE A movie file.

GOPHER_TYPE_SOUND A sound file.

GOPHER_TYPE_HTML An HTML document.

GOPHER_TYPE_PDF A PDF file.

GOPHER_TYPE_CALENDAR A calendar file.

GOPHER_TYPE_INLINE An inline file.

GOPHER_TYPE_UNKNOWN The item type is unknown.

GOPHER_TYPE_ASK An Ask+ item.

GOPHER_TYPE_GOPHER_PLUS A Gopher+ item.

The GopherGetLocatorType function returns information about the item
referenced by a Gopher locator. Note that it is possible for multiple
attributes to be set on a file. For example, both GOPHER_TYPE_TEXT_FILE and
GOPHER_TYPE_GOPHER_PLUS are set for a text file stored on a Gopher+ server.

GopherFindFirstFile
HINTERNET GopherFindFirstFile(
 IN HINTERNET hGopherSession,

 IN LPCTSTR lpszLocator OPTIONAL,

Microsoft Win32 Internet Functions 53

 IN LPCTSTR lpszSearchString OPTIONAL,
 OUT LPGOPHER_FIND_DATA lpFindData OPTIONAL,
 IN DWORD dwFlags,
 IN DWORD dwContext
);

Uses a Gopher locator and some search criteria to create a session with the
server and locate the requested documents, binary files, index servers, or
directory trees.

• Returns a valid search handle if successful, or NULL otherwise. To get
extended error information, call GetLastError or
InternetGetLastResponseInfo.

hGopherSession
Handle to a Gopher session returned by InternetConnect.

lpszLocator
Name of the item to locate. Can be one of the following items:

• A Gopher locator returned by lpGopherFindData, or a locator obtained
by a previous call to this function or the InternetFindNextFile
function.

• A NULL pointer or zero-length string indicating that the topmost
information from a Gopher server is being returned.

• A locator created by the GopherCreateLocator function.

lpszSearchString
Address of a buffer that contains the strings to search, if this request
is to an index server. Otherwise, this parameter should be NULL.

lpFindData
Address of a GOPHER_FIND_DATA structure that receives the information
retrieved by this function.

dwFlags
Action flag. For a list of the valid flag values, see InternetOpenUrl.

dwContext
Application-defined value that associates this search with any
application data.

The GopherFindFirstFile function closely resembles the Win32
FindFirstFile function. It creates a connection with a Gopher server, and
then returns a single structure containing information about the first
Gopher object referenced by the locator string.

After calling GopherFindFirstFile to retrieve the first Gopher object in
an enumeration, an application can use the InternetFindNextFile function
to retrieve subsequent Gopher objects.

Use the InternetCloseHandle function to close the handle returned from
GopherFindFirstFile. If there are any pending operations described by
the handle when the application calls InternetCloseHandle, they are
canceled or marked as closed pending. Any open sessions are terminated, and
any data waiting for the caller is discarded. In addition, any allocated
buffers are freed.

 Win32 Internet Programmer's Reference

See also InternetCloseHandle, InternetConnect, InternetFindNextFile

GopherGetAttribute
BOOL GopherGetAttribute(
 IN HINTERNET hGopherSession,
 IN LPCTSTR lpszLocator,
 IN LPCTSTR lpszAttributeName OPTIONAL,
 OUT LPBYTE lpBuffer,
 IN DWORD dwBufferLength,
 OUT LPDWORD lpdwCharactersReturned,
 IN GOPHER_ATTRIBUTE_ENUMERATOR lpfnEnumerator OPTIONAL,
 IN DWORD dwContext
);

Allows an application to retrieve specific attribute information from the
server.

• Returns TRUE if the request is satisfied, or FALSE otherwise. To get
extended error information, call GetLastError or
InternetGetLastResponseInfo.

hGopherSession
Handle to a Gopher session returned by InternetConnect.

lpszLocator
Address of a string that identifies the item at the Gopher server on
which to return attribute information.

lpszAttributeName
Address of a space-delimited string specifying the names of attributes
to return. If lpszAttributeName is NULL, GopherGetAttribute will
return information about all attributes.

lpBuffer
Address of an application-defined buffer from which attribute
information is retrieved.

dwBufferLength
Size, in bytes, of the lpBuffer buffer.

lpdwCharactersReturned
Number of characters read into the lpBuffer buffer.

lpfnEnumerator
Address of a callback function that enumerates each attribute of the
locator. This parameter is optional. If it is NULL, all the Gopher
attribute information is placed into lpBuffer. If lpfnEnumerator is
specified, the callback function is called once for each attribute of
the object.

The callback function receives the address of a single
GOPHER_ATTRIBUTE_TYPE structure with each call. The enumeration
callback function allows the application to avoid having to parse the

Gopher attribute information.

Microsoft Win32 Internet Functions 55

dwContext
Application-defined value that associates this operation with any
application data.

Generally, applications call this function after calling
GopherFindFirstFile or InternetFindNextFile.

The size of the lpBuffer parameter must be equal to or greater than the
value of MIN_GOPHER_ATTRIBUTE_LENGTH (currently defined in Wininet.h as 256
bytes).

See also InternetConnect

GopherAttributeEnumerator

BOOL GopherAttributeEnumerator(
 LPGOPHER_ATTRIBUTE_TYPE lpAttributeInformation,
 DWORD dwError
);

Defines a callback function that processes attribute information from a
Gopher server. This callback function is installed by a call to the
GopherGetAttribute function.

• Returns TRUE to continue the enumeration, or FALSE to immediately stop
it. This function is primarily used for returning the results of a
Gopher+ ASK item.

lpAttributeInformation
Address of a buffer that contains a single GOPHER_ATTRIBUTE_TYPE
structure. The lpBuffer parameter to GopherGetAttribute is used for
storing this structure. The lpBuffer size must be equal to or greater
than the value of MIN_GOPHER_ATTRIBUTE_LENGTH.

dwError
Error value. This parameter is NO_ERROR if the attribute was parsed and
written to the buffer successfully. If a problem was encountered, an
error value is returned.

GopherOpenFile
HINTERNET GopherOpenFile(
 IN HINTERNET hGopherSession,
 IN LPCTSTR lpszLocator,
 IN LPCTSTR lpszView OPTIONAL,
 IN DWORD dwFlags,
 IN DWORD dwContext
);

Begins reading a Gopher data file from a Gopher server.

 Win32 Internet Programmer's Reference

• Returns a handle if successful, or NULL if the file cannot be opened. To
get extended error information, call GetLastError or
InternetGetLastResponseInfo.

hGopherSession
Handle to a Gopher session returned by InternetConnect.

lpszLocator
Address of a string that identifies the file to open. Generally, this
locator is returned from a call to GopherFindFirstFile or
InternetFindNextFile. Because the Gopher protocol has no concept of a
current directory, the locator is always fully qualified.

lpszView
Address of a string that describes the view to open if several views of
the file exist at the server. If lpszView is NULL, the function uses the
default file view.

dwFlags
Any combination of the INTERNET_FLAG_* flag values. For a list of valid
flag values, see InternetOpenUrl.

dwContext
Application-defined value that associates this operation with any
application data.

This function opens a file at a Gopher server. Because a file cannot be
actually opened or locked at a server, this function simply associates
location information with a handle that an application can use for file-
based operations such as InternetReadFile or GopherGetAttribute.

Use the InternetCloseHandle function to close the handle returned from
GopherOpenFile. If there are any pending operations described by the
handle when the application calls InternetCloseHandle, they are canceled
or marked as closed pending. Any open sessions are terminated, and any data
waiting for the caller is discarded. In addition, any allocated buffers are
freed.

See also GopherFindFirstFile, GopherGetAttribute,
InternetCloseHandle, InternetConnect, InternetFindNextFile,
InternetOpenUrl, InternetReadFile

TTP Functions
The HTTP functions control the transmission and content of HTTP requests.

HttpAddRequestHeaders
BOOL HttpAddRequestHeaders(
 IN HINTERNET hHttpRequest,
 IN LPCTSTR lpszHeaders,
 IN DWORD dwHeadersLength,

 IN DWORD dwModifiers
);

Microsoft Win32 Internet Functions 57

Adds one or more HTTP request headers to the HTTP request handle.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError.

hHttpRequest
Open HTTP request handle returned by HttpOpenRequest.

lpszHeaders
Headers to append to the request. Each header must be terminated by a
CR/LF (carriage return/line feed) pair.

dwHeadersLength
Length, in characters, of lpszHeaders. If this parameter is -1L, the
function assumes that lpszHeaders is zero-terminated (ASCIIZ), and the
length is computed.

dwModifiers
Values used to modify the semantics of this function. Can be a
combination of these values:

HTTP_ADDREQ_FLAG_COALESCE_WITH_COMMA

Coalesces headers of the same name. For example,
adding "Accept: text/*" followed by "Accept: audio/*"
with this flag results in the formation of the single
header "Accept: text/*, audio/*". This causes the
first header found to be coalesced. It is up to the
calling application to ensure a cohesive scheme with
respect to coalesced/separate headers.

HTTP_ADDREQ_FLAG_COALESCE_WITH_SEMICOLON

Coaleses headers of the same name using a semicolon.

HTTP_ADDREQ_FLAG_COALESCE

Coaleses headers of the same name.

HTTP_ADDREQ_FLAG_REPLACE

Replaces or removes a header. If the header value is
empty and the header is found, it is removed. If not
empty, the header value is replaced.

HTTP_ADDREQ_FLAG_ADD

Adds the header if it does not exist. Used with
REPLACE.

HTTP_ADDREQ_FLAG_ADD_IF_NEW

Adds the header only if it does not already exist;
otherwise, an error is returned.

This function appends additional, free-format headers to the HTTP request
handle and is intended for use by sophisticated clients that need detailed
control over the exact request sent to the HTTP server.

Note that for basic HttpAddRequestHeaders, the application can pass in
multiple headers in a single buffer. If the application is trying to remove
or replace a header, only one header can be supplied in lpszHeaders.

See also HttpOpenRequest, HttpSendRequest

 Win32 Internet Programmer's Reference

HttpOpenRequest
HINTERNET HttpOpenRequest(
 IN HINTERNET hHttpSession,
 IN LPCTSTR lpszVerb,
 IN LPCTSTR lpszObjectName,
 IN LPCTSTR lpszVersion,
 IN LPCTSTR lpszReferer OPTIONAL,
 IN LPCTSTR FAR * lpszAcceptTypes OPTIONAL,
 IN DWORD dwFlags,
 IN DWORD dwContext
);

Opens an HTTP request handle.

• Returns a valid (non-NULL) HTTP request handle if successful, or NULL
otherwise. To get extended error information, call GetLastError.

hHttpSession
Handle to an HTTP session returned by InternetConnect.

lpszVerb
Address of a string that contains the verb to use in the request. If
this parameter is NULL, the function uses "GET" as the verb.

lpszObjectName
Address of a string that contains the name of the target object of the
specified verb. This is generally a file name, an executable module, or
a search specifier.

lpszVersion
Address of a string that contains the HTTP version. If this parameter is
NULL, the function uses "HTTP/1.0" as the version.

lpszReferer
Address of a string that specifies the address (URL) of the document
from which the URL in the request (lpszObjectName) was obtained. If this
parameter is NULL, no "referrer" is specified.

lpszAcceptTypes
Address of a null-terminated array of LPCTSTR pointers indicating
content types accepted by the client. If this parameter is NULL, no
types are accepted by the client. Servers interpret a lack of accept
types to indicate that the client accepts only documents of type
"text/*" (that is, only text documents and not pictures or other binary
files).

dwFlags
Internet flag values. For a list of valid flag values, see
InternetOpenUrl.

dwContext
An application-defined value that associates this operation with any
application data.

This function creates a new HTTP request handle and stores the

Microsoft Win32 Internet Functions 59

specified parameters in that handle. An HTTP request handle holds a request
to be sent to an HTTP server and contains all RFC822/MIME/HTTP headers to
be sent as part of the request.

Use the InternetCloseHandle function to close the handle returned by
HttpOpenRequest. InternetCloseHandle cancels all outstanding I/O on
the handle.

The lpszReferer parameter to InternetOpen is used as the referrer for the
HTTP request.

See also HttpAddRequestHeaders, HttpQueryInfo, HttpSendRequest,
InternetCloseHandle, InternetConnect, InternetOpen,
InternetReadFile

HttpQueryInfo
BOOL HttpQueryInfo(
 IN HINTERNET hHttpRequest,
 IN DWORD dwInfoLevel,
 IN LPVOID lpvBuffer OPTIONAL,
 IN LPDWORD lpdwBufferLength,
 IN OUT LPDWORD lpdwIndex OPTIONAL,
);

Queries for information about an HTTP request.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError.

hHttpRequest
Open HTTP request handle returned by HttpOpenRequest.

dwInfoLevel
Combination of the attribute to query and the flags that modify the
request. The following flags can be used to modify a request:

HTTP_QUERY_INFO_NUMBER

This flag is required to set the
type of the data returned by
HttpQueryInfo to a DWORD.

HTTP_QUERY_CUSTOM

If this query level is specified,
lpvBuffer contains an ASCIIZ
header name. This header name is
searched for and its value
returned in lpvBuffer on output.

HTTP_QUERY_FLAG_COALESCE

Combine the values from several
headers of the same name into the
output buffer.

HTTP_QUERY_FLAG_REQUEST_HEADERS

Typically, response headers are
queried, but an application can

 Win32 Internet Programmer's Reference

also query request headers by
using this flag.

HTTP_QUERY_FLAG_SYSTEMTIME

For those headers whose value is
a date/time string, such as
"Last-Modified-Time", specifying
this flag returns the header
value as a standard Win32
SYSTEMTIME structure, which does
not require the application to
parse the data.

HTTP_QUERY_FLAG_NUMBER

For those headers whose value is
a number, such as the status
code, specifying this flag
returns the data as a 32-bit
number.

lpvBuffer
Address of the buffer that receives the information.

lpdwBufferLength
Address of a value that contains the length of the data buffer. When the
function returns, this parameter contains the address of a value
specifying the length of the information written to the buffer. When the
function returns strings, the following rules apply:

• If the function succeeds, lpdwBufferLength specifies the length of
the string, in characters, minus 1 for the terminating null.

• If the function fails and ERROR_INSUFFICIENT_BUFFER is returned,
lpdwBufferLength specifies the number of bytes that the application
must allocate in order to receive the string.

lpdwIndex
Address of a zero-based header index used to enumerate multiple headers
with the same name. When calling the function, this parameter is the
index of the specified header to return. When the function returns, this
parameter is the index of the next header. If the next index cannot be
found, ERROR_HTTP_HEADER_NOT_FOUND is returned.

The possible values for the dwInfoLevel parameter include:

HTTP_QUERY_MIME_VERSION

HTTP_QUERY_CONTENT_TYPE

HTTP_QUERY_CONTENT_TRANSFER_ENCODI
NG

HTTP_QUERY_CONTENT_ID

HTTP_QUERY_CONTENT_DESCRIPTION

HTTP_QUERY_CONTENT_LENGTH

HTTP_QUERY_ALLOW

HTTP_QUERY_PUBLIC

HTTP_QUERY_DATE

HTTP_QUERY_EXPIRES

Microsoft Win32 Internet Functions 61

HTTP_QUERY_LAST_MODIFIED

HTTP_QUERY_MESSAGE_ID

HTTP_QUERY_URI

HTTP_QUERY_DERIVED_FROM

HTTP_QUERY_LANGUAGE

HTTP_QUERY_COST

HTTP_QUERY_WWW_LINK

HTTP_QUERY_PRAGMA

HTTP_QUERY_VERSION

HTTP_QUERY_STATUS_CODE

HTTP_QUERY_STATUS_TEXT

HTTP_QUERY_RAW_HEADERS

HTTP_QUERY_RAW_HEADERS_CRLF

HTTP_QUERY_REQUEST_METHOD

In HTTP_QUERY_REQUEST_METHOD, the lpvBuffer parameter receives the verb
that is being used in the request, typically "GET" or "POST".

This function is used to return response or request headers from an HTTP
request. You can retrieve different types of data from HttpQueryInfo:

• strings (default)

• SYSTEMTIME (for Data: Expires:, headers)

• DWORD (for STATUS_CODE, CONTENT_LENGTH, and so on if
HTTP_QUERY_INFO_NUMBER has been used)

See also HttpOpenRequest

HttpSendRequest
BOOL HttpSendRequest(
 IN HINTERNET hHttpRequest,
 IN LPCTSTR lpszHeaders OPTIONAL,
 IN DWORD dwHeadersLength,
 IN LPVOID lpOptional OPTIONAL,
 DWORD dwOptionalLength
);

Sends the specified request to the HTTP server.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError.

hHttpRequest
Open HTTP request handle returned by HttpOpenRequest.

lpszHeaders
Additional headers to be appended to the request. This parameter can be
NULL if there are no additional headers to append.

 Win32 Internet Programmer's Reference

dwHeadersLength
Length, in characters, of the additional headers. If this parameter is -
1L and lpszHeaders is not NULL, the function assumes that lpszHeaders is
zero-terminated (ASCIIZ), and the length is calculated.

lpOptional
Address of any optional data to send immediately after the request
headers. This is generally used for POST and PUT operations. This
parameter can be NULL if there is no optional data to send.

dwOptionalLength
Length, in bytes, of the optional data. This parameter can be zero if
there is no optional data to send.

This function sends the specified request to the HTTP server and allows the
client to specify additional RFC822/MIME/HTTP headers to send along with
the request.

The function also lets the client specify optional data to send to the HTTP
server immediately following the request headers. This feature is generally
used for "write" operations such as PUT and POST.

After the request is sent, the status code and response headers from the
HTTP server are read. These headers are maintained internally and are
available to client applications through the HttpQueryInfo function.

An application can use the same HTTP request handle in multiple calls to
HttpSendRequest, but the application must read all data returned from the
previous call before calling the function again.

See also HttpOpenRequest, HttpQueryInfo, InternetReadFile

ookie Functions
Cookies are a means by which, under HTTP protocol, a server or a script can
maintain state information on the client workstation. The Win32 Internet
functions have implemented a persistent cookie database for this purpose.
Cookie functions are provided for users of Win32 Internet functions in
order to set cookies into, and access them from, the cookie database. The
caller of these functions should be familiar with cookies as outlined in
ftp://ds.internic.net/internet-drafts/draft-ietf-http-state-mgmt-*.txt.
Please note that the implementation of these functions is evolving; be
cautious when using them.

InternetGetCookie
BOOL InternetGetCookie(
 IN LPCSTR lpszUrlName,
 IN LPCSTR lpszCookieName,
 OUT LPSTR lpszCookieData,
 IN OUT LPDWORD lpdwSize
);

Returns cookies for the specified URL and all its parent URLs.

Microsoft Win32 Internet Functions 63

• Returns TRUE if successful, or FALSE otherwise. To get the specific
error value, call GetLastError. The following error values apply to
InternetGetCookie:

Value Description

ERROR_NO_MORE_ITEMS There is no cookie for the
specified URL and all its
parents.

ERROR_INSUFFICIENT_BUFFER The value passed in
lpdwSize is insufficient
to copy all the cookie
data. The value returned
in lpdwSize is the size of
the buffer necessary to
get all the data.

lpszUrlName
Address of a string that contains the URL to get cookies for.

lpszCookieName
Address of the name of the cookie to get for the specified URL. This has
not been implemented in this release.

lpszCookieData
Address of the buffer that receives the cookie data. This value can be
NULL.

lpdwSize
Address of a variable that specifies the size of the lpszCookieData
buffer. If the function succeeds, the buffer receives the amount of data
copied to the lpszCookieData buffer. If lpCookieData is NULL, this
parameter receives a value that specifies the size of the buffer
necessary to copy all the cookie data.

No call to InternetOpen is required to use this function.
InternetGetCookie checks in the windows\cookies directory for cookies
and searches memory for any cookies that do not have an expiration date,
since these cookies are not written to any files. Rules for creating cookie
files are internal to Win32 Internet functions and may change in the
future.

InternetSetCookie
BOOL InternetSetCookie(
 IN LPCSTR lpszUrlName,
 IN LPCSTR lpszCookieName,
 IN LPCSTR lpszCookieData
);

Sets a cookie on the specified URL.

• Returns TRUE if successful, or FALSE otherwise. To get the specific
error code, call GetLastError.

 Win32 Internet Programmer's Reference

lpszUrlname
Address of a null-terminated string that specifies the URL for which the
cookie should be set.

lpszCookieName
Address of a string that contains the name to associate with the cookie.
If this parameter is NULL, no name is associated with the cookie. This
parameter is not implemented in this release and should be set to NULL.

lpszCookieData
Address of the actual data to associate with the URL.

Creating a new cookie may cause a dialog box to appear on the screen if the
appropriate registry value is set. There is no way to change the registry
value from a Win32 Internet function.

ersistent URL Cache Functions
This section describes the functions used by clients that need persistent
caching services. The functions allow an application to save data in the
local file system for subsequent use, such as in situations where access to
the data is over a low bandwidth link, or the access is not available at
all. The calling program that inserts data into the persistent cache
assigns a source name that is used to do operations such as retrieve the
data, set and get some properties on it, and delete it.

The protocols implemented in Win32 Internet functions use the cache
functions to provide persistent caching and off-line browsing. Unless
explicitly specified not to cache through the INTERNET_FLAG_NO_CACHE_WRITE
flag, Win32 Internet functions cache all data downloaded from the network.
The responses to POST data are not cached.

andling Structures with Variable Size
nformation

The cache may contain variable size information for each URL stored. This
is reflected in the INTERNET_CACHE_ENTRY_INFO structure. When the cache
functions return this structure, they create a buffer that is always the
size of INTERNET_CACHE_ENTRY_INFO plus any variable-size information.
If a pointer member is not NULL, it points to the memory area immediately
after the structure. While copying the returned buffer from a function into
another buffer, the pointer members should be fixed to point to the
appropriate place in the new buffer, as the following example shows:

lpDstCEInfo->lpszSourceUrlName =
 (LPINTERNET_CACHE_ENTRY_INFO) ((LPBYTE) lpSrcCEInfo +
((DWORD) (lpOldCEInfo->lpszSourceUrlName) - (DWORD) lpOldCEInfo))

Some cache functions fail with the ERROR_INSUFFICIENT_BUFFER error value if
you specify a buffer that is too small to contain the cache-entry
information retrieved by the function. In this case, the function also
returns the required size of the buffer. You can then allocate a buffer of

the appropriate size and call the function again. If you want the
function to succeed on the first call, allocate a buffer of the size

specified by the MAX_CACHE_ENTRY_INFO_SIZE value, and then set the

Microsoft Win32 Internet Functions 65

dwStructSize member of the INTERNET_CACHE_ENTRY_INFO structure to
MAX_CACHE_ENTRY_INFO_SIZE when calling the function.

Cache APIs

CommitUrlCacheEntry
BOOL CommitUrlCacheEntry(
 IN LPCSTR lpszUrlName,
 IN LPCTSTR lpszLocalFileName,
 IN FILETIME ExpireTime,
 IN FILETIME LastModifiedTime,
 IN DWORD CacheEntryType,
 IN LPCBYTE lpHeaderInfo,
 IN DWORD dwHeaderSize,
 IN LPCTSTR lpszFileExtension,
 IN DWORD dwReserved
);

Caches data in the specified file in the cache storage and associates it
with the given URL.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError. Possible error values include:

Value Meaning

ERROR_FILE_NOT_FOUND The specified local file is not
found.

ERROR_DISK_FULL The cache storage is full.

lpszUrlName
Address of a string that contains the source name of the cache entry.
The name string must be unique, and should not contain any escape
characters.

lpszLocalFileName
Address of a string that contains the name of the local file that is
being cached. This should be the same name as that returned by
CreateUrlCacheEntry.

ExpireTime
A FILETIME structure that contains the expire date and time (GMT) of
the file that is being cached. If the expire date and time is unknown,
set this parameter to zero.

LastModifiedTime
A FILETIME structure that contains the last modified date and time
(GMT) of the URL that is being cached. If the last modified date and
time is unknown, set this parameter to zero.

CacheEntryType
Type of the cache entry.

 Win32 Internet Programmer's Reference

lpHeaderInfo
Address of the header information. If this parameter is not NULL, the
header information is treated as extended attributes of the URL and is
returned back in the INTERNET_CACHE_ENTRY_INFO structure.

dwHeaderSize
Size of the header information. If lpHeaderInfo is not NULL, this value
is assumed to indicate the size of the header information. An
application can maintain headers as part of the data and provide
dwHeaderSize, together with a NULL value for lpHeaderInfo.

lpszFileExtension
Address of a buffer that contains information maintained in the cache
database for future use. In this version of Win32 Internet functions,
this information is not used.

dwReserved
Reserved; must be zero.

If the cache storage is full, the function invokes cache cleanup to make
space for this new file. If the file size is bigger than the cache size,
the function returns ERROR_DISK_FULL. If the cache entry already exists,
the function overwrites the entry. The user could specify
SPARSE_CACHE_ENTRY in the Commit to indicate that the size of the data is
incomplete.

CreateUrlCacheEntry
BOOL CreateUrlCacheEntry(
 IN LPCSTR lpszUrlName,
 IN DWORD dwExpectedFileSize,
 IN DWORD lpszFileExtension,
 OUT LPTSTR lpszFileName,
 IN DWORD dwReserved
);

Allocates requested cache storage, and creates a local file name for saving
the cache entry corresponding to the source name.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError.

lpszUrlName
Address of a string that contains the name of the URL. The string should
not contain any escape characters.

dwExpectedFileSize
Expected size of the file needed to store the data corresponding to the
source entity. If the expected size is unknown, set this value to zero.

lpszFileExtension
Address of a string that contains an extension name of the file in the
local storage.

lpszFileName
Address of a buffer that receives the file name. The buffer should be
large enough (MAX_PATH) to store the file path name of the created file.

Microsoft Win32 Internet Functions 67

dwReserved
Reserved; must be zero.

Internet services that use the cache should call this function to write
directly into the cache storage. The caller should indicate the expected
size of the file, but it is not guaranteed. Once the file is completely
received, the caller should call CommitUrlCacheEntry to commit the entry
in the cache.

GetUrlCacheEntryInfo
BOOL GetUrlCacheEntryInfo(
 IN LPCSTR lpszUrlName,
 IN LPINTERNET_CACHE_ENTRY_INFO lpCacheEntryInfo,
 IN OUT LPDWORD lpdwCacheEntryInfoBufferSize
);

Retrieves information about a cache entry.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError. Possible error values include:

Value Meaning

ERROR_INSUFFICIENT_BUFFER The size of lpCacheEntryInfo as
specified by
lpdwCacheEntryInfoBufferSize is
not sufficient to contain all the
information. The value returned
in lpdwCacheEntryInfoBufferSize
indicates the buffer size
necessary to contain all the
information.

ERROR_FILE_NOT_FOUND The specified cache entry is not
found in the cache.

lpszUrlName
Address of a string that contains the name of the cache entry. The name
string should not contain any escape characters.

lpCacheEntryInfo
Address of an INTERNET_CACHE_ENTRY_INFO structure that receives
information about the cache entry.

lpdwCacheEntryInfoBufferSize
Address of a variable that specifies the size of the lpszCacheEntryInfo
buffer. When the function returns, the variable contains the number of
bytes copied to the buffer, or the required size of the buffer.

ReadUrlCacheEntryStream
BOOL ReadUrlCacheEntryStream(
 IN HANDLE hUrlCacheStream,
 IN DWORD dwLocation,

 Win32 Internet Programmer's Reference

 IN OUT LPVOID lpBuffer,
 IN OUT LPDWORD lpdwLen,
 IN DWORD dwReserved
);

Reads the cached data from a stream that has been opened using the
RetrieveUrlCacheEntryStream function.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError.

hUrlCacheStream
Handle that was returned by the RetrieveUrlCacheEntryStream
function.

dwLocation
Offset to read from.

lpBuffer
Address of a buffer that receives the data.

lpdwLen
Address of a variable that specifies the length of the lpBuffer buffer.
When the function returns, the variable contains the number of bytes
copied to the buffer, or the required size of the buffer.

dwReserved
Reserved; must be zero.

RetrieveUrlCacheEntryFile
BOOL RetrieveUrlCacheEntryFile(
 IN LPCSTR lpszUrlName,
 OUT LPINTERNET_CACHE_ENTRY_INFO lpCacheEntryInfo,
 IN OUT LPDWORD lpdwCacheEntryInfoBufferSize
 IN DWORD dwReserved
);

Retrieves a cache entry from the cache in the form of a file.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError. Possible error values include:

Value Meaning

ERROR_FILE_NOT_FOUND The cache entry specified by the
source name is not found in the
cache storage.

ERROR_INSUFFICIENT_BUFFER The size of the lpCacheEntryInfo
buffer as specified by
lpdwCacheEntryInfoBufferSize is
not sufficient to contain all the
information. The value returned
in lpdwCacheEntryInfoBufferSize
indicates the buffer size
necessary to get all the
information.

Microsoft Win32 Internet Functions 69

lpszUrlName
Source name of the cache entry. This must be a unique name. The name
string should not contain any escape characters.

lpCacheEntryInfo
Address of a cache entry information buffer. If the buffer is not
sufficient to accommodate all the information associated with the URL,
one or more of the embedded pointers will be NULL.

lpdwCacheEntryInfoBufferSize
Address of a variable that specifies the size of the lpCacheEntryInfo
buffer. When the function returns, this variable contains the size of
the actual buffer used or required. The caller should check the return
value in this variable. If the return size is less than or equal to the
size passed in, all the relevant data has been returned.

dwReserved
Reserved; must be zero.

If an extension was provided while calling CommitUrlCacheEntry, the file
will have the specified extension. If the entry is not available in the
cache, this function returns ERROR_FILE_NOT_FOUND; otherwise, it returns
the name of the local file. The caller is given only read permission to the
local file, so the caller should not attempt to write or delete the file.

The file is locked for the caller when it is retrieved; the caller should
unlock the file after it has been used up. The cache manager will
automatically unlock the locked files after a certain interval. While the
file is locked, the cache manager will not remove the file from the cache.
It is important to note that this function may be efficient or expensive,
depending on the internal implementation of the cache. For instance, if the
URL data is stored in a packed file that contains data for other URLs, the
cache will make a copy of the data to a file in a temporary directory
maintained by the cache. The cache will eventually delete the copy. It is
recommended that this function be used only in situations where a file name
is needed to launch an application. RetrieveUrlCacheEntryStream and
associated stream functions should be used in most cases.

RetrieveUrlCacheEntryStream
HANDLE RetrieveUrlCacheEntryStream(
 IN LPCSTR lpszUrlName,
 OUT LPINTERNET_CACHE_ENTRY_INFO lpCacheEntryInfo,
 IN OUT LPDWORD lpdwCacheEntryInfoBufferSize,
 IN BOOL fRandomRead,
 IN DWORD dwReserved
);

Provides the most efficient and implementation-independent way of accessing
the cache data.

• Returns a valid handle for use in the ReadUrlCacheEntryStream and
UnlockUrlCacheEntryStream functions if successful, or

 Win32 Internet Programmer's Reference

INVALID_HANDLE_VALUE otherwise. To get extended error information, call
GetLastError. Possible error values include:

Value Meaning

ERROR_FILE_NOT_FOUND The cache entry specified by the
source name is not found in the
cache storage.

ERROR_INSUFFICIENT_BUFFER The size of lpCacheEntryInfo as
specified by
lpdwCacheEntryInfoBufferSize is
not sufficient to contain all the
information. The value returned
in lpdwCacheEntryInfoBufferSize
indicates the buffer size
necessary to contain all the
information.

lpszUrlName
Address of a string that contains the source name of the cache entry.
This must be a unique name. The name string should not contain any
escape characters.

lpCacheEntryInfo
Address of an INTERNET_CACHE_ENTRY_INFO structure that receives
information about the cache entry.

lpdwCacheEntryInfoBufferSize
Address of a variable that specifies the size of the lpCacheEntryInfo
buffer. When the function returns, the variable receives the number of
bytes copied to the buffer, or the required size of the buffer.

fRandomRead
Flag to indicate whether the stream is opened for random access or not.
Set the flag to TRUE to open the stream for random access.

dwReserved
Reserved; must be zero.

Cache clients that do not need URL data in the form of a file should use
this function to access the data for a particular URL.

SetUrlCacheEntryInfo
BOOL SetUrlCacheEntryInfo(
 IN LPCSTR lpszUrlName,
 IN LPINTERNET_CACHE_ENTRY_INFO lpCacheEntryInfo,
 IN DWORD dwFieldControl
);

Sets the specified members of the INTERNET_CACHE_ENTRY_INFO structure.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError. Possible error values include:

Value Meaning

ERROR_FILE_NOT_FOUND The specified cache entry is not

Microsoft Win32 Internet Functions 71

found in the cache.

ERROR_INVALID_PARAMETER The value(s) to be set is
invalid.

lpszUrlName
Address of a string that contains the name of the cache entry. The name
string should not contain any escape characters.

lpCacheEntryInfo
Address of an INTERNET_CACHE_ENTRY_INFO structure.

dwFieldControl
Bitmask that indicates the members that are to be set. Can be a
combination of the following values:

CACHE_ENTRY_ATTRIBUTE_FC

CACHE_ENTRY_HITRATE_FC

CACHE_ENTRY_MODTIME_FC

CACHE_ENTRY_EXPTIME_FC

CACHE_ENTRY_ACCTIME_FC

CACHE_ENTRY_SYNCTIME_FC

CACHE_ENTRY_HEADERINFO_FC

The last two flags have not been implemented in this release.

UnlockUrlCacheEntryFile
BOOL UnlockUrlCacheEntryFile(
 IN LPCSTR lpszUrlName,
 IN DWORD dwReserved
);

Unlocks the cache entry that was locked while the file was retrieved for
use from the cache.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError. ERROR_FILE_NOT_FOUND indicates that
the cache entry specified by the source name is not found in the cache
storage.

lpszUrlName
Address of a string that contains the source name of the cache entry
that is being unlocked. The name string should not contain any escape
characters.

dwReserved
Reserved; must be zero.

The application should not access the file after calling this function.

When this function returns, the cache manager is free to delete the cache
entry.

 Win32 Internet Programmer's Reference

UnlockUrlCacheEntryStream
BOOL UnlockUrlCacheEntryStream(
 IN HANDLE hUrlCacheStream,
 IN DWORD dwReserved
);

Closes the stream that has been retrieved using the
RetrieveUrlCacheEntryStream function.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError.

hUrlCacheStream
Handle that was returned by the RetrieveUrlCacheEntryStream
function.

dwReserved
Reserved; must be zero.

See also RetrieveUrlCacheEntryStream

ache Enumeration

DeleteUrlCacheEntry
BOOL DeleteUrlCacheEntry(
 IN LPCSTR lpszUrlName
);

Removes the file associated with the source name from the cache, if the
file exists.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError. Possible error values include:

Value Meaning

ERROR_FILE_NOT_FOUND The file is not in the cache.

ERROR_ACCESS_DENIED The file is in use.

lpszUrlName
Address of a string that contains the name of the source corresponding
to the cache entry.

FindCloseUrlCache
BOOL FindCloseUrlCache(
 IN HANDLE hEnumHandle

);

Closes the specified enumeration handle.

Microsoft Win32 Internet Functions 73

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError.

hEnumHandle
Handle returned by a previous call to the FindFirstUrlCacheEntry
function.

See also FindFirstUrlCacheEntry

FindFirstUrlCacheEntry
HANDLE FindFirstUrlCacheEntry (
 IN LPCSTR lpszUrlSearchPattern,
 OUT LPINTERNET_CACHE_ENTRY_INFO lpFirstCacheEntryInfo,
 IN OUT LPDWORD lpdwFirstCacheEntryInfoBufferSize
);

Begins the enumeration of the cache.

• Returns a handle that the application can use in the
FindNextUrlCacheEntry function to retrieve subsequent entries in the
cache. If the function fails, the return value is NULL. To get extended
error information, call GetLastError. ERROR_INSUFFICIENT_BUFFER
indicates that the size of lpCacheEntryInfo as specified by
lpdwCacheEntryInfoBufferSize is not sufficient to contain all the
information. The value returned in lpdwCacheEntryInfoBufferSize
indicates the buffer size necessary to contain all the information.

lpszUrlSearchPattern
Address of a string that contains the source name pattern to search for.
If this parameter is NULL, the function uses *.*. (In this version, only
. semantics are implemented.)

lpFirstCacheEntryInfo
Address of an INTERNET_CACHE_ENTRY_INFO structure.

lpdwFirstCacheEntryInfoBufferSize
Address of a variable that specifies the size of the
lpFirstCacheEntryInfo buffer. When the function returns, the variable
contains the number of bytes copied to the buffer, or the required size
of the buffer.

This function and the FindNextUrlCacheEntry function return variable
size information. In order to not have the enumeration terminate due to
ERROR_INSUFFICIENT_BUFFER, an application should create one buffer of the
size specified by the MAX_CACHE_ENTRY_INFO_SIZE value, and pass the address
of the buffer repeatedly to all the enumeration functions. After the
function succeeds, another buffer may be used of the size returned by
lpdwCacheEntryInfoBufferSize to keep the returned information. Be careful
to fix the pointer elements while copying the buffer.

See also FindNextUrlCacheEntry

 Win32 Internet Programmer's Reference

FindNextUrlCacheEntry
BOOL FindNextUrlCacheEntry(
 IN HANDLE hEnumHandle,
 OUT LPINTERNET_CACHE_ENTRY_INFO lpNextCacheEntryInfo,
 IN OUT LPWORD lpdwNextCacheEntryInfoBufferSize
);

Retrieves the next entry in the cache.

• Returns TRUE if successful, or FALSE otherwise. To get extended error
information, call GetLastError. Possible error values include:

Value Meaning

ERROR_NO_MORE_FILES The enumeration completed.

ERROR_INSUFFICIENT_BUFFER The size of lpCacheEntryInfo as
specified by
lpdwCacheEntryInfoBufferSize is
not sufficient to contain all the
information. The value returned
in lpdwCacheEntryInfoBufferSize
indicates the buffer size
necessary to contain all the
information.

hEnumHandle
Enumeration handle obtained from a previous call to
FindFirstUrlCacheEntry.

lpNextCacheEntryInfo
Address of an INTERNET_CACHE_ENTRY_INFO structure that receives
information about cache entry.

lpdwNextCacheEntryInfoBufferSize
Address of a variable that specifies the size of the
lpNextCacheEntryInfo buffer. When the function returns, the variable
contains the number of bytes copied to the buffer, or the required size
of the buffer.

See also FindFirstUrlCacheEntry

tructures
This list identifies the Win32 Internet function data structures and their
uses.

GOPHER_ATTRIBUTE_TYPE
typedef struct {
 DWORD CategoryId

 DWORD AttributeId
 union {
 GOPHER_ADMIN_ATTRIBUTE Admin;

Microsoft Win32 Internet Functions 75

 GOPHER_MOD_DATE_ATTRIBUTE ModDate;
 GOPHER_SCORE_ATTRIBUTE Score;
 GOPHER_SCORE_RANGE_ATTRIBUTE ScoreRange;
 GOPHER_SITE_ATTRIBUTE Site;
 GOPHER_ORGANIZATION_ATTRIBUTE Organization;
 GOPHER_LOCATION_ATTRIBUTE Location;
 GOPHER_GEOGRAPHICAL_LOCATION_ATTRIBUTE GeographicalLocation;
 GOPHER_TIMEZONE_ATTRIBUTE TimeZone;
 GOPHER_PROVIDER_ATTRIBUTE Provider;
 GOPHER_VERSION_ATTRIBUTE Version;
 GOPHER_ABSTRACT_ATTRIBUTE Abstract;
 GOPHER_VIEW_ATTRIBUTE View;
 GOPHER_VERONICA_ATTRIBUTE Veronica;
 GOPHER_ASK_ATTRIBUTE_TYPE Ask;
 GOPHER_UNKNOWN_ATTRIBUTE Unknown;
 } AttributeType;
} GOPHER_ATTRIBUTE_TYPE, *LPGOPHER_ATTRIBUTE_TYPE;

Contains the relevant information of a single Gopher attribute for an
object.

CategoryId
Gopher name for the attribute. The possible values include:

GOPHER_CATEGORY_ID_ALL

GOPHER_CATEGORY_ID_INFO

GOPHER_CATEGORY_ID_ADMIN

GOPHER_CATEGORY_ID_VIEWS

GOPHER_CATEGORY_ID_ABSTRACT

GOPHER_CATEGORY_ID_VERONICA

GOPHER_CATEGORY_ID_UNKNOWN

AttributeId
Identifier of the structure contained in the AttributeType member. The
possible values include:

GOPHER_ATTRIBUTE_ID_ADMIN

GOPHER_ATTRIBUTE_ID_MOD_DATE

GOPHER_ATTRIBUTE_ID_TTL

GOPHER_ATTRIBUTE_ID_SCORE

GOPHER_ATTRIBUTE_ID_RANGE

GOPHER_ATTRIBUTE_ID_SITE

GOPHER_ATTRIBUTE_ID_ORG

GOPHER_ATTRIBUTE_ID_LOCATION

GOPHER_ATTRIBUTE_ID_GEOG

GOPHER_ATTRIBUTE_ID_TIMEZONE

GOPHER_ATTRIBUTE_ID_PROVIDER

GOPHER_ATTRIBUTE_ID_VERSION

GOPHER_ATTRIBUTE_ID_ABSTRACT

GOPHER_ATTRIBUTE_ID_VIEW

GOPHER_ATTRIBUTE_ID_TREEWALK

 Win32 Internet Programmer's Reference

GOPHER_ATTRIBUTE_ID_UNKNOWN

AttributeType
Actual setting for the Gopher attribute. The specific value of
AttributeType depends on the AttributeId member. The definitions of
the various attribute structures is available in Wininet.h.

See also GopherGetAttribute

GOPHER_FIND_DATA
typedef struct {
 TCHAR DisplayString[MAX_GOPHER_DISPLAY_TEXT + 1];
 DWORD GopherType;
 DWORD SizeLow;
 DWORD SizeHigh;
 FILETIME LastModificationTime;
 TCHAR Locator[MAX_GOPHER_LOCATOR_LENGTH + 1];
} GOPHER_FIND_DATA, FAR *LPGOPHER_FIND_DATA;

Contains information retrieved by the GopherFindFirstFile and
InternetFindNextFile functions.

DisplayString
String that contains the friendly name of an object. An application can
display this string to allow the user to select the object.

GopherType
Mask of flags that describe the item returned.

FileSizeLow
Low 32 bits of the file size.

FileSizeHigh
High 32 bits of the file size.

LastModificationTime
Time when the file was last modified.

Locator
String that identifies the file. An application can pass the locator
string to GopherOpenFile or GopherFindFirstFile.

See also GopherFindFirstFile

INTERNET_ASYNC_RESULT

typedef struct {
 DWORD dwResult;
 DWORD dwError;
} INTERNET_ASYNC_RESULT, * LPINTERNET_ASYNC_RESULT;

Contains the result of a call to an asynchronous function. This
structure is used with the InternetStatusCallback function.

Microsoft Win32 Internet Functions 77

dwResult
HINTERNET, DWORD, or BOOL return code from an asynchronous function.

dwError
Error code if dwResult indicates that the function failed. If the
operation succeeded, this member usually contains ERROR_SUCCESS.

See also InternetStatusCallback

INTERNET_CACHE_ENTRY_INFO

typedef struct _CACHE_ENTRY_INFO {
 DWORD dwStructSize;
 LPSTR lpszSourceUrlName;
 LPTSTR lpszLocalFileName;
 DWORD CacheEntryType;
 DWORD dwUseCount;
 DWORD dwHitRate;
 DWORD dwSizeLow;
 DWORD dwSizeHigh;
 FILETIME LastModifiedTime;
 FILETIME ExpireTime;
 FILETIME LastAccessTime;
 FILETIME LastSyncTime;
 LPBYTE lpHeaderInfo;
 DWORD dwHeaderInfoSize;
 LPTSTR lpszFileExtension;
 DWORD dwReserved;
} INTERNET_CACHE_ENTRY_INFO, *LPINTERNET_CACHE_ENTRY_INFO;

Contains information about an entry in the cache.

dwStructSize
Size, in bytes, of this structure.

lpszSourceUrlName
Address of a string that contains the URL name. The string occupies
memory area at the end of this structure.

lpszLocalFileName
Address of a string that contains the local file name. The string
occupies memory area at the end of this structure.

CacheEntryType
Cache type bit mask. Can be one of these values:

Value Meaning

NORMAL_CACHE_ENTRY Normal cache entry; may be
deleted to recover space for new
entries.

STABLE_CACHE_ENTRY Stable cache entry such as
graphic and audio/video files;
may be deleted to recover space
for the new entries only when
there is no more
NORMAL_CACHE_ENTRY.

 Win32 Internet Programmer's Reference

STICKY_CACHE_ENTRY Entries that will never be
removed automatically by the
cache management system.

SPARSE_CACHE_ENTRY This cache entry is incomplete.

OCX_CACHE_ENTRY Special OCX type cache entry.

dwUseCount
Current user count of the cache entry.

dwHitRate
Number of times the cache entry was retrieved.

dwSizeLow
Low-order double word of the file size.

dwSizeHigh
High-order double word of the file size.

LastModifiedTime
Last modified time of this URL in GMT format.

ExpireTime
Expiration time of this file in GMT format.

LastAccessTime
Last accessed time in GMT format.

LastSyncTime
Last time the cache was synchronized.

lpHeaderInfo
Address of a buffer that contains the header information. The buffer
occupies memory at the end of this structure.

dwHeaderInfoSize
Size of the lpHeaderInfo buffer.

lpszFileExtension
Address of a string that contains the file extension used to retrieve
the data as a file. The string occupies memory area at the end of this
structure.

dwReserved
Reserved; must be zero.

The MAX_CACHE_ENTRY_INFO_SIZE value defines the maximum size of the
INTERNET_CACHE_ENTRY_INFO structure that could be returned by the
implementation of the cache functions. Thus passing in a buffer of this
size in functions returning INTERNET_CACHE_ENTRY_INFO guarantees that
the function does not fail because of an insufficient buffer.

INTERNET_CERTIFICATE_INFO
typedef struct {
 FILETIME ftExpiry;
 FILETIME ftStart;
 LPTSTR lpszSubjectInfo;

 LPTSTR lpszIssuerInfo;
 LPTSTR lpszProtocolName;
 LPTSTR lpszSignatureAlgName;

Microsoft Win32 Internet Functions 79

 LPTSTR lpszEncryptionAlgName;
 DWORD dwKeySize;
} INTERNET_CERTIFICATE_INFO, * LPINTERNET_CERTIFICATE_INFO;

Contains certificate information returned from the server. This structure
is used by the InternetQueryOption function.

ftExpiry
FILETIME structure that contains the date the certificate expires.

ftStart
FILETIME structure that contains the date the certificate becomes
valid.

lpszSubjectInfo
Address of a buffer that contains the name of the organization, site,
and server for which the certificate was issued.

lpszIssuerInfo
Address of a buffer that contains the name of the organization, site,
and server that issued the certificate.

lpszProtocolName
Address of a buffer that contains the name of the protocol used to
provide the secure connection.

lpszSignatureAlgName
Address of a buffer that contains the name of the algorithm used for
signing the certificate.

lpszEncryptionAlgName
Address of a buffer that contains the name of the algorithm used for
doing encryption over the secure channel (SSL/PCT) connection.

dwKeySize
Size, in bytes, of the key.

Applications requesting this information must free pointers that are
allocated and placed in the returned structure.

See also InternetQueryOption

INTERNET_PREFETCH_STATUS
typedef struct {
 DWORD dwStatus;
 DWORD dwSize;
} INTERNET_PREFETCH_STATUS, * LPINTERNET_PREFETCH_STATUS;

Contains the status of a prefetch download operation.

dwStatus
Status of the download. Can be one of these values:

INTERNET_PREFETCH_PROGRESS The operation is in progress.

INTERNET_PREFETCH_COMPLETE The operation has completed.

INTERNET_PREFETCH_ABORTED The operation was aborted.

 Win32 Internet Programmer's Reference

dwSize
Size, in bytes, of data downloaded so far.

INTERNET_PROXY_INFO
typedef struct {
 DWORD dwAccessType;
 LPCTSTR lpszProxy;
 LPCTSTR lpszProxyBypass;
} INTERNET_PROXY_INFO, * LPINTERNET_PROXY_INFO;

Contains information that is supplied with the INTERNET_OPTION_PROXY value
to get or set proxy information on a handle obtained from a call to the
InternetOpen function.

dwAccessType
Access type. Can be one of these values:

Value Meaning

INTERNET_OPEN_TYPE_DIRECT Internet accessed through a
direct connection.

INTERNET_OPEN_TYPE_PROXY Internet accessed using a proxy.

INTERNET_OPEN_TYPE_PRECONFI
G

Applies only when setting proxy
information.

lpszProxy
Proxy server list.

lpszProxyBypass
Proxy bypass list.

INTERNET_SCHEME
typedef enum {
 INTERNET_SCHEME_PARTIAL = -2,
 INTERNET_SCHEME_UNKNOWN = -1,
 INTERNET_SCHEME_DEFAULT = 0,
 INTERNET_SCHEME_FTP,
 INTERNET_SCHEME_GOPHER,
 INTERNET_SCHEME_HTTP,
 INTERNET_SCHEME_HTTPS,
 INTERNET_SCHEME_FILE,
 INTERNET_SCHEME_NEWS,
 INTERNET_SCHEME_MAILTO,
 INTERNET_SCHEME_FIRST = INTERNET_SCHEME_FTP,
 INTERNET_SCHEME_LAST = INTERNET_SCHEME_MAILTO
} INTERNET_SCHEME, * LPINTERNET_SCHEME;

Defines the flags used with the nScheme member of the URL_COMPONENTS
structure.

Microsoft Win32 Internet Functions 81

INTERNET_VERSION_INFO
typedef struct {
 DWORD dwMajorVersion;
 DWORD dwMinorVersion;
} INTERNET_VERSION_INFO, * LPINTERNET_VERSION_INFO;

Contains the version number of the DLL that contains the Windows Internet
functions (Wininet.dll). This structure is used when passing the
INTERNET_OPTION_VERSION flag to the InternetQueryOption function.

dwMajorVersion
Major version number.

dwMinorVersion
Minor version number.

URL_COMPONENTS
typedef struct {
 DWORD dwStructSize;
 LPSTR lpszScheme;
 DWORD dwSchemeLength;
 INTERNET_SCHEME nScheme;
 LPSTR lpszHostName;
 DWORD dwHostNameLength;
 INTERNET_PORT nPort;
 LPSTR lpszUserName;
 DWORD dwUserNameLength;
 LPSTR lpszPassword;
 DWORD dwPasswordLength'
 LPSTR lpszUrlPath;
 DWORD dwUrlPathLength;
 LPTSTR lpszExtraInfo;
 DWORD dwExtraInfoLength;
} URL_COMPONENTS;

Contains the constituent parts of a URL. This structure is used with the
InternetCrackUrl and InternetCreateUrl functions.

dwStructSize
Size, in bytes, of this structure. Used for version checking.

lpszScheme
Address of a buffer that contains the scheme name.

dwSchemeLength
Length of the scheme name.

nScheme
Enumerated scheme type (if known). For a list of scheme types, see
INTERNET_SCHEME.

lpszHostName
Address of a buffer that contains the host name.

 Win32 Internet Programmer's Reference

dwHostNameLength
Length of the host name.

nPort
Converted port number.

lpszUserName
Address of a buffer that contains the user name.

dwUserNameLength
Length of the user name.

lpszPassword
Address of a buffer that contains the password.

dwPasswordLength
Length of the password.

lpszUrlPath
Address of a buffer that contains the URL path.

dwUrlPathLength
Length of the URL path.

lpszExtraInfo
Address of a buffer that contains the extra information (for
example, ?foo or #foo).

dwExtraInfoLength
Length of the extra information.

For InternetCrackUrl, if a pointer member and its corresponding length
member are both zero, that component is not returned. If the pointer member
is NULL but the length member is not zero, both the pointer and length
members are returned. If both pointer and corresponding length members are
non-zero, the pointer member points to a buffer where the component is
copied. The component may be un-escaped, depending on the dwFlags parameter
of InternetCrackUrl.

For InternetCreateUrl, the pointer members should be NULL if the
component is not required. If the corresponding length member is zero, the
pointer member is the address of a zero-terminated string. If the length
member is not zero, it is the string length of the corresponding pointer
member

rror Codes
The HTTP functions control the transmission and content of HTTP requests.

The Win32 Internet functions return Win32 error codes where appropriate.
The following error codes are specific to the Win32 Internet functions:

ERROR_INTERNET_CLIENT_AUTH_NOT_SETUP

Client authorization is not set up on this computer.

ERROR_INTERNET_OUT_OF_HANDLES

No more handles could be generated at this time.

ERROR_INTERNET_TIMEOUT

The request has timed out.

ERROR_INTERNET_EXTENDED_ERROR

Microsoft Win32 Internet Functions 83

An extended error was returned from the server. This is
typically a string or buffer containing a verbose error
message. Call InternetGetLastResponseInfo to retrieve
the error text.

ERROR_INTERNET_INTERNAL_ERROR

An internal error has occurred.

ERROR_INTERNET_INVALID_URL

The URL is invalid.

ERROR_INTERNET_UNRECOGNIZED_SCHEME

The URL scheme could not be recognized, or is not
supported.

ERROR_INTERNET_NAME_NOT_RESOLVED

The server name could not be resolved.

ERROR_INTERNET_PROTOCOL_NOT_FOUND

The requested protocol could not be located.

ERROR_INTERNET_INVALID_OPTION

A request to InternetQueryOption or
InternetSetOption specified an invalid option value.

ERROR_INTERNET_BAD_OPTION_LENGTH

The length of an option supplied to
InternetQueryOption or InternetSetOption is
incorrect for the type of option specified.

ERROR_INTERNET_OPTION_NOT_SETTABLE

The request option cannot be set, only queried.

ERROR_INTERNET_SHUTDOWN

The Win32 Internet function support is being shut down or
unloaded.

ERROR_INTERNET_INCORRECT_USER_NAME

The request to connect and log on to an FTP server could
not be completed because the supplied user name is
incorrect.

ERROR_INTERNET_INCORRECT_PASSWORD

The request to connect and log on to an FTP server could
not be completed because the supplied password is
incorrect.

ERROR_INTERNET_LOGIN_FAILURE

The request to connect and log on to an FTP server
failed.

ERROR_INTERNET_INVALID_OPERATION

The requested operation is invalid.

ERROR_INTERNET_OPERATION_CANCELLED

The operation was canceled, usually because the handle on
which the request was operating was closed before the
operation completed.

ERROR_INTERNET_INCORRECT_HANDLE_TYPE

The type of handle supplied is incorrect for this
operation.

 Win32 Internet Programmer's Reference

ERROR_INTERNET_INCORRECT_HANDLE_STATE

The requested operation cannot be carried out because the
handle supplied is not in the correct state.

ERROR_INTERNET_NOT_PROXY_REQUEST

The request cannot be made via a proxy.

ERROR_INTERNET_REGISTRY_VALUE_NOT_FOUND

A required registry value could not be located.

ERROR_INTERNET_BAD_REGISTRY_PARAMETER

A required registry value was located but is an incorrect
type or has an invalid value.

ERROR_INTERNET_NO_DIRECT_ACCESS

Direct network access cannot be made at this time.

ERROR_INTERNET_NO_CONTEXT

An asynchronous request could not be made because a zero
context value was supplied.

ERROR_INTERNET_NO_CALLBACK

An asynchronous request could not be made because a
callback function has not been set.

ERROR_INTERNET_REQUEST_PENDING

The required operation could not be completed because one
or more requests are pending.

ERROR_INTERNET_INCORRECT_FORMAT

The format of the request is invalid.

ERROR_INTERNET_ITEM_NOT_FOUND

The requested item could not be located.

ERROR_INTERNET_CANNOT_CONNECT

The attempt to connect to the server failed.

ERROR_INTERNET_CONNECTION_ABORTED

The connection with the server has been terminated.

ERROR_INTERNET_CONNECTION_RESET

The connection with the server has been reset.

ERROR_INTERNET_FORCE_RETRY

The Win32 Internet function needs to redo the request.

ERROR_INTERNET_ZONE_CROSSING

Not used in this release.

ERROR_INTERNET_MIXED_SECURITY

The content is not entirely secure. Some of the content
being viewed may have come from unsecured servers.

ERROR_INTERNET_SSL_CERT_CN_INVALID

The certificate returned by an SSL/PCT server is invalid
because of a mismatched server name. The server name that
was given by the caller does not match the common name
inside the certificate.

ERROR_INTERNET_HANDLE_EXISTS

The request failed because the handle already exists.

Microsoft Win32 Internet Functions 85

ERROR_FTP_TRANSFER_IN_PROGRESS

The requested operation cannot be made on the FTP session
handle because an operation is already in progress.

ERROR_FTP_DROPPED

The FTP operation was not completed because the session
was aborted.

ERROR_GOPHER_PROTOCOL_ERROR

An error was detected while parsing data returned from
the gopher server.

ERROR_GOPHER_NOT_FILE

The request must be made for a file locator.

ERROR_GOPHER_DATA_ERROR

An error was detected while receiving data from the
gopher server.

ERROR_GOPHER_END_OF_DATA

The end of the data has been reached.

ERROR_GOPHER_INVALID_LOCATOR

The supplied locator is not valid.

ERROR_GOPHER_INCORRECT_LOCATOR_TYPE

The type of the locator is not correct for this
operation.

ERROR_GOPHER_NOT_GOPHER_PLUS

The requested operation can only be made against a
Gopher+ server, or with a locator that specifies a
Gopher+ operation.

ERROR_GOPHER_ATTRIBUTE_NOT_FOUND

The requested attribute could not be located.

ERROR_GOPHER_UNKNOWN_LOCATOR

The locator type is unknown.

ERROR_HTTP_HEADER_NOT_FOUND

The requested header could not be located.

ERROR_HTTP_DOWNLEVEL_SERVER

The server did not return any headers.

ERROR_HTTP_INVALID_SERVER_RESPONSE

The server response could not be parsed.

ERROR_HTTP_INVALID_HEADER

The supplied header is invalid.

ERROR_HTTP_INVALID_QUERY_REQUEST

The request made to HttpQueryInfo is invalid.

ERROR_HTTP_HEADER_ALREADY_EXISTS

The header could not be added because it already exists.

ERROR_INVALID_HANDLE

The handle that was passed to the API has been either
invalidated or closed.

	Microsoft Win32 Internet
Functions

